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A boundary value problem for a non-linear
difference equation

Mario LEFEBVRE

A boundary value problem for a non-linear difference equation of order three is considered.
We show that this equation can be interpreted as the equation satisfied by the value function
in a stochastic optimal control problem. We thus obtain an expression for the solution of the
non-linear difference equation that can be used to find an explicit solution to this equation. An
example is presented.
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1. Introduction

We consider the following third-order non-linear difference equation:

0 = (1 − 𝑐2)𝐹2(𝑛) + (𝑐2 𝑑1 − 𝑐1 − 𝑑1)𝐹 (𝑛) + 𝑐1 𝑑2𝐹 (𝑛 + 1)
+ (1 − 𝑐2) 𝑑1𝐹 (𝑛 + 2) + 𝑐1 (1 − 𝑑2)𝐹 (𝑛 + 3)
+ [𝑐2𝐹 (𝑛) + (1 − 𝑐2)𝐹 (𝑛 + 2)] [𝑑2𝐹 (𝑛 + 1) + (1 − 𝑑2)𝐹 (𝑛 + 3)]
+ 𝑐1 𝑑1 (1)

for 𝑛 ∈ {0, 1, . . . , 𝑘 − 1}, where 𝑘 ∈ {2, 3, . . .}. The real constants 𝑐𝑖 and 𝑑𝑖, for
𝑖 = 1, 2, must satisfy the conditions

𝑐1, 𝑑1 > 0 and 𝑐2, 𝑑2 ∈ (0, 1). (2)
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Moreover, the equation is subject to the boundary conditions

𝐹 (𝑛) = 0 if 𝑛 < 0 or 𝑛 ­ 𝑘 . (3)

Many authors have studied the problemof the existence of non-trivial solutions
to boundary value problems for non-linear difference equations; see, for instance,
Wang and Zhou [8] and the references therein. Other authors are looking for
explicit solutions to such equations. Stević et al. [7], for example, found closed-
form solutions of

𝑥𝑛 =
𝑥𝑛−2𝑥𝑛−𝑘−2

𝑥𝑛−𝑘 (𝑎𝑛 + 𝑏𝑛 𝑥𝑛−2𝑥𝑛−𝑘−2)
(4)

for 𝑛 ∈ {0, 1, . . .}, 𝑘 ∈ N and given initial values, where 𝑎𝑛 and 𝑏𝑛 are real
numbers. See also the numerous references cited therein.
In this note, we will show that Eq. (1) can be associated with a stochastic

optimal control problem. Using the equation satisfied by the value function in
this problem, we can derive an explicit expression for the solution to Eqs. (1), (3).
In Section 2, we will obtain the expression for the solution of our boundary

value problem. A particular problem will be solved explicitly in Section 3, and
we will end this note with a few concluding remarks in Section 4.

2. Associated optimal control problem

Let {𝑋𝑛, 𝑛 = 0, 1, . . .} be a random walk starting from 𝑋0 = 𝑥 ∈ 𝐶 ⊂ Z. Thus,
we can write that

𝑋𝑛+1 = 𝑋𝑛 + 𝜖𝑛 , (5)
where 𝜖𝑛 is a random variable equal to 1 with probability 𝑝 ∈ (0, 1), and to −1
with probability 𝑞 := 1−𝑝.We consider the controlled process {𝑋𝑢

𝑛 , 𝑛 = 0, 1, . . .}
defined by

𝑋𝑢
𝑛+1 = 𝑋𝑢

𝑛 + 𝑢𝑛 + 𝜖𝑛 , (6)
where the control variable 𝑢𝑛 is equal to either 1 or 2.
Next, we define the first-passage time

𝜏(𝑥) = inf{𝑛 > 0 : 𝑋𝑢
𝑛 ∉ 𝐶 | 𝑋𝑢

0 = 𝑥}. (7)

Lefebvre and Kounta [5] studied the problem of finding the value 𝑢∗𝑛 of the
control variable that minimizes the expected value E[𝐽 (𝑥)], where 𝐽 (𝑥) is the
cost function

𝐽 (𝑥) :=
𝜏(𝑥)−1∑︁
𝑛=0

(𝑢2𝑛 + 𝜆), (8)

in which 𝜆 is a positive constant.
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The above problem is a particular homing problem; see Whittle [9, p. 289]
and [10]. The author has published numerous papers on homing problems; see,
for instance, [3] and [4]. Other papers on this topic are the ones by Kuhn [2],
Makasu [6] and Kounta and Dawson [1].
To solve our stochastic optimal control problem, we can use dynamic pro-

gramming. First, we define the value function
𝐹 (𝑥) = min

𝑢𝑛, 𝑛=0,...,𝜏(𝑥)−1
E[𝐽 (𝑥)] . (9)

That is, 𝐹 (𝑥) denotes the smallest expected cost incurred when starting from 𝑥.
We have

𝐹 (𝑥) := min
𝑢𝑛, 𝑛=0,...,𝜏(𝑥)−1

E

[
𝜏(𝑥)−1∑︁
𝑛=0

(𝑢2𝑛 + 𝜆)
]

= min
𝑢𝑛, 𝑛=0,...,𝜏(𝑥)−1

E

[
𝑢20 + 𝜆 +

𝜏(𝑥)−1∑︁
𝑛=1

(𝑢2𝑛 + 𝜆)
]

= min
𝑢𝑛, 𝑛=0,...,𝜏(𝑥)−1

{
𝑢20 + 𝜆 + E

[
𝜏(𝑥)−1∑︁
𝑛=1

(𝑢2𝑛 + 𝜆)
]}

= min
𝑢0

{
𝑢20 + 𝜆 + min

𝑢𝑛, 𝑛=1,...,𝜏(𝑥)−1
E

[
𝜏(𝑥)−1∑︁
𝑛=1

(𝑢2𝑛 + 𝜆)
]}

= min
𝑢0

{
𝑢20 + 𝜆 + E

[
𝐹 (𝑋𝑢

1 )
]}

, (10)

where the last equality follows from Bellman’s principle of optimality.
We can now state the following proposition.

Proposition 1 The value function 𝐹 (𝑥) satisfies the dynamic programming equa-
tion

𝐹 (𝑥) = min
𝑢0

{
𝑢20 + 𝜆 + (1 − 𝑝)𝐹 (𝑥 + 𝑢0 − 1) + 𝑝𝐹 (𝑥 + 𝑢0 + 1)

}
(11)

for 𝑥 ∈ 𝐶. The boundary condition is
𝐹 (𝑥) = 0 if 𝑥 ∉ 𝐶. (12)

Since we assumed that 𝑢𝑛 ∈ {1, 2}, Eq. (11) becomes

𝐹 (𝑥) = min
{
1 + 𝜆 + (1 − 𝑝)𝐹 (𝑥) + 𝑝𝐹 (𝑥 + 2),

4 + 𝜆 + (1 − 𝑝)𝐹 (𝑥 + 1) + 𝑝𝐹 (𝑥 + 3)
}
. (13)
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Let us denote the value function 𝐹 (𝑥) by 𝐹𝑖 (𝑥) if we take 𝑢0 = 𝑖, and let
𝑘𝑖 := 𝑖2 + 𝜆, for 𝑖 = 1, 2. We then deduce from Eq. (11) that the function 𝐹1(𝑥)
satisfies the linear second-order difference equation

𝐹1(𝑥) = 𝑘1 + (1 − 𝑝)𝐹1(𝑥) + 𝑝𝐹1(𝑥 + 2). (14)

Similarly, we have

𝐹2(𝑥) = 𝑘2 + (1 − 𝑝)𝐹2(𝑥 + 1) + 𝑝𝐹2(𝑥 + 3). (15)

Assume that the set 𝐶 is given by {0, 1, . . . , 𝑘 − 1}, where 𝑘 ∈ {2, 3, . . .}.
We will solve Eqs. (14) and (15) subject to the boundary conditions 𝐹𝑖 (𝑘) =

𝐹𝑖 (𝑘 + 1) = 𝐹𝑖 (𝑘 + 2) = 0, for 𝑖 = 1, 2. Once we have obtained the solutions to
both (14) and (15), we can compute the value function 𝐹 (𝑥) explicitly.

Corollary 1 If 𝐶 = {0, 1, . . . , 𝑘 − 1}, then we can write that

𝐹 (𝑥) = min
{
𝑘1 + (1 − 𝑝) min{𝐹1(𝑥), 𝐹2(𝑥)}

+ 𝑝 min{𝐹1(𝑥 + 2), 𝐹2(𝑥 + 2)},
𝑘2 + (1 − 𝑝) min{𝐹1(𝑥 + 1), 𝐹2(𝑥 + 1)}

+ 𝑝 min{𝐹1(𝑥 + 3), 𝐹2(𝑥 + 3)}
}
. (16)

This equation is valid for 𝑥 = 0, . . . , 𝑘 − 1.

Now, we also have the following proposition.

Proposition 2 If 𝐶 = {0, 1, . . . , 𝑘 − 1}, then the function 𝐹 (𝑥) satisfies the
following non-linear third-order difference equation:

0 = 𝑝𝐹2(𝑥) − (𝑘1 + 𝑝 𝑘2)𝐹 (𝑥) + (1 − 𝑝) 𝑘1𝐹 (𝑥 + 1)
+ 𝑝 𝑘2𝐹 (𝑥 + 2) + 𝑝 𝑘1𝐹 (𝑥 + 3) − 𝑝𝐹 (𝑥) [𝐹 (𝑥 + 2) + 𝐹 (𝑥 + 3)]
+ 𝑝 (1 − 𝑝) [−𝐹 (𝑥)𝐹 (𝑥 + 1) + 𝐹 (𝑥)𝐹 (𝑥 + 3) + 𝐹 (𝑥 + 1)𝐹 (𝑥 + 2)]
+ 𝑝2𝐹 (𝑥 + 2)𝐹 (𝑥 + 3) + 𝑘1 𝑘2 (17)

for 𝑥 = 0, 1, . . . , 𝑘 − 1, subject to the boundary conditions 𝐹 (𝑥) = 0 if 𝑥 =

𝑘, 𝑘 + 1, 𝑘 + 2. Moreover, we set 𝐹 (𝑥) = 0 if 𝑥 < 0.

Proof. Making use of the formula

min{𝑎, 𝑏} = 1
2
{𝑎 + 𝑏 − |𝑎 − 𝑏 |}, (18)
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we can write that
2𝐹 (𝑥) − (𝑘1+𝑘2) − (1−𝑝) [𝐹 (𝑥)+𝐹 (𝑥+1)] − 𝑝 [𝐹 (𝑥+2) + 𝐹 (𝑥+3)]

= −
��𝑘1−𝑘2 + (1−𝑝) [𝐹 (𝑥) − 𝐹 (𝑥+1)] + 𝑝 [𝐹 (𝑥+2) − 𝐹 (𝑥+3)]

��. (19)

Squaring both sides of the above equation and then simplifying, we obtain
Eq. (17). 2

Remark 1 Because 𝑢𝑛 ∈ {1, 2} and 𝜖𝑛 ∈ {−1, 1}, the value of the controlled
process {𝑋𝑢

𝑛 , 𝑛 = 0, 1, . . .} cannot decrease. This is the reason why we set 𝐹 (𝑥)
equal to zero if 𝑥 < 0 and we use the boundary conditions 𝐹 (𝑘) = 𝐹 (𝑘 + 1) =
𝐹 (𝑘 +2) = 0 to determine the three arbitrary constants that appear in the general
solution of the linear third-order difference equation (15). In the case of Eq. (14),
we use the conditions 𝐹 (𝑘) = 𝐹 (𝑘 + 1) = 0 to determine the two arbitrary
constants, and we set 𝐹 (𝑘 + 2) = 0.
Next, the above results can be generalized. Let us replace𝑢2𝑛 in the cost function

𝐽 (𝑥) defined in Eq. (8) by ℎ(𝑢𝑛) ­ 0. Moreover, assume that the probability 𝑝 is
actually a function of 𝑢𝑛: 𝑝 = 𝑝(𝑢𝑛). Then, writing 𝑐1 := ℎ(1) +𝜆, 𝑑1 := ℎ(2) +𝜆,
𝑐2 := 1 − 𝑝(1) and 𝑑2 := 1 − 𝑝(2), we find that 𝐹 (𝑥) satisfies Eq. (1).
Finally, we have the following important result.

Proposition 3 There is a unique value function associated with Eq. (1).

Proof. First, the coefficient of 𝐹2(𝑛) in Eq. (1) gives us the value of 𝑝(1). Then,
we deduce from the coefficient of 𝐹 (𝑛)𝐹 (𝑛 + 1) the value of 𝑑2, which yields
𝑝(2). Next, we obtain the constants 𝑐1 and 𝑑1 from the coefficient of 𝐹 (𝑛+3) and
that of 𝐹 (𝑛+2), respectively. Finally, notice that the value function 𝐹 (𝑥) depends
only on ℎ(𝑖) + 𝜆, for 𝑖 = 1, 2, and not on the function ℎ(·) and the constant 𝜆
separately. 2

In the next section, a particular problem will be solve explicitly.

3. An example

We can find the general solution of both difference equations. First, Eq. (14)
is a second-order linear difference equation with constant coefficients:

𝐹1(𝑥 + 2) − 𝐹1(𝑥) + 2 (1 + 𝜆) = 0. (20)

Its general solution can be written as follows:

𝐹1(𝑥) = 𝑟1 (−1)𝑥 + 𝑟2 − (1 + 𝜆) 𝑥, (21)

where 𝑟1 and 𝑟2 are arbitrary constants. To determine the values of 𝑟1 and 𝑟2, we
impose the conditions 𝐹1(𝑘) = 𝐹1(𝑘 + 1) = 0. Moreover, we set 𝐹1(𝑘 + 2) = 0.



834 M. LEFEBVRE

Next, Eq. (15) is a third-order linear difference equation with constant coeffi-
cients:

𝐹2(𝑥 + 3) + 𝐹2(𝑥 + 1) − 2𝐹2(𝑥) + 2 (4 + 𝜆) = 0. (22)

We find that

𝐹2(𝑥) = 𝑠1 + 𝑠2

(
−1
2
+
√
7𝑖
2

)𝑥
+ 𝑠3

(
−1
2
−
√
7𝑖
2

)𝑥
− 4 + 𝜆

2
𝑥, (23)

where 𝑠1, 𝑠2 and 𝑠3 are constants that are determined from the boundary conditions
𝐹2(𝑘) = 𝐹2(𝑘 + 1) = 𝐹2(𝑘 + 2) = 0.

Remark 2

(i) Even though the expression for the function 𝐹2(𝑥) contains complex terms,
it is actually real for any integer 𝑥 ∈ {0, 1, . . . , 𝑘 − 1}.

(ii) The function 𝐹𝑖 (𝑥) corresponds to the expected cost if we choose 𝑢0(𝑥) ≡ 𝑖,
for 𝑖 = 1, 2.

Let

𝐺 (𝑥) := 1 + 𝜆 + 1
2
[min{𝐹1(𝑥), 𝐹2(𝑥)} +min{𝐹1(𝑥 + 2), 𝐹2(𝑥 + 2)}] (24)

and

𝐻 (𝑥) := 4+𝜆+ 1
2
[min{𝐹1(𝑥 +1), 𝐹2(𝑥 +1)} +min{𝐹1(𝑥 +3), 𝐹2(𝑥 +3)}], (25)

so that
𝐹 (𝑥) = min{𝐺 (𝑥), 𝐻 (𝑥)}. (26)

To determine the optimal control 𝑢∗0(𝑥) for any 𝑥 in {0, 1, . . . , 𝑘 − 1}, we can
compare the value of 𝐺 (𝑥) with that of 𝐻 (𝑥).

3.1. A particular problem

Assume that 𝑘 = 4. We find that

𝐹1(𝑥) = −1
2
(1 + 𝜆) (−1)𝑥 + 9

2
(1 + 𝜆) − (1 + 𝜆) 𝑥 (27)

and that the constants 𝑠1, 𝑠2 and 𝑠3 in Eq. (23) are given by

𝑠1 =
19
8
(4 + 𝜆), 𝑠2 = (4 + 𝜆) (3𝑖 −

√
7)
√
7

56𝑖
√
7 + 168

and 𝑠3 = −(4 + 𝜆) 𝑖
√
7
56

. (28)
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Tables 1–4 give the value function 𝐹 (𝑥), 𝐹1(𝑥), 𝐹2(𝑥), 𝐺 (𝑥), 𝐻 (𝑥) and the
optimal control 𝑢∗0(𝑥), for 𝑥 = 0, 1, 2, 3, for various values of the parameter 𝜆.

Table 1: Functions 𝐹 (𝑥), 𝐹1(𝑥), 𝐹2(𝑥), 𝐺 (𝑥) and 𝐻 (𝑥), and optimal
control 𝑢∗0(𝑥), for 𝑥 = 0, 1, 2, 3, when 𝜆 = 1

𝑥 𝐹 (𝑥) 𝐹1 (𝑥) 𝐹2 (𝑥) 𝐺 (𝑥) 𝐻 (𝑥) 𝑢∗0 (𝑥)
0 8 8 11.875 8 11 1
1 7 8 8.75 8 7 2
2 4 4 7.5 4 7 1
3 4 4 5 4 5 1

Table 2: Functions 𝐹 (𝑥), 𝐹1(𝑥), 𝐹2(𝑥), 𝐺 (𝑥) and 𝐻 (𝑥), and optimal
control 𝑢∗0(𝑥), for 𝑥 = 0, 1, 2, 3, when 𝜆 = 2

𝑥 𝐹 (𝑥) 𝐹1 (𝑥) 𝐹2 (𝑥) 𝐺 (𝑥) 𝐻 (𝑥) 𝑢∗0 (𝑥)
0 12 12 14.25 12 14.25 1
1 9 12 10.5 11.25 9 2
2 6 6 9 6 9 1
3 6 6 6 6 6 1 or 2

Table 3: Functions 𝐹 (𝑥), 𝐹1(𝑥), 𝐹2(𝑥), 𝐺 (𝑥) and 𝐻 (𝑥), and optimal
control 𝑢∗0(𝑥), for 𝑥 = 0, 1, 2, 3, when 𝜆 = 5

𝑥 𝐹 (𝑥) 𝐹1 (𝑥) 𝐹2 (𝑥) 𝐺 (𝑥) 𝐻 (𝑥) 𝑢∗0 (𝑥)
0 21.375 24 21.375 22.6875 21.375 2
1 15 24 15.75 18.375 15 2
2 12 12 13.5 12 13.5 1
3 9 12 9 10.5 9 2

Table 4: Functions 𝐹 (𝑥), 𝐹1(𝑥), 𝐹2(𝑥), 𝐺 (𝑥) and 𝐻 (𝑥), and optimal
control 𝑢∗0(𝑥), for 𝑥 = 0, 1, 2, 3, when 𝜆 = 10

𝑥 𝐹 (𝑥) 𝐹1 (𝑥) 𝐹2 (𝑥) 𝐺 (𝑥) 𝐻 (𝑥) 𝑢∗0 (𝑥)
0 33.25 44 33.25 38.125 33.25 2
1 24.5 44 24.5 30.25 24.5 2
2 21 22 21 21.5 21 2
3 14 22 14 18 14 2
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Notice that, as expected, when 𝜆 is large, the optimal control is most often
𝑢∗0(𝑥) = 2.
To conclude this section, we will check that the values of the function 𝐹 (𝑥)

given in Table 1 (and using the fact that 𝐹 (𝑥) = 0 for 𝑥 ­ 4) are such that Eq. (17)
with 𝜆 = 1 is indeed satisfied, for 𝑥 = 0, 1, 2, 3. First, when 𝑥 = 0, we have

0 = 2 × 82 − 8 (7 + 2 × 4 + 4 + 12 + 6) + 10 × 4
+ 4 (7 + 4) + 7 × 4 + 4 × 4 + 40. (29)

Similarly, for 𝑥 = 1, 𝑥 = 2 and 𝑥 = 3 we have respectively

0 = 2 × 72 − 7 (4 + 2 × 4 + 0 + 12 + 6) + 10 × 4
+ 4 (4 + 0) + 4 × 4 + 4 × 0 + 40, (30)

0 = 2 × 42 − 4 (4 + 2 × 0 + 0 + 12 + 6) + 10 × 0
+ 4 (4 + 0) + 4 × 0 + 0 × 0 + 40 (31)

and
0 = 2 × 42 − 4 (0 + 2 × 0 + 0 + 12 + 6) + 10 × 0

+ 4 (0 + 0) + 0 × 0 + 0 × 0 + 40. (32)

4. Conclusion

In this note, we presented a technique that enables us to obtain an expression
for the solution of a certain boundary value problem for a non-linear difference
equation of order three. We used the technique to solve explicitly a particular
problem.
We can generalize the results obtained in Section 2 by assuming that the

control variable 𝑢𝑛 takes its values in a set 𝐿 := {𝑙1, 𝑙2}, where 𝑙𝑖 ∈ Z for
𝑖 = 1, 2. Moreover, 𝐿 can contain more than two values: 𝐿 = {𝑙1, . . . , 𝑙𝑚}. Of
course, if 𝑚 is large, obtaining an explicit expression for the value function in
the associated optimal control problem is rather tedious, and the corresponding
non-linear difference equation will be quite involved.

References

[1] M. Kounta and N.J. Dawson: Linear quadratic Gaussian homing for
Markov processes with regime switching and applications to controlled
population growth/decay. Methodology and Computing in Applied Proba-
bility, 23 (2021), 1155–1172. DOI: 10.1007/s11009-020-09800-2.

https://doi.org/10.1007/s11009-020-09800-2


A BOUNDARY VALUE PROBLEM FOR A NON-LINEAR DIFFERENCE EQUATION 837

[2] J. Kuhn: The risk-sensitive homing problem. Journal of Applied Probabil-
ity, 22 (1985), 796–803. DOI: 10.2307/3213947.

[3] M. Lefebvre: Minimizing or maximizing the first-passage time to a time-
dependent boundary. Optimization, 71(2), (2022), 387–401. DOI: 10.1080/
02331934.2021.1914039.

[4] M. Lefebvre: The homing problem for autoregressive processes. IMA Jour-
nal of Mathematical Control and Information, 39(1), (2022), 322–344. DOI:
10.1093/imamci/dnab047.

[5] M. Lefebvre and M. Kounta: Discrete homing problems. Archives of
Control Sciences, 23(1), (2013), 5–18. DOI: 10.2478/v10170-011-0039-6.

[6] C.Makasu: Risk-sensitive control for a class of homing problems.Automat-
ica, 45(10), (2009), 2454–2455. DOI: 10.1016/j.automatica.2009.06.015.

[7] S. Stević, M.A. Alghamdi, A. Alotaibi and E.M. Elsayed: On a class of
solvable higher-order difference equations.Filomat, 31(2), (2017), 461–477.
DOI: 10.2298/FIL1702461S.

[8] Z. Wang and Z. Zhou: Boundary value problem for a second-order dif-
ference equation with resonance. Complexity, 2020 (2020). DOI: 10.1155/
2020/7527030.

[9] P. Whittle: Optimization over Time, I. Wiley, Chichester, 1982.
[10] P. Whittle: Risk-sensitive Optimal Control. Wiley, Chichester, 1990.

https://doi.org/10.2307/3213947
https://doi.org/10.1080/02331934.2021.1914039
https://doi.org/10.1080/02331934.2021.1914039
https://doi.org/10.1093/imamci/dnab047
https://doi.org/10.2478/v10170-011-0039-6
https://doi.org/10.1016/j.automatica\protect \discretionary {\char \hyphenchar \font }{}{}.2009.06.015
https://doi.org/10.2298/FIL1702461S
https://doi.org/10.1155/2020/7527030
https://doi.org/10.1155/2020/7527030

	M. Lefebvre: A boundary value problem for a non-linear difference equation

