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A new modified WINDMI jerk system with exponential
and sinusoidal nonlinearities, its bifurcation analysis,

multistability, circuit simulation and
synchronization design

Mohamad Afendee MOHAMEDo , Sundarapandian VAIDYANATHANo , Fareh HANNACHIo ,
Aceng SAMBASo and P. DARWINo

In this work, a new 3-D modified WINDMI chaotic jerk system with exponential and sinu-
soidal nonlinearities is presented and its dynamical behaviours and properties are investigated.
Firstly, some properties of the system are studied such as equilibrium points and their stability,
Lyapunov exponents and Kaplan-Yorke dimension. Also, we study the new jerk system dynam-
ics using numerical simulations and analyses, including phase portraits, Lyapunouv exponent
spectrum, bifurcation diagram and Poincaré map, 0-1 test. Next, we exhibit that the new 3-D
chaotic modified WINDMI jerk system has multistability with coexisting chaotic attractors.
Moreover, we design an electronic circuit using MultiSim 14.1 for real implementation of the
modifiedWINDMI chaotic jerk system. Finally, we design an active synchronization scheme for
the complete synchronization of the modified WINDMI chaotic jerk systems via backstepping
control.
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1. Introduction

In view of their complexity and unpredictability, chaotic dynamical systems
are applicable in several scientific and engineering areas such asmachine learning
[1, 2], image encryption [3–5], FPGA design [6, 7], memristors [8, 9], chemical
reactions [10], etc.
Autonomous chaotic jerk systems are characterized by third order differential

equations of the form
𝑝 = 𝑔(𝑝, ¤𝑝, ¥𝑝) (1)

which have Lyapunov exponents having the signs (+, 0, −). These chaotic sys-
tems are conservative when the sum of their Lyapunov exponents is zero and
dissipative when the sum of their Lyapunov exponents is negative [11].
It is convenient to represent the autonomous jerk ODE (1) in the following

representation of an autonomous system of first order differential equations.

¤𝑝 = 𝑞,

¤𝑞 = 𝑟,

¤𝑟 = 𝑔(𝑝, 𝑞, 𝑟),
(2)

where 𝑝(𝑡), 𝑞(𝑡) and 𝑟 (𝑡) are the three states of the autonomous jerk system (2).
Chaotic jerk systems arise in mechanical engineering and the state variables 𝑝(𝑡),
𝑞(𝑡) and 𝑟 (𝑡) can be given a physical interpretation as displacement, velocity and
acceleration for a moving body.
Many research studies have been made on chaotic jerk systems in the recent

years [12–15]. Li and Zeng [12] described a multi-scroll attractor with multi-
stability behavior in a 3-D jerk system with a sinusoidal nonlinearity. Dongmo
et al. [13] reported the FPGA implementation of an an autonomous Josephson
junction jerk system with multistability. Ramadoss et al. [14] studied the circuit
realization of a chaotic jerk systemwith septic nonlinearity. Lai and Lai [15] found
a memristive chaotic system with multistability and offset shooting behavior and
described its hardware implementation.
A WINDMI Chaotic System stands for the Wind-Magnetosphere-Ionosphere

system which represents the energy influx from the solar wind-magnetosphere-
ionosphere system [16]. A mathematical model of WINDMI chaotic system with
an exponential nonlinearity was proposed by Sprott [17]. In this research work,
we add a sinusoidal nonlinearity to the WINDMI chaotic jerk system and obtain
a new chaotic jerk system with more complexity.
We carry out a detailed bifurcation analysis of the new modified WINDMI

chaotic jerk system with exponential and sinusoidal nonlinearities. It is well-
known that bifurcation analysis of dynamical systems with respect to changes
in the parameter values give an in-depth view of the qualitative nature of the
underlying systems [18–20]. We also exhibit that the new modified WINDMI
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chaotic jerk system has multistability with coexisting attractors. Multistability of
a chaotic system refers to the coexistence of chaotic attractors for the same set of
parameter values but different initial states [21–23].
Next, we design an electronic circuit via MultiSim 14.1 for the new modified

WINDMI chaotic jerk system with exponential and sinusoidal nonlinearities.
Circuit design for chaotic systems is useful for applications [24–26]. Finally, as
a control application, we derive new results for the complete synchronization of
a pair of new modified WINDMI chaotic jerk systems taken as the master and
slave systems via backstepping control technique. Synchronization of chaotic
systems has many applications in control engineering such as cryptosystems,
secure communications, etc. [27–29]. The backstepping control technique is
a simple recursive design procedure that associates the choice of the control
Lyapunov function with the suitable design of a feedback controller [30, 31].
Backstepping control has many engineering applications [32, 33].

2. Description of the new chaotic jerk system

AWINDMI Chaotic System stands for the Wind-Magnetosphere-Ionosphere
system which represents the energy influx from the solar wind-magnetosphere-
ionosphere system. A mathematical model of WINDMI chaotic system was pro-
posed by Sprott [17] as the following jerk dynamics:

¤𝑥 = 𝑦,
¤𝑦 = 𝑧,
¤𝑧 = −𝑎𝑧 − 𝑦 + 𝑏 − 𝑒𝑥 ,

(3)

where 𝑥, 𝑦, 𝑧 are the state variables and 𝑎, 𝑏, 𝑐 are positive parameters.
It was shown by Sprott [17] that the WINDMI system (3) is chaotic for the

parameter values taken as follows:

𝑎 = 0.7, 𝑏 = 2.5. (4)

For the initial state (𝑥(0), 𝑦(0), 𝑧(0)) = (0.5, 0.2, 0.5) and (𝑎, 𝑏) = (0.7, 2.5),
the Lyapunov exponents for theWINDMI system (3) were calculated for𝑇 = 1𝐸4
seconds as follows:

𝐿1 = 0.0758, 𝐿2 = 0, 𝐿3 = −0.7758. (5)

The Kaplan-Yorke dimension for the WINDMI chaotic system (3) is found as
follows:

𝐷𝐾 = 2 + 𝐿1 + 𝐿2|𝐿3 |
= 2.0977. (6)
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In this work, we obtain a modified WINDMI chaotic system by introducing
a sinusoidal nonlinearity to the WINDMI chaotic system (3). Thus, we propose
the following new jerk dynamics:

¤𝑥 = 𝑦,
¤𝑦 = 𝑧,
¤𝑧 = −𝑎𝑧 − 𝑦 + 𝑏 + 𝑐 sin(𝑦) − 𝑒𝑥 ,

(7)

where 𝑥, 𝑦, 𝑧 are the state variables and 𝑎, 𝑏, 𝑐 are positive parameters.
In this work, we shall establish that the modified WINDMI system (7) is

chaotic for the parameter values taken as follows:

𝑎 = 0.7, 𝑏 = 2.5, 𝑐 = 0.2. (8)

For the initial state (𝑥(0), 𝑦(0), 𝑧(0)) = (0.5, 0.2, 0.5) and (𝑎, 𝑏) =

(0.7, 2.5, 0.2) the Lyapunov exponents for the modified WIDMI system (7) were
calculated for 𝑇 = 1𝐸4 seconds as follows:

𝐿1 = 0.0993, 𝐿2 = 0, 𝐿3 = −0.7993. (9)

The Kaplan-Yorke dimension for the modified WINDMI chaotic system (7)
is found as follows:

𝐷𝐾 = 2 + 𝐿1 + 𝐿2|𝐿3 |
= 2.1242. (10)

The values of the MLE and 𝐷𝐾𝐿 for the modified WINDMI system (7) are
greater than the values of the MLE and 𝐷𝐾 for the WINDMI chaotic system (3)
respectively, exhibiting that the modified WINDMI chaotic system (7) has more
complexity than the WINDMI chaotic system (3).
Clearly, the modified WINDMI system (7) has a unique equilibrium point

given by:
𝑥 = ln(𝑏), 𝑦 = 0, 𝑧 = 0. (11)

For the chaotic case (8), the unique equilibrium point of the system (7) is
obtained as

𝑥 = 0.916290, 𝑦 = 0, 𝑧 = 0. (12)

The eigenvalues of the Jacobian matrix of the new modified WINDMI sys-
tem (7) at the equilibrium point: 𝐸0 = (0.916290, 0, 0) are found as follows::

𝜆1 = −1.4017, 𝜆2 = 0.35085 + 1.2886𝑖,
𝜆3 = 0.35085 − 1.2886𝑖.

(13)

Hence, 𝐸0 is a saddle-focus point and it is unstable for the new chaotic jerk
system (7).
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Figure 1 portrays the 2-D and 3-D plots of the chaotic attractor of the new
modifiedWINDMI chaotic jerk system (7) for (𝑥(0), 𝑦(0), 𝑧(0)) = (0.5, 0.2, 0.5)
and (𝑎, 𝑏, 𝑐) = (0.7, 2.5, 0.2).
Figure 2 shows the plots of the Poincaré section of the newmodifiedWINDMI

chaotic jerk system (7) in different planes.

(a) (b)

(c) (d)

Figure 1: 2-D and 3-D plots of the chaotic attractor of the new modified WINDMI jerk
system (7) for (𝑥(0), 𝑦(0), 𝑧(0)) = (0.5, 0.2, 0.5) and (𝑎, 𝑏, 𝑐) = (0.7, 2.5, 0.2)
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(a) (b)

(c)

Figure 2: Plots of the Poincaré section of the new modifiedWINDMI chaotic jerk system
(7) in different planes for 𝑎 = 0.7

3. Bifurcation analysis of the new modified WINDMI jerk system

3.1. Changes with respect to the parameter 𝑎

We fix the values of 𝑏 and 𝑐 as 𝑏 = 2.5 and 𝑐 = 0.2.
When 𝑎 ∈ [0, 2], the behavior of the new modified WINDMI jerk system (7)

is either chaotic or periodic.
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Figure 3 shows the bifurcation diagram and Lyapunov exponents of the new
modified WINDMI jerk system (7) when 𝑎 varies in the interval [0, 2].

(a) Bifurcation Diagram

(b) Lyapunov Exponents

Figure 3: Bifurcation diagram and Lyapunov exponents of the new modified WINDMI
jerk system (7) when 𝑏 = 2.5, 𝑐 = 0.2 and 𝑎 ∈ [0, 2]

We divide the interval [0, 2] into two subsets 𝐴 and 𝐵, which are defined as
follows:

𝐴 = (0, 0.06) ∪ (0.06, 0.81) ∪ (0.81, 0.85), (14)
𝐵 = [0.24, 0.26] ∪ [0.85, 2] ∪ {0.06}. (15)
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When 𝑎 ∈ 𝐴, we can see from Figure 3 that the Lyapunov exponents of
the new modified WINDMI jerk system (7) has signs (+, 0,−). Thus, the new
modified WINDMI jerk system (7) is chaotic for 𝑎 ∈ 𝐴.
When 𝑎 = 0.05, the Lyapunov exponents of the new modified WINDMI jerk

system (7) are obtained as
𝐿1 = 0.03028, 𝐿2 = 0, 𝐿3 = −0.08073. (16)

When 𝑎 = 0.7, the Lyapunov exponents of the new modified WINDMI jerk
system (7) are obtained as

𝐿1 = 0.1004, 𝐿2 = 0, 𝐿3 = −0.8005. (17)
Figure 4 shows the chaotic attractors of the new modified WINDMI jerk

system (7) for 𝑏 = 2.5, 𝑐 = 0.2 and different values of 𝑎 ∈ 𝐴.

(a) 𝑎 = 0.05

(b) 𝑎 = 0.7

Figure 4: Chaotic attractors of the new modified WINDMI jerk system (7) for 𝑏 = 2.5,
𝑐 = 0.2 and different values of 𝑎 ∈ 𝐴
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When 𝑎 ∈ 𝐵, we can see from Figure 3 that the Lyapunov exponents of
the new modified WINDMI jerk system (7) has signs (0,−,−). Thus, the new
modified WINDMI jerk system (7) is periodic for 𝑎 ∈ 𝐵.
When 𝑎 = 0.25, the Lyapunov exponents of the new modified WINDMI jerk

system (7) are obtained as
𝐿1 = 0, 𝐿2 = −0.01243, 𝐿3 = −0.2382. (18)

When 𝑎 = 0.85, the Lyapunov exponents of the new modified WINDMI jerk
system (7) are obtained as

𝐿1 = 0, 𝐿2 = −0.08632, 𝐿3 = −0.7638. (19)
When 𝑎 = 0.9, the Lyapunov exponents of the new modified WINDMI jerk

system (7) are obtained as
𝐿1 = 0, 𝐿2 = −0.04905, 𝐿3 = −0.8512. (20)

Figure 5 shows the periodic attractors of the new modified WINDMI jerk
system (7) for 𝑏 = 2.5, 𝑐 = 0.2 and different values of 𝑎 ∈ 𝐵.

(a) 𝑎 = 0.25

(b) 𝑎 = 0.85

Figure 5: Periodic attractors of the new modified WINDMI jerk system (7) for 𝑏 = 2.5,
𝑐 = 0.2 and different values of 𝑎 ∈ 𝐵
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3.2. Changes with respect to the parameter 𝑏

We fix the values of 𝑎 and 𝑐 as 𝑎 = 0.7 and 𝑐 = 0.2.
When 𝑏 ∈ [2, 4], the behavior of the new modified WINDMI jerk system (7)

is either chaotic or periodic.
Figure 6 shows the bifurcation diagram and Lyapunov exponents of the new

modified WINDMI jerk system (7) when 𝑏 varies in the interval [2, 4].

(a) Bifurcation Diagram

(b) Lyapunov Exponents

Figure 6: Bifurcation diagram and Lyapunov exponents of the new modified WINDMI
jerk system (7) when 𝑎 = 0.7, 𝑐 = 0.2 and 𝑏 ∈ [2, 4]
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We divide the interval [2, 4] into two subsets 𝐴 and 𝐵, which are defined as
follows:

𝐴 = [2, 2.28) ∪ (2.35, 3.32) ∪ (3.32, 3.44) ∪ (3.84, 4), (21)
𝐵 = [2.28, 2.35] ∪ [3.44, 3.84] ∪ {3.32}. (22)

When 𝑏 ∈ 𝐴, we can see from Figure 6 that the Lyapunov exponents of
the new modified WINDMI jerk system (7) has signs (+, 0,−). Thus, the new
modified WINDMI jerk system (7) is chaotic for 𝑏 ∈ 𝐴.
When 𝑏 = 2.1, the Lyapunov exponents of the new modified WINDMI jerk

system (7) are obtained as

𝐿1 = 0.1082, 𝐿2 = 0, 𝐿3 = −0.8085. (23)

When 𝑏 = 2.8, the Lyapunov exponents of the new modified WINDMI jerk
system (7) are obtained as

𝐿1 = 0.01873, 𝐿2 = 0, 𝐿3 = −0.7818. (24)

When 𝑏 = 3.95, the Lyapunov exponents of the new modified WINDMI jerk
system (7) are obtained as

𝐿1 = 0.04806, 𝐿2 = 0, 𝐿3 = −0.748. (25)

Figure 7 shows the chaotic attractors of the new modified WINDMI jerk
system (7) for 𝑎 = 0.7, 𝑐 = 0.2 and different values of 𝑏 ∈ 𝐴.
When 𝑏 ∈ 𝐵, we can see from Figure 6 that the Lyapunov exponents of

the new modified WINDMI jerk system (7) has signs (0,−,−). Thus, the new
modified WINDMI jerk system (7) is periodic for 𝑏 ∈ 𝐵.
When 𝑏 = 2.3, the Lyapunov exponents of the new modified WINDMI jerk

system (7) are obtained as

𝐿1 = 0, 𝐿2 = −0.05161, 𝐿3 = −0.6487. (26)

When 𝑏 = 3.32, the Lyapunov exponents of the new modified WINDMI jerk
system (7) are obtained as

𝐿1 = 0, 𝐿2 = −0.010881, 𝐿3 = −0.6897. (27)

When 𝑏 = 3.5, the Lyapunov exponents of the new modified WINDMI jerk
system (7) are obtained as

𝐿1 = 0, 𝐿2 = −0.07064, 𝐿3 = −0.6297 (28)

Figure 8 shows the periodic attractors of the new modified WINDMI jerk
system (7) for 𝑎 = 0.7, 𝑐 = 0.2 and different values of 𝑏 ∈ 𝐵.
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(a) 𝑏 = 2.1

(b) 𝑏 = 2.8

Figure 7: Chaotic attractors of the new modified WINDMI jerk system (7) for 𝑎 = 0.7,
𝑐 = 0.2 and different values of 𝑏 ∈ 𝐴

(a) 𝑏 = 2.3
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(b) 𝑏 = 3.32

Figure 8: Periodic attractors of the new modified WINDMI jerk system (7) for 𝑎 = 0.7,
𝑐 = 0.2 and different values of 𝑏 ∈ 𝐵

3.3. Changes with respect to the parameter 𝑐

We fix the values of 𝑎 and 𝑏 as 𝑎 = 0.7 and 𝑏 = 2.5.
When 𝑐 ∈ [0, 1], the behavior of the new modified WINDMI jerk system (7)

is either chaotic or periodic.
Figure 9 shows the bifurcation diagram and Lyapunov exponents of the new

modified WINDMI jerk system (7) when 𝑐 varies in the interval [0, 1].
When 𝑐 ∈ [0, 1], we can see from Figure 6 that the Lyapunov exponents of

the new modified WINDMI jerk system (7) has signs (+, 0,−). Thus, the new
modified WINDMI jerk system (7) is chaotic for 𝑐 ∈ [0, 1].

(a) Bifurcation Diagram
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(b) Lyapunov Exponents

Figure 9: Bifurcation diagram and Lyapunov exponents of the new modified WINDMI
jerk system (7) when 𝑎 = 0.7, 𝑏 = 2.5 and 𝑐 ∈ [0, 1]

When 𝑐 = 0.5, the Lyapunov exponents of the new modified WINDMI jerk
system (7) are obtained as

𝐿1 = 0.07448, 𝐿2 = 0, 𝐿3 = −0.7745. (29)
When 𝑐 = 0.8, the Lyapunov exponents of the new modified WINDMI jerk

system (7) are obtained as
𝐿1 = 0.07626, 𝐿2 = 0, 𝐿3 = −0.7762. (30)

Figure 10 shows the chaotic attractors of the new modified WINDMI jerk
system (7) for 𝑎 = 0.7, 𝑏 = 2.5 and different values of 𝑐 ∈ [0, 1].

(a) 𝑐 = 0.5
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(b) 𝑐 = 0.8

Figure 10: Chaotic attractors of the new modified WINDMI jerk system (7) for 𝑎 = 0.7,
𝑏 = 2.5 and different values of 𝑐 ∈ [0, 1]

3.4. Multistability in the new 3-D chaotic jerk

Multistability refers to a special property of a chaotic dynamical systemwhich
stands for the coexistence of chaotic attractors for the same parameters but various
values of the initial states.
For the new modified WINDMI jerk system (7), we choose the system pa-

rameters as in the chaotic case, viz. 𝑎 = 0.7, 𝑏 = 2.5 and 𝑐 = 0.2.
We choose two initial states as 𝑋0 = (1, 0,−1) (blue orbit) and 𝑌0 =

(−1,−1, 1) (red orbit).
Figure 11 shows the multistability and coexistence of two chaotic attractors

of the new modified WINDMI jerk system (7).

(a)
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(b)

Figure 11: Multistability and coexistence of two chaotic attractors of the new modified
WINDMI jerk system (7) where 𝑎 = 0.7, 𝑏 = 2.5 and 𝑐 = 0.2. The initial states are
chosen as 𝑋0 = (1, 0,−1) (blue orbit) and 𝑌0 = (−1,−1, 1) (red orbit)

4. Complete synchronization of the new 3-D modified WINDMI
chaotic jerk systems

Since the jerk systems have a special structure, we use the backstepping
control technique [11] in order to achieve complete synchronization between the
master and slave chaotic jerk systems.
For the synchronization design, we consider the master and slave modified

WINDMI jerk systems, which are described as follows:

¤𝑥𝑚 = 𝑦𝑚 ,

¤𝑦𝑚 = 𝑧𝑚 ,

¤𝑧𝑚 = −𝑎𝑧𝑚 − 𝑦𝑚 + 𝑏 + 𝑐 sin(𝑦𝑚) − 𝑒𝑥𝑚 ,
(31)

¤𝑥𝑠 = 𝑦𝑠 ,
¤𝑦𝑠 = 𝑧𝑠 ,
¤𝑧𝑠 = −𝑎𝑧𝑠 − 𝑦𝑠 + 𝑏 + 𝑐 sin(𝑦𝑠) − 𝑒𝑥𝑠 +𝑈.

(32)

In Eq. (32),𝑈 is an active backstepping control to be found.
We define the complete synchonization error between the modifiedWINDMI

jerk systems as follows:
𝐸𝑥 = 𝑥𝑠 − 𝑥𝑚 ,
𝐸𝑦 = 𝑦𝑠 − 𝑦𝑚 ,
𝐸𝑧 = 𝑧𝑠 − 𝑧𝑚 ,

(33)
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The error dynamics is derived by means of the following equations:

¤𝐸𝑥 = 𝐸𝑦 ,
¤𝐸𝑦 = 𝐸𝑧 ,
¤𝐸𝑧 = −𝑎𝐸𝑧 − 𝐸𝑦 + 𝑐[sin(𝑦𝑠) − sin(𝑦𝑚)] − [𝑒𝑥𝑠 − 𝑒𝑥𝑚] +𝑈.

(34)

In this section, we shall establish the following main result.

Theorem 1 The backstepping control law defined by the equation

𝑈 = −3𝐸𝑥 − 4𝐸𝑦 − (3 − 𝑎)𝐸𝑧 − 𝑐 [sin(𝑦𝑠) − sin(𝑦𝑚)] + [𝑒𝑥𝑠 − 𝑒𝑥𝑚] − 𝜅𝜓𝑧 (35)

with gain 𝜅 > 0 and 𝜓𝑧 = 2𝐸𝑥 +2𝐸𝑦 +𝐸𝑧 globally and exponentially stabilizes the
modified WINDMI chaotic jerk systems (31) and (32) for all initial states in R3.

Proof. We begin with the Lyapunov function

𝑄1(𝜓𝑥) =
1
2
𝜓2𝑥 , (36)

where
𝜓𝑥 = 𝐸𝑥 . (37)

Then we get
¤𝑄1 = 𝜓𝑥 ¤𝜓𝑥 = −𝜓2𝑥 + 𝜓𝑥

(
𝐸𝑥 + 𝐸𝑦

)
. (38)

Next, we define
𝜓𝑦 = 𝐸𝑥 + 𝐸𝑦 . (39)

Then Eq. (38) reduces to

¤𝑄1 = −𝜓2𝑥 + 𝜓𝑥𝜓𝑦 . (40)

Next, we define the candidate Lyapunov function

𝑄2(𝜓𝑥 , 𝜓𝑦) = 𝑄1(𝜓𝑥) +
1
2
𝜓2𝑦 =

1
2
𝜓2𝑥 +

1
2
𝜓2𝑦 . (41)

We find that

¤𝑄2 = −𝜓2𝑥 − 𝜓2𝑦 + 𝜓𝑦
(
2𝐸𝑥 + 2𝐸𝑦 + 𝐸𝑧

)
. (42)

To simplify the notations, we set

𝜓𝑧 = 2𝐸𝑥 + 2𝐸𝑦 + 𝐸𝑧 (43)
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Then Eq. (42) reduces to
¤𝑄2 = −𝜓2𝑥 − 𝜓2𝑦 + 𝜓𝑦𝜓𝑧 . (44)

As a final step of the backstepping control design, we consider the candidate
Lyapunov function

𝑄(𝜓𝑥 , 𝜓𝑦, 𝜓𝑧) = 𝑄2(𝜙𝑥 , 𝜙𝑦) +
1
2
𝜓2𝑧 . (45)

It is easy to see that 𝑄 is a quadratic, positive definite function defined on R3.
We also find that

𝑄(𝜓𝑥 , 𝜓𝑦, 𝜓𝑧) =
1
2
𝜓2𝑥 +

1
2
𝜓2𝑦 +

1
2
𝜓2𝑧 . (46)

A simple calculation yields the following:
¤𝑄 = −𝐸2𝑥 − 𝐸2𝑦 − 𝐸2𝑧 + 𝜓𝑧𝑊, (47)

where
𝑊 = 𝜓𝑦 + 𝜓𝑧 + ¤𝜓𝑧 . (48)

A simple calculation shows that
𝑊 = 3𝐸𝑥 + 4𝐸𝑦 + (3 − 𝑎)𝐸𝑧 + 𝑐 [sin(𝑦𝑠) − sin(𝑦𝑚)] − [𝑒𝑥𝑠 − 𝑒𝑥𝑚] +𝑈. (49)
Substituting the formula given in Eq. (35) for𝑈 into Eq. (48), we get

𝑊 = −𝜅𝜓𝑧 . (50)
Combining (47) and (50), we get

¤𝑄 = −𝜓2𝑥 − 𝜓2𝑦 − 𝜓2𝑧 (1 + 𝜅). (51)

Since 𝜅 > 0, we see that ¤𝑄 is a quadratic and negative definite function defined
on R3.
By Lyapunov Stability Theory, we deduce that the error dynamics (34) is

globally exponentially stable.
This completes the proof. 2

For MATLAB simulations, we pick the parameter values as in the chaotic
situation, viz. 𝑎 = 0.7, 𝑏 = 2.5 and 𝑐 = 0.2. We choose 𝜅 = 20.
For simulations, the initial condition of the master system (31) is assumed as

follows:
𝑥𝑚 (0) = 8.1, 𝑦𝑚 (0) = 2.4, 𝑧𝑚 (0) = 7.3. (52)

Also, the initial condition of the master system (32) is assumed as follows:
𝑥𝑠 (0) = 1.9, 𝑦𝑠 (0) = 6.7, 𝑧𝑠 (0) = 5.8. (53)

Figure 12 shows the convergence of the synchronization error (𝐸𝑥 (𝑡), 𝐸𝑦 (𝑡),
𝐸𝑧 (𝑡)) between the jerk systems (31) and (32).
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Figure 12: MATLAB plot showing the synchronization error (𝐸𝑥 , 𝐸𝑦 , 𝐸𝑧) between the
jerk systems (31) and (32)

5. Circuit simulation of the new 3-D modified WINDMI chaotic jerk system

In this section, the new 3-D modified WINDMI chaotic jerk system (7) is
realized by the NI Multisim 14.1 platform. The electronic circuit design of the 3-
D chaotic jerk system (7) is shown in Figure 13 in which TLO84ACN is selected
as OPAMP and three diodes of type 1N4149. Applying the Kirchhoff’s laws, the
circuit presented in Figure 13 is described by the following equations:

¤𝑥 = 1
𝑅1𝐶1

𝑦,

¤𝑦 = 1
𝑅2𝐶2

𝑧,

¤𝑧 = − 1
𝑅3𝐶3

𝑥 − 1
𝑅5𝐶3

𝑦 + 𝑣1

𝑅6𝐶3
+ 1
𝑅6𝐶3

sin(𝑦) − 1
𝑅7𝐶3

exp(𝑥).

(54)

Here 𝑥, 𝑦, 𝑧 correspond to the voltages on the integrators 𝑈1𝐶, 𝑈3𝐶, 𝑈5𝐶,
respectively. The values of components in the circuit are selected as:

𝑅1 = 𝑅2 = 𝑅5 = 𝑅7 = 100 kΩ, 𝑅3 = 142.857 kΩ, 𝑅4 = 2500 kΩ, (55)
𝑅𝑖 = 100 kΩ, 𝑖 = 8, 9, . . . , 19, 𝑅20 = 20 kΩ, 𝑅21 = 10 kΩ, (56)

and
𝐶1 = 𝐶2 = 𝐶3 = 1 nF. (57)
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Figure 13: Circuit design of the new 3D modified WINDMI chaotic jerk system (7)
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MultiSim 14.1 outputs of the jerk circuit (54) in different planes are presented
in Figure 14. These results are consistent with the Matlab simulation results for
the new modified WINDMI chaotic jerk system shown in Figure 1.

(a) (b)

(c)

Figure 14: MultiSim 14.1 outputs showing the Chaotic attractor of the new 3D modified
WINDMI jerk circuit (54) in different planes: (a) (𝑥 − 𝑦) plane, (b) (𝑦 − 𝑧) plane and
(c) (𝑥 − 𝑧) plane

6. Conclusion

This research work describes a novel new 3DmodifiedWINDMI system with
two nonlinearities. The proposed system is investigated using numerical math-
ematical tools namely; Lyapunouv exponent spectrum, bifurcations diagrams,
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0–1 test and Poincaré map. Also, we show that the new modified WINDMI
system exebit the propriety of co-existing of attractors. Finally, The physical
existence of the chaotic attractor is verified by circuit realization of the novel
modified WINDMI system using Multiim 14.1. The novel system and the ob-
tained results of this work have many applications in many fields such as in
secure communication and signal encryption.

References

[1] P.-C. Bürkner, I. Koöker, S. Oladyshkin and W. Nowak: A fully
Bayesian sparse polynomial chaos expansion approach with joint priors
on the coefficients and global selection of terms. Journal of Computational
Physics, 488 (2023). DOI: 10.1016/j.jcp.2023.112210.

[2] A.De, A. Nandi, A.Mallick, A.I.Middya and S. Roy: Forecasting chaotic
weather variables with echo state networks and a novel swing training
approach. Knowledge-Based Systems, 269 (2023). DOI: 10.1016/j.knosys.
2023.110506.

[3] C.Wang andL. Song: An image encryption scheme based on chaotic system
and compressed sensing for multiple application scenarios. Information
Sciences, 642 (2023). DOI: 10.1016/j.ins.2023.119166.

[4] X. Liu, X. Tong, Z. Wang, M. Zhang andY. Fan: A novel devaney chaotic
map with uniform trajectory for color image encryption. Applied Mathemat-
ical Modelling, 120 (2023), 153–174. DOI: 10.1016/j.apm.2023.03.038.

[5] Q. Lai andY. Liu: A cross-channel color image encryption algorithm using
two-dimensional hyperchaotic map. Expert Systems with Applications, 223
(2023). DOI: 10.1016/j.eswa.2023.119923.

[6] H. Jia, J. Liu, W. Li and M. Du: A family of new generalized multi-
scroll Hamiltonian conservative chaotic flows on invariant hypersurfaces
and FPGA implementation. Chaos, Solitons and Fractals, 172 (2023). DOI:
10.1016/j.chaos.2023.113537.

[7] Q. Wan, F. Li, J. Liu, S. Chen and Z. Yan: A new memristive system with
chaotic and periodic bursting and its FPGA implementation. Circuits, Sys-
tems and Signal Processing, 42(1), (2023), 623-637. DOI: 10.1007/s00034-
022-02136-x.

[8] Q. Chen, B. Li, W. Yin, X. Jiang and X. Chen: Bifurcation, chaos and
fixed-time synchronization of memristor cellular neural networks. Chaos,
Solitons and Fractals, 171 (2023). DOI: 10.1016/j.chaos.2023.113440.

https://doi.org/10.1016/j.jcp.2023.112210
https://doi.org/10.1016/j.knosys.2023.110506
https://doi.org/10.1016/j.knosys.2023.110506
https://doi.org/10.1016/j.ins.2023.119166
https://doi.org/10.1016/j.apm.2023.03.038
https://doi.org/10.1016/j.eswa.2023.119923
https://doi.org/10.1016/j.chaos.2023.113537
https://doi.org/10.1007/s00034-022-02136-x
https://doi.org/10.1007/s00034-022-02136-x
https://doi.org/10.1016/j.chaos.2023.113440


A NEWMODIFIED WINDMI JERK SYSTEMWITH EXPONENTIAL AND SINUSOIDAL
NONLINEARITIES, ITS BIFURCATION ANALYSIS. . . 733

[9] Q. Lai and Z. Chen: Grid-scroll memristive chaotic system with applica-
tion to image encryption. Chaos, Solitons and Fractals, 170 (2023). DOI:
10.1016/j.chaos.2023.113341.

[10] M. Raab, J. Zeininger, Y. Suchorski, K. Tokuda and G. Rupprechter:
Emergence of chaos in a compartmentalized catalytic reaction nanosys-
tem. Nature Communications, 14(1), (2023). DOI: 10.1038/s41467-023-
36434-y.

[11] S. Vaidyanathan and A.T. Azar: Backstepping Control of Nonlinear Dy-
namical Systems. Academic Press, Cambridge, USA, 2021.

[12] F. Li and J. Zeng: Multi-scroll attractor and multi-stable dynamics of a
three-dimensional jerk system. Energies, 16(5), (2023). DOI: 10.3390/en
16052494.

[13] E.D. Dongmo, J. Ramadoss, A.R. Tchamda, M.E. Sone and K. Ra-
jagopal: FPGA implementation, controls and synchronization of au-
tonomous Josephson junction jerk oscillator. Physica Scripta, 98(3), (2023).
DOI: 10.1088/1402-4896/acb85b.

[14] J. Ramadoss, A.N. Kengnou Telem, J. Kengne and K. Rajagopal: Com-
plex dynamics in a novel jerk system with septic nonlinearity: analysis, con-
trol, and circuit realization. Physica Scripta, 98(1), (2022). DOI: 10.1088/
1402-4896/aca449.

[15] Q. Lai and C. Lai: Design and implementation of a new memristive chaotic
systemwith coexisting attractors and offset boosting behaviors. Indian Jour-
nal of Physics, 96(14), 4391–4401. DOI: 10.1007/s12648-022-02344-w.

[16] W. Horton and I. Doxas: A low-dimensional dynamical model for the
solar wind the driven geotail-ionosphere system. Journal of Geophysical
Research: Space Physics, 103(A3) (1997), 4561–4572. DOI: 10.1029/97
JA02417.

[17] J.C. Sprott: Chaos and Time-Series Analysis, Oxford University Press,
New York, USA, 2003.

[18] A. Kumar and S. Singh: Bifurcation analysis of a pulsating heat pipe.
International Journal of Thermal Sciences, 192 (2023). DOI: 10.1016/j.ij
thermalsci.2023.108384.

[19] A. Singh and V.S. Sharma: Bifurcations and chaos control in a discrete-
time prey–predator model with Holling type-II functional response and prey
refuge. Journal of Computational and Applied Mathematics, 418 (2022).
DOI: 10.1016/j.cam.2022.114666.

https://doi.org/10.1016/j.chaos.2023.113341
https://doi.org/10.1038/s41467-023-36434-y
https://doi.org/10.1038/s41467-023-36434-y
https://doi.org/10.3390/en16052494
https://doi.org/10.3390/en16052494
https://doi.org/10.1088/1402-4896/acb85b
https://doi.org/10.1088/1402-4896/aca449
https://doi.org/10.1088/1402-4896/aca449
https://doi.org/10.1007/s12648-022-02344-w
https://doi.org/10.1029/97JA02417
https://doi.org/10.1029/97JA02417
https://doi.org/10.1016/j.ijthermalsci.2023.108384
https://doi.org/10.1016/j.ijthermalsci.2023.108384
https://doi.org/10.1016/j.cam.2022.114666


734 M.A. MOHAMED, S. VAIDYANATHAN, F. HANNACHI, A. SAMBAS, P. DARWIN

[20] A. Singh and V.S. Sharma: Codimension-2 bifurcation in a discrete
predator-prey system with constant yield predator harvesting. International
Journal of Biomathematics, 16(5), (2023). DOI: 10.1142/S17935245225
01091.

[21] B.B.T. Francisco and P.C. Rech: Multistability, period-adding, and spirals
in a snap system with exponential nonlinearity. European Physical Journal
B, 96(5), (2023). DOI: 10.1140/epjb/s10051-023-00536-9.

[22] Z. Zhang, L. Huang, J. Liu, Q. Guo, C. Yu and X. Du: Construction
of a family of 5D Hamiltonian conservative hyperchaotic systems with
multistability. Physica A: Statistical Mechanics and Its Applications, 620
(2023). DOI: 10.1016/j.physa.2023.128759.

[23] S. Vaidyanathan, A.T. Azar, I.A. Hameed, K. Benkouider, E. Tlelo-
Cuautle, B. Ovilla-Martinez, C.H. Lien and A. Sambas: Bifurca-
tion analysis, synchronization and FPGA implementation of a new 3-D
jerk system with a stable equilibrium. Mathematics, 11(12), (2023). DOI:
10.3390/math11122623.

[24] T. Ma, J. Mou, A.A. Al-Barakati, H. Jahanshahi and S. Li: Coexistence
behavior of a double-MR-based cellular neural network systemand its circuit
implementation.Nonlinear Dynamics, 111(12), (2023), 11593–11611.DOI:
10.1007/s11071-023-08443-5.

[25] G. Sivaganesh andK. Srinivasan: Theoretical investigations on the multi-
stability, quasiperiodicity and synchronization of the driven Chua’s circuit.
Circuits, Systems, and Signal Processing, 42(6), (2023), 3200–3228. DOI:
10.1007/s00034-022-02274-2.

[26] J. Petrzela: Chaotic states of transistor-based tuned-collector oscillator.
Mathematics, 11(9), (2023). DOI: 10.3390/math11092213.

[27] K. Zourmba, C. Fischer, B. Gambo, J.Y. Effa and A. Mohamadou:
Chaotic oscillator with diode-inductor nonlinear bipole-based jerk circuit:
Dynamical study and synchronization. Journal of Circuits, Systems and
Computers, 32(12), (2023). DOI: 10.1142/S0218126623502146.

[28] F.E. Alsaadi, S. Bekiros, Q. Yao, J. Liu and H. Jahanshahi: Achieving
resilient chaos suppression and synchronization of fractional-order supply
chains with fault-tolerant control.Chaos, Solitons and Fractals, 174 (2023).
DOI: 10.1016/j.chaos.2023.113878.

[29] H. Cheng, H. Li, Q. Dai and J. Yang: A deep reinforcement learning
method to control chaos synchronization between two identical chaotic
systems. Chaos, Solitons and Fractals, 174 (2023). DOI: 10.1016/j.chaos.
2023.113809.

https://doi.org/10.1142/S1793524522501091
https://doi.org/10.1142/S1793524522501091
https://doi.org/10.1140/epjb/s10051-023-00536-9
https://doi.org/10.1016/j.physa.2023.128759
https://doi.org/10.3390/math11122623
https://doi.org/10.1007/s11071-023-08443-5
https://doi.org/10.1007/s00034-022-02274-2
https://doi.org/10.3390/math11092213
https://doi.org/10.1142/S0218126623502146
https://doi.org/10.1016/j.chaos.2023.113878
https://doi.org/10.1016/j.chaos.2023.113809
https://doi.org/10.1016/j.chaos.2023.113809


A NEWMODIFIED WINDMI JERK SYSTEMWITH EXPONENTIAL AND SINUSOIDAL
NONLINEARITIES, ITS BIFURCATION ANALYSIS. . . 735

[30] R. Luo, S. Liu, Z. Song and F. Zhang: Fixed-time control of a class of
fractional-order chaotic systems via backstepping method. Chaos, Solitons
and Fractals, 167 (2023). DOI: 10.1016/j.chaos.2022.113076.

[31] S. Yan, J.Wang, E.Wang, Q.Wang, X. Sun and L. Li: A four-dimensional
chaotic system with coexisting attractors and its backstepping control and
synchronization. Integration, 91 (2023), 67–78. DOI: 10.1016/j.vlsi.2023.
03.001.

[32] N. Debdouche, L. Zarour, H. Benbouhenni, F. Mehazzem and B. Def-
faf: Robust integral backstepping control microgrid connected photovoltaic
System with battery energy storage through multi-functional voltage source
inverter using direct power control SVM strategies. Energy Reports, 10
(2023), 565–580. DOI: 10.1016/j.egyr.2023.07.012.

[33] A. Hosseinnajad, N. Mohajer and S. Nahavandi: Novel barrier Lya-
punov function-based backstepping fault tolerant control system for an ROV
with thruster constraints. Ocean Engineering, 285 (2023). DOI: 10.1016/
j.oceaneng.2023.115312.

https://doi.org/10.1016/j.chaos.2022.113076
https://doi.org/10.1016/j.vlsi.2023.03.001
https://doi.org/10.1016/j.vlsi.2023.03.001
https://doi.org/10.1016/j.egyr.2023.07.012
https://doi.org/10.1016/j.oceaneng.2023.115312
https://doi.org/10.1016/j.oceaneng.2023.115312

	M.A. Mohamed, S. Vaidyanathan, F. Hannachi, A. Sambas, P. Darwin: A new modified WINDMI jerk system with exponential and sinusoidal nonlinearities, its bifurcation analysis, multistability, circuit simulation and synchronization design

