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ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE

Machine learning for two-phase gas-liquid flow regime
evaluation based on raw 3D ECT measurement data
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Abstract. This paper presents a study on applying machine learning algorithms for the classification of a two-phase flow regime and its internal
structures. This research results may be used in adjusting optimal control of air pressure and liquid flow rate to pipeline and process vessels. To
achieve this goal the model of an artificial neural network was built and trained using measurement data acquired from a 3D electrical capacitance
tomography (ECT) measurement system. Because the set of measurement data collected to build the AI model was insufficient, a novel approach
dedicated to data augmentation had to be developed. The main goal of the research was to examine the high adaptability of the artificial neural
network (ANN) model in the case of emergency state and measurement system errors. Another goal was to test if it could resist unforeseen
problems and correctly predict the flow type or detect these failures. It may help to avoid any pernicious damage and finally to compare its
accuracy to the fuzzy classifier based on reconstructed tomography images – authors’ previous work.
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1. INTRODUCTION

The rapid expansion of computerization in the last decades
opened new possibilities for industry. Thanks to it, most in-
dustrial processes can be automated for better efficiency and
final product quality. As a result, companies can cut costs while
maximizing profits without compromise. A good example can
be various applications of computer science for process tomog-
raphy. The non-invasive methods of observing various chemical
and physical processes play a vast role in industry. For this pur-
pose, different types of equipment can be used depending on
specific needs, such as electrical, ultrasound, or optical tomog-
raphy [1]. For instance, it can be used as a diagnostic tool to
classify the characteristics of two-phase flow (TPF). This infor-
mation may be crucial to adjust the parameters of the process
controlling the supplying devices (e.g. air pressure, liquid flow
rate) to make the flow stable with desired characteristics.

Various solutions within the Industry 4.0 concept involve ma-
chine learning (ML) [2] to: increase interconnectivity and smart
automation, ensure higher production quality and energy usage
optimization [3, 4], autonomous vehicles usage [5], personal
assistant systems [6], security systems based on face recogni-
tion [7], etc. These innovations were possible thanks to devel-
opments made in the field of ML.

Current research was conducted on ML algorithms for identi-
fying TPF types. For this purpose, a model of an artificial neural
network was built. Training data was prepared based on raw
measurement data collected using the 3D electrical capacitance
tomography (ECT) diagnostic technique [8, 9]. Measurement
data was acquired as part of a measurement campaign for two
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research projects completed previously by the authors. Those
studies aimed to identify types of TPF processes by using fuzzy
logic algorithms.

The collected and well-described measurement data was
stored since performed experiments. Currently, technologies
and algorithms for effective classification based on ML have
emerged. Hence, the motivation to undertake the current re-
search was to restore and reuse data often referred to as trash
data (refurbishing) [10]. In Sections 2 and 3, the state-of-the-
art is presented showing that AI and tomographic techniques
have not been used so far together to recognize the TPF regime.
Moreover, the stored set of collected measurement data was
insufficient to build a reliable artificial neural network (ANN)
model. The known image data augmentation algorithms could
not be used in this case due to the specificity of the diagnostic
data format. Therefore, new dedicated algorithms for augment-
ing tomographic measurement data for building a training set
were developed within the current research. The results of the
model operation were evaluated and compared with those ob-
tained with the fuzzy models. The effectiveness of identification
and the workload related to the preparation of the fuzzy and
neural network models were compared. Also, different experi-
ments were conducted to demonstrate the high adaptability of
the artificial neural network to malfunctions. Three scenarios of
the breakdown of the measuring device were proposed. Unique
errors simulating the sensor and tomograph measurement card
damages were applied to the test data, which makes an additional
scientific contribution to this article.

2. BACKGROUND OF THE STUDY
2.1. Two-phase gas-liquid flow processes
The two-phase gas-liquid flows (TPF) are essential to many
industrial processes. Some of the numerous examples are the
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aeration processes [11] in chemical reactors [12], flotation pro-
cesses [13], and water and sewage aeration systems [14]. The
main task of aeration systems is producing a proper fraction
of aerated liquid and oxygen. The TPF processes also occur in
the bubble columns [15]. Their purpose is to implement various
physical and chemical processes. Controlling the interfacial area
often determines the progress intensity of these processes. There
is also a separate group of industrial processes in which gas bub-
bles may be formed in the liquid due to chemical reactions. It
can occur, for example, in chemical reactors or the process of
electrolysis [16], where the gas phase is a product (often kind
of a by-product) of a chemical reaction. The increasing needs
of industry [17] for a simple, versatile, relatively inexpensive,
non-invasive, and rapid method of process diagnosis and control
for TPFs justify the importance of the research topic. One of the
main challenges in TPF control is the possibility of a priori pre-
diction of features and the type of mixture flow based on known
apparent velocity values, the properties of individual phases,
and, finally, the bed installation geometry (such as diameter and
inclination angle of the pipeline). The observed structures of the
gas-liquid mixture in pipes during vertical flow movement are
consistent with those presented by Nicklin and Davidson [18].
These structures, influenced by physical variables such as su-
perficial velocity, viscosity, density, and surface tension, have
been used to classify these flow regimes. Knowledge of the
characteristics and the gas-liquid flow regime is essential for
designing and implementing industrial-scale research facilities
and numerical modelling. The continuous monitoring and diag-
nosis of abnormalities can provide valuable information about
the dynamic state of the process and allow for continuous and
automatic control. That inspired the authors to develop a method
and diagnostic system that can be applied to measurement data
and classification of the flow type.

2.2. Three-dimensional electrical capacitance tomography
(3D ECT)

As mentioned in the introduction, archive measurement data,
acquired during the completion of previous projects, was used
for this study. The diagnostic system was based on 3D ECT.
The sensors used in this diagnostic method consist of a set of
measuring electrodes located around the tested object without
interfering with the characteristics of the ongoing process. In the
3D mode, the electrodes are mounted in a few rings instead of
one. The measurement is performed similarly between all possi-
ble variations of pairs of electrodes without repetition, scanning
the space in many cross-sections, not in one.

2.3. Experimental setup
The experimental setup is dedicated to the non-invasive study
of TPFs. It is designed and built on a semi-industrial scale and
ensures that measurements are conducted in conditions that take
place during industrial processes. Each of the individual parts of
the setup (horizontal and vertical) is equipped with measuring
pipelines with three different internal diameters – 34, 53.6, and
81.4 mm, respectively, which facilitates testing TPF processes
on a different scale. The length of the measuring section of

horizontal pipelines is approximately 7.5 m and the vertical one
is approximately 4 m high.

2.4. Measurement campaign
The data for training the models was obtained from 32 electrodes
of a 3D ECT system and validated with dedicated flow maps.
Note that for supervised learning the measurement data needs
to be described in a manner adequate to the expected result of
the model prediction. Next, the liquid and air flow rates were
changed respectively to set different experimental conditions
and achieve various flow patterns. The experiment procedure
was summarized and marked in the flow map. Simultaneously,
ECT measurement data was recorded with measured liquid and
air mass flow rate values, air pressure at different rig points,
time stamps, and recognized flow patterns, which were verified
by the process engineering expert.

3. MACHINE LEARNING

3.1. Classification
The process of categorizing objects into groups based on spe-
cific characteristics is called classification. This broad set of
algorithms and methods is used to fulfil this task. ML uses
various algorithms to build so-called models based on sample-
categorized data, commonly known as the training dataset. Re-
garding how the model should be trained, two main approaches
are distinguished: supervised and unsupervised learning [19].
In supervised learning, the used dataset must consist of two
components – the input component, which contains expected
characteristics, and the component with desired outputs. Dur-
ing the process of training, some algorithms try to adjust the
model (internal weights, etc.) to match the described vectors.
Neural network algorithms tend to be the default choice regard-
ing categorization. Extensive modularity while creating a model
provides a variety of possibilities in terms of usage, from a sim-
ple grouping of text to classifying objects based on an image.
However, unsupervised learning takes only the input vector as
its dataset without desired output values. The purpose of these
types of algorithms dictates such a change. The task of unsuper-
vised learning is not to match the input with the output but to
discover patterns and commonalities in each set of information.
Items with similar characteristics are grouped into clusters.

The data provided for the project was categorized. That is why
the authors decided on supervised learning. The neural network
was chosen from the described prediction algorithms due to its
common utilization.

3.2. Neural network
The popularity of ANNs [19] has significantly increased over
the last decade. This can be attributed to supervised ML and
clustering. The process of training the neural network is divided
into epochs. Epoch is a cycle of training the model with all
available data. It can be described as follows:
• Feeding data to model – the training set is put into the input

layer and forwarded through all hidden layers until it reaches
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the output. In this step, neuron values are calculated to find
a proper answer.

• Model validation – after getting the results from a model,
they are compared with expected values. That is done by cal-
culating the loss function for each layer. Information about
errors calculated by this function is later used to adjust the
internal weights of the model — a value closer to 0 is better.
What is more, the dataset used for training can contain some
extreme values called outliers that are outside the range of
what is expected and unlike the other data.
Accuracy is another criterion to estimate processing qual-
ity. While loss describes an error made by ANN, accuracy
measures the exactness of the prediction.

• Model adjustment – depending on the calculated loss, the
model tries to adjust the internal weights of neuron con-
nections between layers. Its main goal is to reduce network
error.

The training process tries to optimize both accuracy and loss.
It can stop when a certain loss threshold is reached, or it starts
to increase. But the most often used criteria are epoch lengths.
Even though the loss value decreases with more epochs, fin-
ishing training earlier is sometimes more efficient to counteract
overfitting (perfect fit with the input data, which inaccurately
predicts untrained data).

3.3. Machine learning in ECT and flow processes
applications

In the world literature, some studies may be found that deal
with TPF classification. They tend to use data from ECT sen-
sors. Measurement datasets can be processed in numerous ways,
i.e. by creating a statistical model such as the hidden Markov
model (HMM). It can provide satisfactory results in terms of
identification while being fast enough [20]. An example of an-
other mathematical approach is fuzzy clustering. Generally, al-
gorithms operating on fuzzy logic provide reasonable accuracy
at around 90% [21]. The verification showed the system weak-
ness when lowering the flow rate to a very small value [22].
While described approaches work in most cases, they overlook
current trends in computer science.

However, some applications of ANN dedicated to this purpose
can also be found in world literature. The authors of [23] built
and tested several ANN models to make predictions of TPF
patterns based on recorded readings of measurements of power
devices, installation design, and the nature of the liquid. This
does not determine the method as universal but rather specific to
a particular case. In turn, the next two research cases described in
studies [24, 25] solve this problem using a convolutional neural
network (CNN) and camera observation. While the results in
the above-mentioned studies indicate high prediction accuracy
and a universal approach, the applied visualization technique is
limited to only one 2D surface and does not contain information
about the spatial distribution of flow fractions, which is provided
with the 3D ECT technique (as discussed in Section 2.2).

In the field of industrial tomography, there are some appli-
cations of machine learning. In [26], the source data used for
classification was in the form of images. It was then necessary
to reconstruct the image that can limit the system ability to work

in real-time industrial applications, which is important in dy-
namic flow processes. Moreover, researchers did not use a neu-
ral network but were focused on comparing fuzzy logic, support
vector machine (SVM), and SVM with PCA (principal compo-
nent analysis). They tested it for four types of vertical TPFs:
annular, bubbly, churn, and slug. The identification rates varied
depending on the method used. Other work for categorization
employed the CNN, achieving 94% accuracy [27]. However, the
authors did not utilize electrodes that measure electrical field,
but the ultrasound Doppler velocimetry. In contrast, in the liter-
ature review research can be found that focuses on vertical flow
classification by applying electrical field measurements. Nev-
ertheless, the data used to train the network was numerically
simulated [28]. The authors did not perform any test regarding
incorrect data acquisition on the pre-trained model.

4. MODEL DEVELOPMENT

4.1. Measurement data structure and augmentation
When the training dataset is small, ANNs will struggle to create
robust generalizations, hindering their ability to make satisfac-
tory predictions. The data augmentation process aims to enhance
the model generalization by generating synthetic data and ap-
plying appropriate random transformations to existing data. In
theory, having more data for training, validation, and testing
is beneficial. This holds partly true because a higher quantity
of good-quality data improves the trained model. However, the
sheer amount of data alone does not independently determine the
effectiveness or accuracy of a given model. Therefore, the aug-
mentation process must be moderate and tailored to the specific
problem. Outliers in the training dataset can lead to instability or
a failure to converge during the training process. Incomplete, in-
consistent, and missing data can significantly degrade prediction
results, potentially rendering them inaccurate and recommenda-
tions misleading. In essence, a model will be rendered useless
and will certainly not fulfil its intended purpose if not properly
handled.

The world state-of-the-art provides numerous solutions for
the problem of data augmentation [29]. However, they focus on
2D and 3D images, audio, or even text data. The tomography
measurement data have many limitations and a unique structure
that differs from the format of traditional signals and addition-
ally should be analysed as a function of time in the case of
TPF diagnostics. This means that an innovative approach to this
problem was needed.

The single 3D ECT data frame consists of 496 measured
electrical capacitances between all possible electrode pairs in
the 32-electrode sensor. Those measurements inside the frame
are variations without repetition. This means that the first value
in a frame is a measurement between the first and second elec-
trodes. The second value represents the pair of the first and third
electrodes, etc. The system used within experiments can collect
12 frames per second.

It is necessary to have a sequence of frames to get the char-
acteristics of a flow. Usually, it takes up to a few seconds to
determine what type of TPF occurs. The provided data consists
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of measurements from different runs and flow types handled in
separate files. Depending on the flow, a file could consist of 360
up to 720 frames. The data was grouped into files containing 100
frames to unify sets. Even though the number of frames seems
to be large, the dataset size is insufficient to train the network.
This would negatively impact the model prediction. The sample
set was augmented to improve accuracy.

Fig. 1. Process of training dataset augmentation for one of the original
files with 720 measurement frames

The algorithm for this is as follows. Take the first 100 frames
for the given file and save them to a new one (see Fig. 1). Do the
same with the next 100 frames and continue this until the set is
not precious, then complete it with an adequate frame amount
from the beginning of the set. In the next step, do the same tasks,
but the start frame number is set to the next one (i.e. from 2 to
101 frame). Stop the algorithm if all possible variations without
repetitions are determined. The next step for dataset augmenta-
tion was to take the last ten frames from a new augmented file of
the same run and flow and then append them at the beginning of
the next one. The results of this operation were saved in separate
files. It enlarged the dataset and added historical information and
continuity to each sample. The sample polls before categorizing
into training and test sets are bubbly flow – 81 samples and 12
samples for horizontal and vertical orientation respectively, dis-
turbed flow – 200 samples for horizontal orientation, stratified
flow – 27 samples for horizontal orientation, and annular flow –
28 samples for vertical orientation.

After those operations, data was considered ready for split
into training and test sets. The test set consisted of two files of
each category. That, in total, gave six dataset files for horizontal
flow and four for vertical. The test dataset used in training the
neural network does not contain extended files.

4.2. Structure of models and training
The models used in this work were written in Python program-
ming language with the help of the TensorFlow library. Neural
networks for vertical and horizontal flows include one input
layer, one output layer, and five hidden layers. That gives seven
layers in total. The difference between these two networks is the
number of neurons used in the output layer. The horizontal flow

contains three neurons on its output, while the vertical has only
two. These result from the number of classes.

The softmax activation function was used in the output layer
instead of the hyperbolic tangent. The critical difference between
those two functions is that the softmax converts values from the
last hidden layer to a probability distribution.

The model was configured to use cross-entropy to compute
losses, with the implementation provided by the library in the
sparse categorical cross-entropy (SCCE) class. The learning
rate was set to 0.00001. The value was empirically chosen after
multiple attempts of training the network.

5. EXPERIMENTS AND RESULTS
5.1. Training and accuracy
The training was performed using an Adam optimizer. Models
were trained on AMD Ryzen 7 5700G CPU with 32GB of RAM,
running on GNU/Linux operating system. The training process
of the horizontal flow model took 242.1 seconds. The vertical
model was trained in 253.5 seconds. The results are shown in
plots: change of loss over the epoch, and confusion matrix of
predictions (Figs. 2–4).

Fig. 2. Change of loss function over epochs for horizontal flow

(a) (b)

Fig. 3. Confusion matrices of horizontal flow model prediction:
(a) training set; (b) test set

Loss over epochs shows the impact of network changes on
the error in time. The start value of the loss is positive. Its initial
value depends on the network structure and the problem which
the network tries to solve. However, the loss should decrease as
a function of the epochs. Besides getting possibly the highest
accuracy, the goal of the network is to obtain a loss close to 0. In
the current study, the applied algorithm of SCCE sets high initial
values for both loss functions (Figs. 2 and 4). This situation
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Fig. 4. Change of loss function over epochs for vertical flow

means that the model does not fit the problem correctly. Please
note that the data reflects the nature of the flow process, which
is dynamic and stochastic. In addition, the measurement data is
noisy. The ECT technique measures small values of capacitance
changes in the range of fF (femtofarads). Such a measurement
is on the verge of measuring the resolution of ECT devices.
Therefore, it is difficult to determine the correct structure of the
model experimentally.

Nevertheless, the training algorithm successfully trained the
model so that the loss functions for both the training and test
data tended to zero, and the trace of both functions coincided.

Simultaneously, the prediction accuracy was logged over
epochs. The accuracy range was between 0 and 1, where 1
determined that the network prediction is 100% correct. At the
beginning of training, the value was low and started to increase.
Accuracy fluctuated because the network tried to optimize itself.
If the values of the prediction accuracy and the loss function
reach the predetermined threshold levels, the training may be
interrupted.

(a) (b)

Fig. 5. Confusion matrices of vertical flow model prediction:
(a) training set; (b) test set

A confusion matrix of predictions (Figs. 3 and 5) is a type
of matrix that illustrates how the network classified the data.
The matrix row represents the classes to which the data sample
belongs. The columns correspond to predicted classes produced
by the network. If the confusion matrix is diagonal, the net-
work has correctly classified all data samples. Otherwise, the
matrix shows what the correct class should be, e.g. in Fig. 3a
data sample was classified as bubbly flow, but its real class is
disturbed.

As expected, the loss functions presented in Figs. 2 and 4
show a decline over the epoch. Also, lines on the plots for test
and training sets are aligned. The trained models do not show

signs of being overfitted. The accuracy of the test set in both
cases is 100%. Such high values could be attributed to a low
pool of samples (even including augmentation). The same can
be said about the precision of the prediction of the training set of
the vertical model. However, the prediction accuracy of the hori-
zontal model for the training set is 98.3%. The confusion matrix
shows (Fig. 3a) that this model classified one disturbed flow as
bubbly and four stratified flows as disturbed. This non-perfect
fit visible in confusion matrices is due to the imperfect model.
The training dataset could contain some frames problematic for
the network. The sequences of values in those frames could be
close enough to each other. However, they described the differ-
ent flows or transition patterns that can lie near the border lines
between the flow types on a flow map. Please note that training
the model was not based on flow maps and interphase border
lines. If specific TPF patterns are defined during the model train-
ing, it attempts to match them with new measurements received
online from ECT. If the model lacks information about potential
transition patterns, accurate predictions cannot be anticipated.
Moreover, exposing the network to more data during training
would benefit the model, increasing the prediction correctness.
This was proved by the experiments done as part of this research.
The models were tested, adding various distortions to the mea-
surement data. It could be observable, especially when the added
noise deformed a part of the frame so that it would appear closer
to another flow type.

6. THE ADAPTABILITY OF THE ANN MODEL
TO EXCEPTIONAL SITUATIONS – DISCUSSION

In industrial conditions, the flow facility and the diagnostic or
control devices are often exposed to exceptional situations or
failures. Despite such significant obstacles, the neural network
model should resist unforeseen problems, correctly predict the
flow type, or detect these failures to avoid any pernicious dam-
age. Therefore, a part of the research described in the article
is the simulation of several emergencies. Each experiment ex-
amines models under different circumstances. Data had to be
adapted for each test individually. Therefore, both the test and
training sets were extended to simulate the following scenarios:
• Single electrode noise– failure simulation of one electrode

from the whole measurement ECT system.
• Noise within pairs of electrodes of a single measuring card

of the ECT system.
• Noise within a single ring of electrodes – simulation of

electromagnetic interference, caused by, for example, other
electromagnetic field sources placed near the electrodes.

Any extended datasets created for training purposes were ex-
cluded from simulations. The purpose of the experiments was to
see how the models would react to originally gathered data from
electrodes. Trials focused either on the single ring of electrodes,
the separate measuring card, or the particular electrode.

6.1. Simulation of one electrode failure
First was the simulation of the first electrode disconnection. This
can correspond to mechanical problems like the loose connec-
tion of the electrode. That required disfiguring the first 31 values
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from a frame. To the original input signal (Fig. 6), the Gaussian
noise

𝑝(𝑥) = 1
𝜎
√

2𝜋
𝑒
− (𝑥−𝜇)2

2𝜎2

(where 𝜇 is the mean and 𝜎 is the standard deviation) was added
with µequal to 0 and standard deviation: 0.1, 0.5, and 0.9. The
distorted measurement values in a frame oscillated between
–1 and 3. See one of the results in Fig. 8. Figures 7 and 9
present the 3D images reconstructed for original and destroyed
measurement data for horizontal and vertical flow. Compared to
the original data, certain extra artefacts can be seen in images.
The colours in the images reflect the normalized values for liquid
(1 – red) and air (0 – blue).

Fig. 6. An example frame with original measurement data

Fig. 7. Images reconstructed for some original data of horizontal and
vertical flow

Fig. 8. An example frame with added noise (𝜎 = 0.5) to measured
values for all electrode pairs with the 1st electrode

The distortion of test data does not affect prediction for
both horizontal and vertical flow compared to the original data
(Fig. 6). In the case of the training set, the situation seems almost
identical. The vertical model yields the same results as it would

Fig. 9. Images reconstructed for some destroyed data of horizontal and
vertical flow

without any distortion. Some misclassifications occur only for
the horizontal model within the same classes as previously, just
after training (Fig. 3a).

The reason for reliable results could be attributed to two
aspects. Models used all values of a frame to make a prediction.
That means, that the neural network can neglect or reduce parts
of the frame where data values are higher than the average level.
Secondly, it concerns how the data was prepared. Please note
that some historical information is added when shifting parts of
frames to the next frame. That gave the network a context of
how the flow should look while going from one series of frames
to another.

6.2. Simulation of ECT measuring card failure
The second experiment revolved around a simulation of one
measuring card failure. To properly understand the concept, it is
worth mentioning that in the research laboratory, 3D ECT mea-
surement data was collected using the device named ET3 [30].
This device can connect 32 electrode sensors because it consists
of eight measuring cards slugged to the main board, and each
can control four electrodes. The construction of the main board
slots in ET3 suffers from accidental disconnection of one card.

When one measuring card fails, the measurement values from
attached electrodes are usually significantly out of the expected
measurement range. In this scenario, electrodes from 1 to 4
were determined, as attached to the first card. The values repre-
senting the measurement pair, including these electrodes, were
distorted (Fig. 10). Each frame of the set was modified. The
Gaussian noise with µequal to 1 was added to the original mea-
surements. Figure 11 presents 3D images reconstructed for some
measurement data destroyed in this scenario. Once more, hori-
zontal and vertical models kept the same accuracy for modified

Fig. 10. An example of a frame where the 1st measurement card of an
ECT device is broken
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test data. In the case of an altered training set for both models,
the neural network produced the same results as in the previous
experiment (Table 1).

Fig. 11. Images reconstructed for some destroyed data of horizontal
and vertical flow

Table 1
Prediction accuracy of models

𝜎
Horizontal model accuracy [%] Vertical model accuracy [%]
Test dataset Train dataset Test dataset Train dataset

0.1 100 98 100 100
0.5 100 98 100 100
0.9 100 98 100 1
1 100 98 75 100
1 100 98 100 96.4

– with added noise to the first electrode
– with added noise to the electrode pairs connected to the first mea-
surement card of the ECT device
– with added noise to the measurement values for the values of electrode
pairs from the first ring

However, the accuracy for the vertical model training set
dropped from 100% to 75%. The 25% difference can be at-
tributed to a small sample size – only 26 original data samples,
especially when compared to the horizontal model, which used
more original data for training (302 samples). Even though the
first 122 values of a frame were modified, causing a loss of data
at the level of 24.6%, the model for horizontal flow was able to
upkeep a required prediction. This shows the model resilience
to distortions of measurement data. As in the previous experi-
ment, the condition of training the network impacts prediction.
Also, the neural network might pay less attention to parts of
data that are out of scale compared to the training dataset. In the
case of the vertical model, the level of 100% accuracy on train-
ing data can confirm that. The decline in accuracy for the test
set indicates that there are frames for which the network must
consider the augmented parts before predicting. Moreover, the
higher prediction accuracy in the model for the horizontal flow
shows that providing a comprehensive training dataset allows
neglecting that effect.

6.3. Simulation of electromagnetic interference
The last experiment simulated the impact of the outer electro-
magnetic field on the first electrode ring of the sensor. The 3D
ECT device contains four electrode rings, each consisting of

eight electrodes. Therefore, the Gaussian noise was added to the
measurement values correlated to the electrode pairs from the
first ring (i.e. first eight electrodes) (Figs. 12 and 13). The noise
intensity was at the same level as in the previous experiment.

Fig. 12. An example of a measurement frame where an external elec-
tromagnetic field disrupted the measurements within the 1st electrode

ring of the sensor

Fig. 13. Images reconstructed for some destroyed data of horizontal
and vertical flow

Both horizontal and vertical models reached 100% accuracy
for test datasets (Table 1). Horizontal model performance did not
change for the training dataset, staying at 98%. The difference
can be observed for the vertical model. Compared to the previous
experiment, the prediction precision is lower and equal to 96.4%
for the training dataset. Once more, the insufficient pool of
training datasets impacts this.

In this case, the data was damaged aggregately at a lower
level than in the previous attempt. In total, 28 values were mod-
ified, giving a loss of 5.6% of the information in a frame. The
noisy values were cumulated into a series separated from the
original data series. Hence, in this case, the model showed a
much higher prediction accuracy and noticeable resistance to
unexpected changes in some measurement values. A notable
decrease of 3.6% was recorded only for the vertical flow model.
Extending the training dataset should improve the model perfor-
mance. The neural network can effectively filter damaged parts
of frames, even when the noise is dispersed over the frame.

7. CONCLUSIONS

This research focuses on two aspects. Firstly, the ANN models
were developed to classify the vertical and horizontal two-phase
gas-liquid flows. In the article, the authors presented only part
of the conducted experiments. It was decided to show results
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only for two sections (one horizontal 53.6 mm and one vertical 
81.4 mm) with the worse prediction level of NN models. For 
the described vertical case, the neural network had to distin- 
guish two types: bubbly-type, disturbed-type, and three char- 
acteristic types for horizontal: bubbly-type, disturbed-type, and 
stratified-type. Training was done on data gathered from the 
3D ECT system with 32 electrode sensors. The prediction was 
performed on raw measurement data without image reconstruc- 
tion, ensuring the online mode if only the 3D ECT hardware 
could provide enough input measurement data. The archival 
measurement datasets used to train the models were insufficient 
to achieve high prediction accuracy. Therefore, some algorithms 
for data augmentation were developed and described.

  The neural network model accuracy is significantly higher 
than the authors’ previous work. In the case of TPF-type identifi- 
cation based on reconstructed tomography images, the accuracy 
of fuzzy classification fluctuated mainly between 85% and 99% 
in the horizontal case or 65% and above in the vertical one. The 
more stable prediction was in the case of the study with fuzzy 
inference based on raw ECT data without images. The average 
correct identification rate was about 90%. The differences in 
flow recognition between the human expert opinion and the de- 
cision of the developed algorithms were only for one type of flow, 
which was in the area of transitional boundary. However, both 
techniques (i.e. fuzzy and ML) are highly efficient for this task. 
The fuzzy model requires adjusting the membership functions 
to each pipeline (horizontal and vertical) at different diameters. 
There is also a need to determine the membership degrees for 
different flow types and write all the rules. So, this workflow is 
more complex than preparing a training set for a neural network 
model, even with an augmentation procedure.

  While developing the classification techniques applied under 
industrial conditions one cannot forget about exceptional sit- 
uations and the possibility of getting incorrect measurements 
generated by system failure or interferences. Systems that rely 
on flow classification use that information to adjust their param- 
eters, e.g. change gas or liquid pressure/flow. Incorrect catego- 
rization due to the mentioned problems will provide wrong fine- 
tuning, resulting in overall process degradation or equipment 
damage. That is why the second part of this research focused 
on how different measuring device failures and interferences 
will affect the trained model. The simulations of several emer- 
gencies were done. Each experiment examined models under 
different circumstances as the disconnection of one electrode in 
the sensor, measuring card failure, or even the interference from 
the external electromagnetic source. The analysis of the result 
proved the adaptability of the ANN model to such exceptional
situations.
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