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A new chaotic jerk system with a sinusoidal
nonlinearity, its bifurcation analysis, multistability,
circuit design and complete synchronization design

via backstepping control

Sundarapandian VAIDYANATHANo , Fareh HANNACHIo , Irene M. MOROZo ,
Chittineni ARUNAo , Mohamad Afendee MOHAMEDo and Aceng SAMBASo

In this research work, we investigate a new three-dimensional jerk system with three pa-
rameters in which one of the nonlinear terms is a sinusoidal nonlinearity. We show that the new
jerk system has two unstable equilibrium points on the 𝑥-axis. Numerical integrations show the
existence of periodic and chaotic states, as well as unbounded solutions. Consideration of the
Poincaré sphere at infinity found no periodic states. We show that the new jerk system exhibits
multistability with coexisting attractors. We also present results for the offset boosting of the
proposed chaotic jerk system. Using MultiSim version 14.1, we design an electronic circuit for
the new jerk system with a sinusoidal nonlinearity. As a control application, we design com-
plete synchronization for the master-slave jerk systems using backstepping control technique.
Simulations are presented to illustrate the main results of this research work.
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1. Introduction

Chaotic systems are nonlinear dynamical systems which are characterized by
the presence of at least one positive Lyapunov exponent indicating high sensi-
tivity to small changes in the initial conditions for the dynamical systems [1, 2].
Chaotic systems are applied in many engineering areas such as encryption [3,4],
memristive systems [5,6], communication systems [7,8], robotics [9,10], finance
systems [11, 12], etc.

A mechanical jerk system is a third order differential equation given as

𝑥 = 𝐽 (𝑥, ¤𝑥, ¥𝑥), (1)

where 𝐽 is a globally continuously differentiable mapping.
Using the signal variables 𝑦 = ¤𝑥 and 𝑧 = ¥𝑥, we can express the jerk differential

equation (1) in the system form as follows:
¤𝑥 = 𝑦,
¤𝑦 = 𝑧,
¤𝑧 = 𝐽 (𝑥, 𝑦, 𝑧).

(2)

For mechanical differential equations, 𝑥(𝑡) represents the displacement, 𝑦(𝑡) =
¤𝑥(𝑡) represents the velocity and 𝑧(𝑡) = ¥𝑥(𝑡) represents the acceleration of the
mechanical body under consideration. In such cases, 𝑥(𝑡) represents the jerk of
the mechanical body. This is the physical interpretation for the jerk mechanical
differential equations.

Jerk systems exhibiting chaotic behavior have many applications in science
and engineering [13,14]. Li and Zeng [15] discussed the multi-scroll attractor and
multi-stable dynamics of a 3-D chaotic jerk system. Xia et al. [16] derived new
results for a chaotic bursting attractor for a controlled jerk oscillator. Vaidyanathan
et al. [17] detailed the modelling of a new multistable chaotic jerk system with
two unstable equilibrium points and discussed the field programmable gate array
(FPGA) design of the proposed jerk system. Zourmba et al. [18] discussed the
modelling of a new chaotic oscillator with diode-inductor nonlinear bipole-based
jerk circuit.

In this paper, we propose a new chaotic jerk system having a sinusoidal non-
linearity and three quadratic nonlinearities. We show that the new jerk system
has two unstable equilibrium points on the 𝑥-axis. We conduct a detailed bifur-
cation analysis of the proposed jerk system. It is well-known that bifurcation
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analysis is carried out to extract useful dynamical properties of dynamical sys-
tems [19,20]. Next, we show that the proposed jerk system exhibits multistability
with coexisting attractors. Multistability of chaotic systems has many engineering
applications [21, 22].

Offset boosting is an important issue for chaos control due to its broadband
property and polarity control [23,24]. We also explore the offset boosting control
properties for the new chaotic system. For practical applications, circuit designs
of chaotic systems will be very useful [25,26]. Using MultiSim 14.1, we build an
electronic circuit for the proposed jerk system.

Finally, we give a control application of the proposed jerk system, viz. com-
plete synchronization of a pair of proposed jerk systems considered as master and
slave systems. Synchronization of chaotic systems has applications in engineer-
ing areas such as secure communications [27, 28]. We use backstepping control
method for the synchronization design of the master-slave chaotic jerk systems.
Backstepping is a powerful control technique that allows the design of a feed-
back control law for a special class of nonlinear systems such as systems having
a recursive structure that guarantees the stability of the system [29, 30]. Since
the jerk systems possess a triangular structure, backstepping control method is
often applied by control engineers for control and synchronization of jerk sys-
tems [13, 28].

2. Mathematical model of the new jerk system

In this section, we detail the mathematical model of a new jerk system with
four nonlinear terms. The new jerk system is described as follows:

¤𝑥 = 𝑦,
¤𝑦 = 𝑧,
¤𝑧 = −𝑎𝑥 − 𝑏 sin 𝑥 − 𝑐𝑥2 + 𝑦2 − 𝑥𝑦 − 𝑧.

(3)

We remark that the new jerk system (3) possesses three quadratic nonlinear-
ities and a sinusoidal nonlinearity in its dynamics. Also, 𝑎, 𝑏, and 𝑐 are system
parameters which are assumed to take positive values. We shall establish using
an analysis with Lyapunov exponents that the new jerk system (3) is chaotic.

We take the parameter values as 𝑎 = 1.6, 𝑏 = 0.2 and 𝑐 = 0.2. Then the
Lyapunov exponents of the jerk system (3) can be calculated for the initial state
(0.5, 0.2, 0.5) as follows:

𝜏1 = 0.16067, 𝜏2 = 0, 𝜏3 = −1.16067. (4)

Since the Lyapunov Exponents (LE) spectrum given in (4) have the sign pat-
tern (+, 0,−), and the total values equal to−1, which is negative, we conclude that
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the jerk system (3) has a chaotic attractor and that the system is dissipative. Fur-
thermore, the Kaplan-Yorke dimension of the new jerk system (3) is determined
as follows:

𝐷𝐾𝑌 = 2 + 𝜏1 + 𝜏2|𝜏3 |
= 2.1384. (5)

The Kaplan-Yorke dimension of a chaotic system indicates the complexity of the
system [31].

Next, the equilibrium points of the jerk system (3) are calculated by means of
following the system of equations:

𝑦 = 0, (6a)

𝑧 = 0, (6b)

−𝑎𝑥 − 𝑏 sin 𝑥 − 𝑐𝑥2 + 𝑦2 − 𝑥𝑦 − 𝑧 = 0. (6c)

From (6a) and (6b), we find that 𝑦 = 𝑧 = 0.
Substituting the values 𝑦 = 0 and 𝑧 = 0 in (6c), we obtain

𝑎𝑥 + 𝑏 sin 𝑥 + 𝑐𝑥2 = 0. (7)

For the chaotic case, 𝑎 = 1.6, 𝑏 = 0.2 and 𝑐 = 0.2. Then the equation (7)
becomes

1.6𝑥 + 0.2 sin 𝑥 + 0.2𝑥2 = 0 or 𝑥2 + 8𝑥 + sin 𝑥 = 0 (8)

which has two roots 𝑥 = 0 and 𝑥 = −8.1189.
Thus, the jerk system (3) has two equilibrium points described by

𝑃0 =


0
0
0

 and 𝑃1 =


−8.1189

0
0

 . (9)

The eigenvalues of the Jacobian matrix for the jerk system (3) at 𝑃0 are
found as

𝛼1 = −1.6552, 𝛼2,3 = 0.3281 ± 0.9895𝑖 (10)

which shows that the equilibrium point 𝑃0 is a saddle-focus and unstable.
The eigenvalues of the Jacobian matrix for the jerk system (3) at 𝑃1 are

found as
𝛼1 = −3.3025, 𝛼2 = −0.2053, 𝛼3 = 2.5078 (11)

which shows that the equilibrium point 𝑃1 is a saddle-point and unstable.
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Thus, we have shown that the new jerk system (3) has two unstable equilibrium
points 𝑃0 and 𝑃1 on the 𝑥-axis.

Figure 1 depicts the 2-D and 3-D MATLAB plots of the chaotic attractor of
the new jerk system (3) for the initial state (0.5, 0.2, 0.5) and the parameter vector
(𝑎, 𝑏, 𝑐) = (1.6, 0.2, 0.2).

(a) (b)

(c) (d)

Figure 1: 2-D and 3-D plots of the chaotic attractor of the new jerk system (3) for the initial state
(0.5, 0.2, 0.5) and the parameter vector (𝑎, 𝑏, 𝑐) = (1.6, 0.2, 0.2)
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3. Bifurcation analysis of the new jerk system

The new three-dimensional jerk system is
¤𝑥 = 𝑦,
¤𝑦 = 𝑧,
¤𝑧 = −𝑎𝑥 − 𝑏 sin 𝑥 − 𝑧 − 𝑐𝑥2 − 𝑥𝑦 + 𝑦2.

(12)

Although the chosen set of parameter values is (𝑎, 𝑏, 𝑐) = (1.6, 0.2, 0.2), it is
of interest to explore the dynamics of (12) for other values of these parameter
values. We do this by finding bifurcation transition plots as each parameter varies
in turn. We also plot the fixed points and their linear stabilities as functions of
each parameter.

There is a trivial fixed point, found by setting the RHS of (12) to zero to get
x0 = (𝑥, 𝑦, 𝑧)0 = (0, 0, 0). There is also a nontrivial fixed point x𝑒 = (𝑥𝑒, 0, 0),
where 𝑥 = 𝑥𝑒 satisfies the equation 𝑎𝑥 + 𝑏 sin 𝑥 + 𝑐𝑥2 = 0. Figure 2 shows the
locus of fixed points as 𝑎, 𝑏 and 𝑐 vary in turn.

Figure 2: The fixed points for the trivial (- -) and nontrivial (. .) fixed points as (a) 𝑎 varies,
(b) 𝑏 varies and (c) 𝑐 varies
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The linear stability of each fixed point is determined from the characteristic
polynomial. We first compute the Jacobian matrix:

𝐽 =
©­«

0 1 0
0 0 1

−(𝑎 + 𝑏 cos 𝑥 + 2𝑐𝑥 + 𝑦) 2𝑦 − 𝑥 −1

ª®¬ . (13)

The characteristic equation is the determinant of 𝐽 − 𝜆𝐼3, evaluated at each fixed
point where 𝜆 denote the eigenvalues and 𝐼3 is the (3, 3) identity matrix.

(i) For x0, we obtain the cubic characteristic equation:

𝜆3 + 𝜆2 + 𝑎 + 𝑏 = 0. (14)

(ii) For x𝑒, we obtain the characteristic equation:

𝜆3 + 𝜆2 + 𝜆𝑥𝑒 + (𝑎 + 𝑏 cos(𝑥𝑒) + 2𝑐𝑥𝑒) = 0. (15)

Figure 3 shows the linear eigenspectra for both the trivial and nontrivial fixed
points for −5 ¬ 𝑎 ¬ 5 for 𝑏 = 0.2 and 𝑐 = 0.2. For the chosen set of parameter

Figure 3: The linear eigenspectra for (a) the nontrivial and (b) the trivial equilibrium states for
−5 ¬ 𝑎 ¬ 5 and 𝑏 = 0.2, 𝑐 = 0.2. The blue curve tracks the real eigenvalue and the black curve
tracks the real part of the complex eigenvalues for the nontrivial equilibrium state. The cyan curve
tracks the real eigenvalue and the magenta curve tracks the real part of the complex eigenvalue
for the trivial equilibrium state
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values (𝑎 = 1.6), both fixed points are unstable. The trivial fixed point is unstable
throughout, whereas the nontrivial fixed point is stable for 𝑎 < −0.25. Figure 2(b)
shows that the locus of fixed points 𝑥𝑒 crosses the dashed line of 𝑥0 = 0 when
𝑏 = −𝑎 = −1.6. This corresponds to a double zero eigenvalue for both eqns (14)
and (15). There is also a turning point in the 𝑥𝑒 plot when 𝑏 ≈ −1.56, and when
𝑏 ≈ 3.09. Inspection of the constant coefficient of the characteristic equation (15)
gives the former as a zero eigenvalue for 𝑥𝑒.

3.1. Numerical Integrations

Figure 4 shows the bifurcation transition plot for 𝑥max as 𝑎 varies for 0.13 ¬
𝑎 ¬ 1.7. We see there are windows of periodic and chaotic states. For 𝑎 > 0.17,
the trajectories became unbounded. We also integrated the system for 𝑎 < 0 and
found steady state solutions for 𝑎 < −0.205. For example, for 𝑎 = −0.225, we
obtained the steady state 𝑥𝑒 ≈ 0.1277. When 𝑎 = −0.2, the trajectories diverged
to infinity. We were unable to find the presence of a Hopf bifurcation.

Figure 4: The bifurcation transition plots of 𝑥max as 𝑎 varies for 0.13 ¬ 𝑎 ¬ 1.7,
initial conditions x𝑖 = (0.5, 0.2, 0.5)

Figure 5 shows the corresponding bifurcation transition plot for 𝑥max as 𝑏
varies. Now there are bounded state for −1.5 ¬ 𝑏 ¬ 0.29, with a larger range
of periodic solutions. Finally Figure 6 shows the bifurcation transition plot as
𝑐 varies. Again we find bounded states for a range of 0.07 ¬ 𝑐 ¬ 0.73, but
unbounded solutions outside this range.

These figures show chaotic dynamics for the chosen set of parameter values.
We also investigated the Poincaré sphere at infinity to see if we could find

stable states, but we found only unbounded states.
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Figure 5: The bifurcation transition plots of 𝑥max as 𝑏 varies for −5 ¬ 𝑏 ¬ 0.29,
initial conditions x𝑖 = (0.5, 0.2, 0.5)

Figure 6: The bifurcation transition plots of 𝑥max as 𝑐 varies for 0.07 ¬ 𝑐 ¬ 0.73,
initial conditions x𝑖 = (0.5, 0.2, 0.5)

3.2. Discussion of the bifurcation analysis results

We investigated the dynamics of the new 3-D jerk system for a range of
parameter values as all three parameters vary in turn. The linear stability analysis
for both equilibrium states shows that the characteristic equations (14) and (15)
become identical when 𝑥𝑒 = 0, leading to a degenerate double-zero bifurcation
when, in addition, 𝑎 + 𝑏 = 0.

Numerical integrations show the existence of bounded periodic and chaotic
solutions, as well as unbounded states. This is particularly evident in the bifur-
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cation transition plot of 𝑥max vs 𝑏 of Figure 5. Unbounded solutions are found
for 𝑏 > 0.29 and −1.6 < 𝑏 < −1.5. There is then a second range of bounded
periodic and chaotic states, before we find unbounded states for 𝑏 < −8.

4. Multistability in the new 3-D chaotic jerk system

In order to study the coexistence attractors and other characteristics of the jerk
system (3) better, it is necessary to give some disturbance to the initial conditions
under the condition of keeping the system parameters constant. Figures 7 and
8 show the dynamic behavior with coexistence chaotic attractors with different
initial conditions.

Figure 7: Coexistence of two attractors of the jerk system (3) with different initial values:
the red for (0.5, 0.2, 0.5) and the green for (−0.5,−0.2,−0.5)
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(a)

(b)

Figure 8: Coexistence of two chaotic attractors of the jerk system (3) for the parameters: 𝑎 = 0.6,
𝑏 = 1, 𝑐 = 0.2 and with different initial conditions: (a) the red for (1, 0, 1) and the green for
(5, 2, 1), (b) the red for (0.5, 0.2, 0.5) and the green for (−0.5, 0,−0.5)

5. Offset boosting for the new 3-D chaotic jerk system

In this section, we will discuss the offset boosting control. Adding a constant
𝑚 to a variable in a nonlinear system (3) will produce an offset. Obviously, the
state of the jerk system (3) can be controlled and the offset-boosted system is
obtained from the jerk system (3) by replacing a state variable 𝜉 with 𝜉 +𝑚 in the
equations of the jerk system (3) as follows:
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Case1: for 𝑧 variable
The system (1) can be controllable and the offset-boosted system is obtained

from system (1) by replacing 𝑧 with 𝑧 + 𝑚 in the equations of the system (3) as
follows: 

¤𝑥 = 𝑦,
¤𝑦 = 𝑧 + 𝑚,
¤𝑧 = −𝑎𝑥 − 𝑏 sin 𝑥 − 𝑐(𝑥)2 − 𝑥𝑦 + (𝑦)2 − (𝑧 + 𝑚).

(16)

It can be seen from Figure 9 that signal 𝑧 can be transformed from a bipolar
signal to a bipolar signal when varying the control parameter 𝑚.

Figure 9: The signal 𝑧 of the system (16) with different values of the offset boosting controller 𝑚:
for 𝑚 = −20 (blue colour); 𝑚 = 0 (red colour); 𝑚 = 20 (green colour)

Case2: for 𝑥 variable
The jerk system (3) can be controlled and the offset-boosted system is obtained

from the system (3) by replacing 𝑥 with 𝑥 + 𝑚 in the third equation of the jerk
system (3) as follows:

¤𝑥 = 𝑦,
¤𝑦 = 𝑧,
¤𝑧 = −𝑎(𝑥 + 𝑚) − 𝑏 sin(𝑥 + 𝑚) − 𝑐(𝑥 + 𝑚)2 − (𝑥 + 𝑚)𝑦 + (𝑦)2 − 𝑧.

(17)

Consequently, When increasing the boosting controller 𝑚, the chaotic signal
𝑥 is boosted from a bipolar signal to a unipolar one as illustrated in Figure 11.
The phase portraits in different planes and different values of the offset boosting
controller 𝑚 are given in Figures 10 and 12.



A NEW CHAOTIC JERK SYSTEM WITH A SINUSOIDAL NONLINEARITY . . . 313

(a)

(b)

Figure 10: Phase portraits of the system (16) in different planes and different values of the offset
boosting controller 𝑚: (a) 𝑥 − 𝑧 plane, (b) 𝑦 − 𝑧 plane for 𝑚 = −20 (blue colour); 𝑚 = 0 (red
colour); 𝑚 = 20 (green colour)

Figure 11: The signal 𝑥 of the system (17) with different values of the offset boosting controller
𝑚: for 𝑚 = −2 (blue colour); 𝑚 = 0 (red colour); 𝑚 = 20 (green colour)
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(a)

(b)

Figure 12: Phase portraits of the system (17) in different planes and different values of the offset
boosting controller 𝑚: (a) 𝑥 − 𝑦 plane, (b) 𝑥 − 𝑧 plane for 𝑚 = −2 (blue colour); 𝑚 = 0 (red
colour); 𝑚 = 20 (green colour)

6. Circuit simulation of the new 3-D chaotic jerk system

In this section, the new 3D chaotic jerk system (3) is realized by the NI
Multisim 14.1 platform. The electronic circuit design of the 3-D chaotic jerk
system (3) is shown in Figure 13 in which TLO82CD is selected as OPAMP
and the multipliers are of type AD633. Applying the Kirchhoff’s laws, the circuit
presented in Figure 13 is described by the following equations:
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Figure 13: Circuit design of the new 3-D chaotic jerk system (18)



316 S. VAIDYANATHAN, F. HANNACHI, I.M. MOROZ, C. ARUNA, M.A. MOHAMED, A. SAMBAS

¤𝑥 = 1
𝑅1𝐶1

𝑦, ¤𝑦 = 1
𝑅2𝐶2

𝑧,
(18)

¤𝑧 = − 1
𝑅3𝐶1

𝑥 − 1
𝑅8𝐶3

sin(𝑥) − 1
𝑅6𝐶3

(𝑥)2 − 1
𝑅7𝐶3

𝑥𝑦 + 1
𝑅9𝐶3

(𝑦)2 − 1
𝑅5𝐶3

𝑧.

Here 𝑥, 𝑦, 𝑧, are correspond to the voltages on the integrators U1A, U3A,
U5A, respectively. The values of components in the circuit are selected as: 𝑅3 =

62.5 kΩ, 𝑅5 = 𝑅7 = 500 kΩ, 𝑅1 = 𝑅2 = 𝑅4 = 𝑅6 = 100 kΩ, 𝑅𝑖 = 100 kΩ,
𝑖 = 8, . . . , 19. 𝐶1 = 𝐶2 = 𝐶3 = 1 nF. MultiSIM outputs of the circuit are
presented in Figure 14.

Figure 14: Chaotic attractors of the new 3D chaotic jerk circuit (18) via oscilloscope-XSC2 and
Tektronix oscilloscope-XSC1
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7. Complete synchronization of the new 3-D chaotic jerk systems

The mechanical jerk systems have a special triangular structure in their dy-
namics. In view of this special structure of the jerk systems, we apply the active
backstepping control method [13] for the complete synchronization between the
master and slave chaotic jerk systems. Synchronization of chaotic systems yields
miscellaneous applications in secure communication systems [13].

The master and slave systems used for the synchronization can be compactly
described as follows:

¤𝑥𝑚 = 𝑦𝑚 ,

¤𝑦𝑚 = 𝑧𝑚 ,

¤𝑧𝑚 = −𝑎𝑥𝑚 − 𝑏 sin 𝑥𝑚 − 𝑐𝑥2
𝑚 + 𝑦2

𝑚 − 𝑥𝑚𝑦𝑚 − 𝑧𝑚 ,
(19)


¤𝑥𝑠 = 𝑦𝑠 ,
¤𝑦𝑠 = 𝑧𝑠 ,
¤𝑧𝑠 = −𝑎𝑥𝑠 − 𝑏 sin 𝑥𝑠 − 𝑐𝑥2

𝑠 + 𝑦2
𝑠 − 𝑥𝑠𝑦𝑠 − 𝑧𝑠 + 𝑣.

(20)

Here, 𝑣 is an active backstepping control, which is to be designed so as to
achieve complete synchronization between the systems (19) and (20).

The synchronization errors between the jerk systems (19) and (20) can be
defined as follows: 

𝜖𝑥 = 𝑥𝑠 − 𝑥𝑚 ,
𝜖𝑦 = 𝑦𝑠 − 𝑦𝑚 ,
𝜖𝑧 = 𝑧𝑠 − 𝑧𝑚 .

(21)

The error dynamics can be derived using a simple calculation as follows:
¤𝜖𝑥 = 𝜖𝑦 ,
¤𝜖𝑦 = 𝜖𝑧 ,

¤𝜖𝑧 = −𝑎𝜖𝑥 − 𝜖𝑧 − 𝑏 (sin 𝑥𝑠 − sin 𝑥𝑚) − 𝑐
(
𝑥2
𝑠 − 𝑥2

𝑚

)
− 𝑥𝑠𝑦𝑠 + 𝑥𝑚𝑦𝑚 + 𝑣.

(22)

The main control result of this section can be stated as follows:

Theorem 1. The active backstepping control law defined by the equation

𝑣 = −(3−𝑎)𝜖𝑥−5𝜖𝑦−2𝜖𝑧+𝑏(sin 𝑥𝑠−sin 𝑥𝑚)+𝑐(𝑥2
𝑠−𝑥2

𝑚)+𝑥𝑠𝑦𝑠−𝑥𝑚𝑦𝑚−𝑍𝑤3 (23)

with the feedback gain 𝑍 > 0 and𝑤3 = 2𝜖𝑥+2𝜖𝑦+𝜖𝑧 achieves complete exponential
synchronization between the chaotic jerk systems (19) and (20) for all initial states
in R3.
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Proof. We begin with the Lyapunov function

𝑉1(𝑤1) =
1
2
𝑤2

1 , (24)

where
𝑤1 = 𝜖𝑥 . (25)

Then we get
¤𝑊1 = 𝑤1 ¤𝑤1 = 𝜖𝑥𝜖𝑦 = −𝑤2

1 + 𝑤1(𝜖𝑥 + 𝜖𝑦). (26)

Next, we define
𝑤2 = 𝜖𝑥 + 𝜖𝑦 (27)

Then Eq. (26) reduces to
¤𝑉1 = −𝑤2

1 + 𝑤1𝑤2 (28)

Next, we define the candidate Lyapunov function

𝑉2(𝑤1, 𝑤2) = 𝑉1(𝑤1) +
1
2
𝑤2

2 =
1
2
𝑤2

1 +
1
2
𝑤2

2 . (29)

We find that
¤𝑉2 = −𝑤2

1 − 𝑤
2
2 + 𝑤2(2𝜖𝑥 + 2𝜖𝑦 + 𝜖𝑧). (30)

To simplify the notations, we set

𝑤3 = 2𝜖𝑥 + 2𝜖𝑦 + 𝜖𝑧 . (31)

Then Eq. (30) reduces to
¤𝑊2 = −𝑤2

1 − 𝑤
2
2 + 𝑤2𝑤3 . (32)

As a final step of the backstepping control design, we consider the candidate
Lyapunov function

𝑉 (𝑤1, 𝑤2, 𝑤3) = 𝑉2(𝑤1, 𝑤2) +
1
2
𝑤2

3 . (33)

It is easy to see that 𝑉 is a quadratic and positive definite function on R3.
It is easy to realize that

𝑉 (𝑤1, 𝑤2, 𝑤3) =
1
2
𝑤2

1 +
1
2
𝑤2

2 +
1
2
𝑤2

3 . (34)

Calculating the derivative of 𝑉 , we find that
¤𝑉 = −𝑤2

1 − 𝑤
2
2 − 𝑤

2
3 + 𝑤3𝑆, (35)

where
𝑆 = 𝑤2 + 𝑤3 + ¤𝑤3 . (36)
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A simple calculation shows that

𝑆 = (3−𝑎)𝜖𝑥 +5𝜖𝑦 +2𝜖𝑧−𝑏(sin 𝑥𝑠−sin 𝑥𝑚) −𝑐(𝑥2
𝑠 −𝑥2

𝑚) −𝑥𝑠𝑦𝑠 +𝑥𝑚𝑦𝑚 +𝑣. (37)

Substituting the formula given in Eq. (23) for 𝑣 into Eq. (36), we get

𝑆 = −𝑍𝑤3 . (38)

From the equations (35) and (38), we get
¤𝑉 = −𝑤2

1 − 𝑤
2
2 − 𝑤

2
3(1 + 𝑍). (39)

Since 𝑍 > 0, we see that ¤𝑉 is a quadratic and negative definite function
defined on R3.

By Lyapunov Stability Theory, we deduce that the error dynamics (22) is
globally exponentially stable.

For MATLAB simulations, we pick the parameters of the master and slave
chaotic jerk systems as follows: 𝑎 = 1.6, 𝑏 = 0.2 and 𝑐 = 0.2. Also, we take
𝑍 = 30.

For simulations, the initial conditions of the master system (19) are taken as
𝑥𝑚 (0) = 5.2, 𝑦𝑚 (0) = 1.8 and 𝑧𝑚 (0) = 4.9.

Also, the initial condition of the slave system (20) are taken as 𝑥𝑠 (0) = 1.7,
𝑦𝑠 (0) = 9.5 and 𝑧𝑠 (0) = 2.4.

Figure 15 shows the convergence of the synchronization errors 𝜖𝑥 , 𝜖𝑦 and 𝜖𝑧
between the chaotic jerk systems (19) and (20).

Figure 15: MATLAB plot depicting the exponential convergence of the complete synchronization
error between the chaotic jerk systems (19) and (20)
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8. Conclusions

In this research work, we contributed a new three-dimensional jerk system
with three parameters in which one of the nonlinear terms is a sinusoidal nonlin-
earity. We showed that the new jerk system has two unstable equilibrium points on
the 𝑥-axis. We carried out a detailed bifurcation analysis on the proposed chaotic
jerk system. Using numerical integrations, we showed the existence of periodic
and chaotic states, as well as unbounded solutions. Consideration of the Poincaré
sphere at infinity found no periodic states. We showed that the new jerk system
exhibits multistability with coexisting attractors. We also discussed results for
the offset boosting of the proposed chaotic jerk system. Using MultiSim version
14.1, we designed an electronic circuit for the new jerk system with a sinusoidal
nonlinearity. As a control application, we designed complete synchronization for
the master-slave jerk systems using backstepping control technique. Simulations
were shown to illustrate the main results of this research work.
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