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Time response parameters and control design
for second-order nonminimum-phase systems

Marian J. BLACHUTAo , Robert BIEDAo and Rafał GRYGIELo

The article considers the step and impulse response of second-order linear systems with a
positive zero. A particular parameterization of the system equations is proposed which enables
good assessment of the influence of its parameters on transients. Expressions missing in the
literature are derived for step response parameters such as the values of undershoot, overshoot,
time of inverse response, rise time and settling time, as well as of impulse response. Based on
them, a precise time-domain approach to design feedforward, feedback and mixed feedback–
feedforward control structures for nonminimum phase objects is presented that considers both
setpoint tracking and disturbance rejection.

Key words: overshoot, undershoot, rise time, settling time, setpoint control, disturbance rejec-
tion, feedback–feedforward control

1. Introduction

Examples of second-order physical systems, usually nonlinear, with an inverse
initial response can be found in the literature. For example, in [1] two process
engineering plants can be found: an evaporator with variable heat transfer surface
and a binary mixture separator. In [2] the Van de Vusse CSTR reactor is studied.
The DC–DC boost converter [3, 4] is another example from the area of power
electronics.
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Their linearized models can be expressed as transfer function 𝐺 (𝑠) of the
form

𝐺 (𝑠) = 𝑎0(1 − 𝜏𝑠)
𝑠2 + 𝑎1𝑠 + 𝑎0

, 𝑎0 > 0, 𝑎1 > 0, 𝜏 > 0 (1)

with one positive zero 𝑧1 = 1/𝜏. The article is devoted to this particular model. An
example of such model is used in [5] in the chapter summarizing the frequency-
domain design of closed-loop control systems.

Nonminimum-phase systems, usually of higher order and with greater number
of zeros, have been a subject of research for a long time, starting in the second half
of previous century [6–8], and continuing until the present [9–15]. Most papers
investigate nature of initial behavior of the step output. In particular [6] defines
initial undershoot and states that undershoot occurs if and only if the plant has an
odd number of real right-half plane zeros. A more detailed insight is given in [7],
where conditions are examined under which there is no initial undershoot but the
step output crosses the zero axis several times before finally going to a steady state.
These results are valid for strictly proper transfer functions. Further discussion
on the number of zero crossings and possible overshoot also for exactly proper
transfer functions can be found in [11]. Further discussion of these concepts
can be found in [12, 13]. Recently published article [15] extensively discusses
initial and delayed undershoot and dependence of the step response on the initial
condition.

Unfortunately, the literature lacks results regarding e.g. the values of under-
shoot or overshoot, even for a simple system in (1). In contrast, the formulas
derived in the article for this system precisely determine the values of all pa-
rameters characterizing the step response as shown in Fig. 1, and similar for the
impulse response.

Figure 1: Step response of an nonminimum-phase oscillatory system and its characteristics:
Δ𝑚 = 𝑦(𝑡𝑚) − 1 – overshoot, Δ𝜇 = −𝑦(𝑡𝜇) – undershoot, 𝑡0 – zero crossing time, (0, 𝑡0) – interval
of negative values of 𝑦(𝑡), 𝑡0.9 – rise time to the level 0.9, i.e. 𝑦(𝑡0.9) = 0.9, 𝑡 𝑝𝑠 – settling time
with tolerance 𝑝
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Another group of problems concerns fundamental undershoot and settling
time trade-offs in nonminimum-phase systems [9, 10] and trade-offs in feedback
systems [8].

Although mathematically interesting, the qualitative results presented in [6–
15] are rather irrelevant for the design of control.

Standard frequency domain methods developed for minimum-phase systems,
based on concepts of phase and gain margin or sensitivity functions, are usually
directly applied to nonminimum-phase ones [5, 16]. Unfortunately, except for
ensuring stability, classical design specifications lead to poor control performance
when applied to nonminimum-phase systems. It also is not possible to estimate
the undershoot under this approach.

An attempt to adapt frequency domain methods to nonminimum-phase sys-
tems was presented in [17], where, in addition to classical concepts such as phase
margin and crossover frequency, the controversial concept of a ’plateau’ was in-
troduced, which is to appear on the logarithmic plot of the modulus. Based on
simulation studies, a number of nomograms combining step response parameters
with parameters of frequency characteristics were created, constituting design
tools. The method is limited to oscillatory setpoint tracking systems.

More direct methods base on the concept of plant-inversion feedforward
that is directly applicable to minimum-phase plants. To extend this concept to
nonminimum-phase plants, two alternative classes of feedforward design have
been proposed in the literature: preview-based methods ( [18] and references
therein) and approximate-inverse methods [19–21]. Methods in the first class
use preview information about the reference trajectory, while those in the sec-
ond class attempt to approximate the unstable exact inverse of the plant model
using a stable transfer function [22]. These ideas were also extended to non-
linear nonminimum-phase systems, see e.g. [23] and references therein. The
feedforward path is usually a part of feedback–feedforward structure. However,
there are no guidelines for designing the feedback loop that takes into account the
response to disturbances. Another approach based on the theory of nonlinear con-
trol systems, summarized in [24] resulted in articles, e.g. [25,26], was applied to
nonlinear second-order nonminimum-phase chemical reactor systems. There are,
however, no comparisons with other approaches. Reference [27] and references
cited therein show large variety of solutions belonging to the so-called intelligent
control methods such as fuzzy logic controllers, artificial neural networks, etc.
often supported by soft computing tools.

This article focuses on a detailed discussion of the linear system in (1) and
its control. Based on derived formulas for impulse and step responses and their
parameters, a systematic approach to the precise design of both set-point track-
ing and disturbance rejection control systems for step change in set-point and
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disturbance is presented. As a result, feedforward, feedback and mixed feedback–
feedforward control structures are proposed taking into account the possible
influence of noise and required control authority.

2. System model parameterization

In the control literature, the system in (1) is usually parameterized with the
undamped frequency 𝜔𝑛 and damping factor 𝜁 as follows

𝐺 (𝑠) =
𝜔2
𝑛 (1 − 𝜏𝑠)

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2
𝑛

=
1 − 𝜏𝑠

𝑇2
𝑛 𝑠

2 + 2𝜁𝑇𝑛𝑠 + 1
. (2)

The article uses another parameterization based on poles, which better character-
ize transients. Depending on nature of the poles, the model in (1) can be written
as follows

• for complex poles, 𝑠1,2 = −𝜎(1 ± 𝑗𝜃) = −𝜎 ± 𝑗𝜔, with 𝜎 = 1/𝑇 and
𝜔 = 𝜎𝜃 = 𝜃/𝑇

𝐺 (𝑠) = 𝜎2(1 + 𝜃2) (1 − 𝜏𝑠)
𝑠2 + 2𝜎𝑠 + 𝜎2(1 + 𝜃2)

=
(1 + 𝜃2) (1 − 𝜏𝑠)

𝑇2𝑠2 + 2𝑇𝑠 + (1 + 𝜃2)
, (3)

• for double pole 𝑠1,2 = −𝜎,

𝐺 (𝑠) = 𝜎2(1 − 𝜏𝑠)
(𝑠 + 𝜎)2 =

1 − 𝜏𝑠

(𝑇𝑠 + 1)2 , (4)

• and for different real poles, 𝑠1 = −𝜎, 𝑠2 = −𝜎(1 + 𝜙)

𝐺 (𝑠) = 𝜎2(1 + 𝜙) (1 − 𝜏𝑠)
(𝑠 + 𝜎) (𝑠 + 𝜎(1 + 𝜙)) =

(1 + 𝜙) (1 − 𝜏𝑠)
(𝑇𝑠 + 1) (𝑇𝑠 + 1 + 𝜙) . (5)

All these cases can be written in a common form

𝐺 (𝑠) = 𝑎0(1 − 𝜏𝑠)
𝑠2 + 𝑎1𝑠 + 𝑎0

=
𝑏0(1 − 𝜏𝑠)

𝑇2𝑠2 + 𝑏1𝑇𝑠 + 𝑏0
(6)

with

𝑏0 =


1 + 𝜃2,

1,
1 + 𝜙,

𝑏1 =


2 : complex poles,
2 : double pole,

2 + 𝜙 : different real poles
(7)

and
𝑎0 = 𝜎2𝑏0 =

𝑏0

𝑇2 , 𝑎1 = 𝜎𝑏1 =
𝑏1

𝑇
. (8)
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The parameters 𝜎 > 0, 𝜃 > 0 and 𝜙 > 0 determine the position of the roots on the
complex plane, as shown in Fig. 2b and 𝑇 determines the time scale of transients.
The coefficients 𝑏0 and 𝑏1 are dimensionless.

(a) (b)

Figure 2: (a) The effect of zeros of systems in (9) on their step outputs. (b) Illustration of
parameterization of transfer functions in (3)–(5). Note the intersections of all plots at the extrema
of system A, half a period apart

.

The effect of zeros is shown in Fig. 2a where the time responses of three
systems in (9) with 𝜎 = 0.2 (𝑇 = 5), 𝜃 = 3 are displayed.

𝐺𝐴 (𝑠) =
0.4

𝑠2 + 0.4𝑠 + 0.4
, 𝐺𝐵 (𝑠) =

0.4(1 + 𝑠)
𝑠2 + 0.4𝑠 + 0.4

, (9)

𝐺𝐶 (𝑠) =
0.4(1 − 𝑠)

𝑠2 + 0.4𝑠 + 0.4
. (10)

They all intersect in one point being the maximum of 𝑦𝐴 (𝑡). As a result, regardless
of the sign, each zero increases the overshoot.

The (𝜎, 𝜃) parameters characterize oscillatory responses better than (𝜔𝑛, 𝜁).
In particular, 𝜃 characterizes the decay of successive deviations from the steady
state with the ratio Δ𝑖+1/Δ𝑖 = e−𝜋/𝜃 , where Δ𝑖+1 is delayed with respect to Δ𝑖 by
𝜋/𝜔, while 𝜎 determines the exponential decay of their envelopes. This directly
implies the relationship between the overshoot Δ𝑚 and undershoot Δ𝜇:

Δ𝑚

Δ𝜇 + 1
= e−𝜋/𝜃 . (11)

For Δ𝜇 = 0 it becomes Δ𝑚 = e−𝜋/𝜃 , i.e. the classical expression for the overshoot
in a system with no zero. The formula in (11) is valid for any oscillatory transients
and can be explicitly checked on equations in (31)–(32).
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The relationships between the parameterizations (𝜎, 𝜃) and (𝜁, 𝜔𝑛) are deter-
mined as

𝜎 = 𝜁𝜔𝑛 , 𝜃 =

√︁
1 − 𝜁2

𝜁
, (12)

𝜔𝑛 = 𝜎
√︁

1 + 𝜃2 , 𝜁 =
1

√
1 + 𝜃2

. (13)

3. Time responses

The main goal is to find the analytical expressions for step response parameters
as shown in Fig. 1. These parameters are: time 𝑡𝜇 and the value of maximum
undershoot Δ𝜇, zero crossing time 𝑡0, time 𝑡0.9 to reach 90% of the steady state,
time 𝑡1 to reach 1.0 for the first time, time of maximum overshoot 𝑡𝑚 and maximum
overshoot Δ𝑚, and the settling time 𝑡

𝑝
𝑠 after which 𝑦(𝑡) reaches a value between

1 − 𝑝, 1 + 𝑝. They are presented in Fig. 1.
In the control literature, e.g. [28], simple expressions are given to describe

most of the parameters in the case of oscillatory systems, which, parameterized
using (𝑇, 𝜃), take the simple form:

𝑡𝑚 =
𝜋

𝜃
𝑇, Δ𝑚 = e−𝜋/𝜃 , 𝑡0.02

𝑠 ≈ 4𝑇. (14)

It should be noted, however, that although they are widely used, they are only
valid for second-order systems without finite zero. Both negative and positive
zeros invalidate these results, as can be seen from Fig. 2a for three systems with
the same denominator and different numerators.

The famous inequality
Δ𝜇 ­

𝛽

e𝑧1𝑡𝛽 − 1
. (15)

derived in [7] and repeated in [9,10,15] provides the lower bound on undershoot
Δ𝜇 depicted in Fig. 1 for system with one positive zero 𝑧1 as a function of 𝑧1 and
the rise time 𝑡𝛽 to the level 𝛽.

This inequality expresses the fundamental limitation: that shortening the rise
time to zero increases the undershoot to infinity. Unfortunately, (15) is the relation
between two unknowns Δ𝜇 and 𝑡𝛽 and reduces information about 𝐺 (𝑠) to 𝑧1. This
makes (15) unlikely to be useful for estimation of Δ𝜇. Indeed, the lower bound
given by this result is quite conservative, particularly when the settling time is
considered as in [9, 10], i.e. 𝑡𝛽 = 𝑡𝑠 and 𝛽 = 1 − 𝑝 ≈ 1.

Here and in further considerations a relative value 𝜆 of time constant 𝜏, i.e.

𝜆 =
𝜏

𝑇
, (16)

will be used.
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The lower bound on the undershoot based on the inequality in (15) can be
determined using numerically computed values of 𝑡𝛽. Fig. 3 shows that the lower
limits are very conservative and as such is practically usesless.

Figure 3: Comparison of the true values of undershoot in systems of Fig. 8 with their lower bounds
resulting from the formula in (15). Solid lines – true values of Δ𝜇, dashed lines – lower bounds
of Δ𝜇 as functions of 𝛽

Therefore, the correct values of the step response parameters are found taking
into account the actual system. This is the topic of the next section where exact
analytic solutions are given for both step and impulse responses for complex,
double and different real roots. The extrema of these functions were also found
analytically, giving the values of undershoot and overshoot as well as the instants
of their appearance.

3.1. Impulse response

Since the impulse response 𝑔(𝑡) is the first derivative of the step response
𝑦(𝑡), a time 𝑡𝜇 such that 𝑔(𝑡𝜇) = 0 determines the undershoot of 𝑦(𝑡). Similarly,
a time 𝑡𝑖 such that 𝑔(𝑡) attains maximum determines the inflection point of 𝑦(𝑡).

Impulse response parameters are also important in disturbance rejection con-
trol design.

3.1.1. Analytic expressions for impulse responses

Depending on nature of roots there is
• for complex roots, 𝜃 > 0

𝑔(𝑡) = 𝜆(1 + 𝜃2)e−𝑡/𝑇
𝑇 sin 𝜀

sin(𝜔𝑡 − 𝜀),

𝜀 = arctan
𝜆𝜃

𝜆 + 1
, 𝜔 =

𝜃

𝑇
,

(17)
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• for double root, 𝜃 = 𝜙 = 0

𝑔(𝑡) = e−𝑡/𝑇

𝑇
((𝜆 + 1)𝑡/𝑇 − 𝜆) , (18)

• for real roots, 𝜙 > 0

𝑔(𝑡) = (𝜆 + 1) (1 + 𝜙)e−𝑡/𝑇
𝑇𝜙

(
1 − (𝜆 + 1 + 𝜆𝜙)e−𝜙𝑡/𝑇

(𝜆 + 1)

)
. (19)

3.1.2. Examples of impulse responses

Examples of impulse responses are presented in Fig. 4–5 for the same param-
eters as step responses in Fig. 7–8.

Figure 4: Impulse responses for systems with constant 𝑇 = 1 and variable 𝜏

Figure 5: Impulse responses for systems with constant 𝜏 = 1 and variable 𝑇

3.1.3. Parameters of impulse responses

The parameters 𝑔(0+), time 𝑡𝜇 and the maximum value of impulse responses
can be expressed as follows
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• for complex roots, 𝜃 > 0

𝑔(0+) = −𝜆(1 + 𝜃2)
𝑇

, 𝑡𝜇 =
𝑇

𝜃
arctan

𝜆𝜃

𝜆 + 1
=
𝑇𝜀

𝜃
, (20)

𝑔𝑚 =
𝜆𝜃

√
1 + 𝜃2

𝑇 sin 𝜀
e−𝑡𝑖/𝑇 , 𝑡𝑖 =

𝑇

𝜃
(arctan 𝜃 + 𝜀) , (21)

• for double root, 𝜃 = 𝜙 = 0

𝑔(0+) = −𝜆
𝑇

, 𝑡𝜇 =
𝜆

𝜆 + 1
𝑇, (22)

𝑔𝑚 =
(𝜆 + 1)

𝑇
e−𝑡𝑖/𝑇 , 𝑡𝑖 =

2𝜆 + 1
𝜆 + 1

𝑇, (23)

• for real roots, 𝜙 > 0

𝑔(0+) = −𝜆(1 + 𝜙)
𝑇

, 𝑡𝜇 =
𝑇

𝜙
ln

𝜆 + 1 + 𝜆𝜙

𝜆 + 1
, (24)

𝑔𝑚 =
1
𝑇

(
(𝜆 + 1) (1+𝜙)

(1 + 𝜙) (𝜆 + 1 + 𝜆𝜙)

)1/𝜙
, (25)

𝑡𝑖 =
𝑇

𝜙
ln

(1 + 𝜙) (𝜆 + 1 + 𝜆𝜙)
𝜆 + 1

. (26)

Figure 6: Impulse response parameters 𝑔(0+) and 𝑔𝑚 for 𝜏 = 1 and various 𝑇
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3.2. Step response
3.2.1. Analytic expressions of step responses

Depending on nature of roots there is
• for complex roots, 𝜃 > 0,

𝑦(𝑡) = 1 − e−𝑡/𝑇

sin 𝜑
sin(𝜔𝑡 + 𝜑), (27)

𝜑 = arctan
𝜃

𝜆(1 + 𝜃2) + 1
, 𝜔 =

𝜃

𝑇
, 𝜆 =

𝜏

𝑇
, (28)

• for double root, 𝜃 = 𝜙 = 0,

𝑦(𝑡) = 1 − e−𝑡/𝑇 (1 + (𝜆 + 1)𝑡/𝑇) , (29)

• for real roots, 𝜙 > 0,

𝑦(𝑡) = 1 − (𝜆 + 1) (1 + 𝜙)e−𝑡/𝑇
𝜙

(
1 − (𝜆 + 1 + 𝜆𝜙)e−𝜙𝑡/𝑇

(𝜆 + 1) (1 + 𝜙)

)
. (30)

3.2.2. Examples

The influence of all parameters 𝑇, 𝜏, 𝜃 or 𝜙 on the step output is presented on
Fig. 7–8. Figure 7 is convenient for explaining the effect of change of zero with
the denominator of the transfer function unchanged. Figure 8 shows the effect of
changing the time scale𝑇 with the other parameters unchanged. This presentation
is especially important for control systems where, for stability reasons, zero cannot
be changed by the controller.

Looking at these graphs in a column way, it can be seen that for the same
values of the ratio 𝜆 = 𝜏/𝑇 , although appearing at different times, the undershoot

Figure 7: Step responses for systems with constant𝑇 = 1 and variable 𝜏. For all of them, increasing
𝜏 increases the undershoot. Notice similarity of the responses of systems with 𝜃 = 1 and 𝜙 = 2
for 0 < 𝑡 < 𝑡0
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Figure 8: Step responses for systems with constant 𝜏 = 1 and variable𝑇 . For all of them, decreasing
𝑇 accelerates transients and increases the undershoot

values are the same. It is seen that increasing 𝜆 increases undershoot for all types
of dynamics. It can also be seen, especially from the layout of the plots in the
first row in Fig. 11, that the same 𝜆 shows similar undershooting behavior for
certain pairs of oscillatory and non-oscillatory systems. However, then oscillatory
systems reach 0.9 faster than the non-oscillatory ones, but at the cost of overshoot.
The settling times for those systems are similar. It is also seen that the double
pole system has the smallest undershoot at the cost of the slowest response.

3.2.3. Undershoot and overshoot

Based on expressions in (28)–(30) for step responses, the exact values are
obtained of 𝑡𝜇 and 𝑡𝑚 providing the minimum 𝑦𝜇 = 𝑦(𝑡𝜇), the maximum 𝑦𝑚 =

𝑦(𝑡𝑚) and 𝑡1 such that 𝑦(𝑡1) = 1 for the first time.

• complex poles, 𝜃 > 0,

𝑦𝜇 = −Δ𝜇 = 1 −
√︁
(𝜆 + 1)2 + (𝜆𝜃)2e−𝑡𝜇/𝑇 ,

𝑡𝜇 =
𝑇

𝜃
arctan

𝜆𝜃

𝜆 + 1
, (31)

𝑦𝑚 = 1 + Δ𝑚 = 1 +
√︁
(𝜆 + 1)2 + (𝜆𝜃)2e−𝑡𝑚/𝑇 ,

𝑡𝑚 =
𝑇

𝜃

(
arctan

𝜆𝜃

𝜆 + 1
+ 𝜋

)
, (32)

𝑡1 =
𝜋 − 𝜑

𝜃
𝑇. (33)

• double pole, 𝜃 = 𝜙 = 0,

𝑦𝜇 = 1 − (𝜆 + 1)e−𝑡𝜇/𝑇 , 𝑡𝜇 =
𝜆

𝜆 + 1
𝑇, (34)
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• different real poles, 𝜙 > 0,

𝑦𝜇 = 1 −
(
(𝜆 + 1) (1+𝜙)
𝜆 + 1 + 𝜆𝜙

)1/𝜙
, 𝑡𝜇 =

𝑇

𝜙
ln

𝜆 + 1 + 𝜆𝜙

𝜆 + 1
. (35)

Dependence of the undershoot Δ𝜇 and the overshoot Δ𝑚 from 𝜆 for several values
of 𝜃 and 𝜙 is presented in Fig. 9. It is worth noting that the variability of Δ𝑚 and
Δ𝜇 is much greater for oscillatory systems than for non-oscillatory ones. Other
values such as 𝑡0, 𝑡0.9 and 𝑡𝑠 can be found for the double pole case by using the
Lambert 𝑊 (𝑥) function [29, 30] exactly and only approximately in other cases.
The results are summarized in the Appendix.

Figure 9: Undershoot Δ𝜇 and overshoot Δ𝑚 as functions of 𝜃 and 𝜙 for different values of 𝜆

To facilitate the use of formulas for characteristic values of impulse and step
responses, MATLAB functions were developed. Their codes are listed in the
Appendix.

4. Control

Two aspects of control can be distinguished: setpoint command control that
provides reference following, and disturbance control aiming at suppressing the
effect of disturbance. It is assumed here that 𝑟 (𝑡) = 1(𝑡) and 𝑑 (𝑡) = 1(𝑡) although
in practical implementations rather certain smaller increments, e.g 𝑟 (𝑡) = 𝑟0 +
Δ𝑟 · 1(𝑡) and 𝑑 (𝑡) = 𝑑0 + Δ𝑑 · 1(𝑡), come into play.

4.1. Setpoint command control

The obtained results can be used for the design of the set-point control entirely
in the time domain. The problem statement consists of the plant 𝑃(𝑠)

𝑃(𝑠) = 𝑦̄(𝑠)
𝑢̄(𝑠) =

𝑎
𝑝

0 (1 − 𝜏𝑠)
𝑠2 + 𝑎

𝑝

1 𝑠 + 𝑎
𝑝

0
, (36)
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the target transfer function of the controlled system 𝑇 (𝑠)

𝑇 (𝑠) = 𝑦̄(𝑠)
𝑟 (𝑠) =

𝑎0(1 − 𝜏𝑠)
𝑠2 + 𝑎1𝑠 + 𝑎0

(37)

and the sensitivity function 𝑆(𝑠) = 1 − 𝑇 (𝑠),

𝑆(𝑠) = 𝑠(𝑠 + 𝑎1 + 𝜏𝑎0)
𝑠2 + 𝑎1𝑠 + 𝑎0

, (38)

where 𝑢̄(𝑠), 𝑦̄(𝑠), 𝑟 (𝑠) are the Laplace transforms of 𝑢(𝑡), 𝑦(𝑡), 𝑟 (𝑡), respectively.
Note that 𝑇 (𝑠) has the same zero as 𝑃(𝑠). Otherwise, the control system would
be unstable.

The aim is to find a control structure along with an appropriate controller
applied to 𝑃(𝑠) such that the target transfer function 𝑇 (𝑠) is obtained. This can
be done using either feedforward or feedback control structure, see Fig. 10a–b.
Given plant 𝑃(𝑠) and desired dynamics 𝑇 (𝑠), then a serial controller 𝑄(𝑠), can
be chosen such that

𝑄(𝑠) = 𝑇 (𝑠)
𝑃(𝑠) =

𝑎0

𝑎
𝑝

0

𝑠2 + 𝑎
𝑝

1 𝑠 + 𝑎
𝑝

0
𝑠2 + 𝑎1𝑠 + 𝑎0

. (39)

The equivalent system can be obtained in the closed-loop structure with the
controller

𝐶 (𝑠) = 𝑄(𝑠)
𝑆(𝑠) =

𝑎0

𝑎
𝑝

0

𝑠2 + 𝑎
𝑝

1 𝑠 + 𝑎
𝑝

0
𝑠(𝑠 + 𝑎1 + 𝜏𝑎0)

, (40)

(a) (b)

(c)

Figure 10: Control structures: (a) feedforward, (b) feedback and (c) feedback and feedforward.
Signals: 𝑟 (𝑡) – reference, setpoint; 𝑢(𝑡) – control signal; 𝑦(𝑡) – output, process variable; 𝑑 (𝑡) –
disturbance; 𝑛(𝑡) – measurement noise
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which can be interpreted as a PID controller with an additional filter. From this
it follows that the initial value 𝑢0 of the control signal is

𝑢0 = 𝑢(0+) = 𝑎0

𝑎
𝑝

0
= lim

𝑠→∞
𝑄(𝑠), (41)

which can limit the target dynamics given the limits of the control signal.

4.1.1. Design examples

Assume the plant 𝑃(𝑠)

𝑃(𝑠) = 0.4(1 − 𝑠)
𝑠2 + 0.4𝑠 + 0.4

, with 𝑇𝑝 = 5, 𝜃𝑝 = 3, (42)

whose step response is depicted in Fig. 2 as 𝑦𝐶 (𝑡), and target functions 𝑇 (𝑠),
whose step responses and parameters are depicted in Fig. 8. Examples of repre-
sentative responses showing the influence of parameters 𝜆, 𝜃 or 𝜙 are presented in
Fig. 11. Exemplary serial compensator for 𝑇 (𝑠) with 𝜆 = 1, 𝑇 = 1 and 𝜃 = 𝜙 = 0

Figure 11: Step responses of control systems for the plant 𝑃(𝑠), whose dynamics are plotted with
a black dashed line and target dynamics as shown in Fig. 8
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from Fig. 10a has the form

𝑄(𝑠) = 2.5
𝑠2 + 0.4𝑠 + 0.4

(𝑠 + 1)2 =
2.5𝑠2 + 𝑠 + 1

(𝑠 + 1)2 , (43)

and the controller 𝐶 (𝑠) for the closed-loop system in Fig. 10b

𝐶 (𝑠) = 2.5
𝑠2 + 0.4𝑠 + 0.4

𝑠(𝑠 + 3) = 0.333
2.5𝑠2 + 𝑠 + 1
𝑠(0.333𝑠 + 1) . (44)

Comparison of control signals shows that decreasing 𝑇 from 𝑇𝑝 = 5 to 𝑇 = 1
results in increasing the value of 𝑢0. For example the smallest value of 𝑢(0+) is
for double root. For the controller in (44) it is

𝑢0 =

(
𝑇𝑝

𝑇

)2 1
1 + 𝜃2

𝑝

= 52 1
10

= 2.5. (45)

Accelerating the transients by choosing 𝑇 = 0.5 results in multiplying the values
of 𝑢0 by 4.

4.2. Disturbance rejection control

4.2.1. Simple feedback control

For the disturbance suppression the following transfer functions are important

𝑢̄𝑑 (𝑠)
𝑑 (𝑠)

= −𝑇𝑑 (𝑠) = − 𝑎0(1 − 𝜏𝑠)
𝑠2 + 𝑎1𝑠 + 𝑎0

, (46)

𝑦̄𝑑 (𝑠)
𝑑 (𝑠)

= 𝑃(𝑠)𝑆𝑑 (𝑠) =
𝑠(𝑠 + 𝑎1 + 𝑎0𝜏) (1 − 𝜏𝑠)

(𝑠2 + 𝑎1𝑠 + 𝑎0) (𝑠2 + 𝑎
𝑝

1 𝑠 + 𝑎
𝑝

0 )
. (47)

Observe also that
𝑢̄𝑑 (𝑠)
𝑑 (𝑠)

= − 𝑦̄𝑑 (𝑠)
𝑟 (𝑠) . (48)

Disturbance responses 𝑦𝑑 (𝑡) to 𝑑 (𝑡) = 1 displayed in Fig. 12 show that with
decreasing 𝑇 of the reference model 𝑇 (𝑠), the magnitudes of responses 𝑦𝑑 (𝑡)
slowly decrease and their dependence on the type of dynamics slowly disappears.
The dynamics of 𝑦𝑑 (𝑡) remains, however, as sluggish as the dynamics of 𝑃(𝑠).
The control signals 𝑢𝑑 (𝑡) become faster. Observe that after a short time 𝑡𝑠, the
control signal 𝑢𝑑 (𝑡) reaches −1, and then 𝑣(𝑡) = 0. As a result, the control
system becomes open and the plant output 𝑦𝑑 (𝑡) evolves as a free system with
initial conditions obtained during the transition period of 𝑣(𝑡). An interesting
peculiarity is that while for 𝑡 > 𝑡𝑠 the controller’s input −𝑦𝑑 (𝑡) varies in time, its
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output 𝑢(𝑡) does not. This is explained by the fact that the series connection of
𝑃(𝑠) and 𝐶 (𝑠) creates an unobservable system [31] in which zeros of 𝐶 (𝑠) block
the transients of the internal free variable 𝑦𝑑 (𝑡) related to the same poles of 𝑃(𝑠).

Figure 12: Disturbance responses in systems from Fig. 11

The behavior of the disturbance dynamics is easy to explain when the target
dynamics becomes much faster than that of the plant. Then the signal 𝑣(𝑡) =

𝑢𝑑 (𝑡) +1(𝑡) controlling the plant can be approximated by the Dirac delta function,
𝑣(𝑡) = 𝐴𝛿(𝑡), with the area 𝐴

𝐴 =

∞∫
0

𝑣(𝑡)d𝑡 = lim
𝑠→0

𝑠
1
𝑠

(
𝑢̄𝑑 (𝑠) +

1
𝑠

)
(49)

= lim
𝑠→0

(
1
𝑠
− 𝑎0(1 − 𝜏𝑠)
𝑠2 + 𝑎1𝑠 + 𝑎0

1
𝑠

)
=
𝑎1

𝑎0
+ 𝜏. (50)

The same result can be obtained directly from the transfer function in (47) by
replacing the fast dynamics represented by (𝑠 + 𝑎1 + 𝑎0𝜏)/(𝑠2 + 𝑎1𝑠 + 𝑎0) with
its steady-state gain (𝑎1 + 𝑎0𝜏)/𝑎0, which leads to

𝑦̄𝑑 (𝑠)
𝑑 (𝑠)

≈
(
𝑎1

𝑎0
+ 𝜏

)
𝑠(1 − 𝜏𝑠)

𝑠2 + 𝑎
𝑝

1 𝑠 + 𝑎
𝑝

0
. (51)

Hence the step response 𝑦𝑑 (𝑡) can be expressed by the impulse response 𝑔𝑝 (𝑡) of
the plant 𝑃(𝑠) as follows

𝑦𝑑 (𝑡) ≈
(
𝑎1

𝑎0
+ 𝜏

)
𝑔𝑝 (𝑡). (52)

Assume, for example, the target 𝑇 (𝑠) with 𝜃 = 𝜙 = 0, 𝜆 = 𝜏/𝑇 and the oscillatory
plant with 𝜃𝑝 and 𝜆𝑝 = 𝜏/𝑇𝑝. Then, from (20), the maximum value 𝑦𝑚 of 𝑦𝑑 (𝑡)
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and 𝑡𝑚 are determined by

𝑦𝑚 ≈
(
2
𝑇

𝑇𝑝
+ 𝜆𝑝

) 𝜆𝑝𝜃𝑝

√︃
1 + 𝜃2

𝑝

sin 𝜀
e−𝑡𝑚/𝑇𝑝 , (53)

𝑡𝑚 =
𝑇𝑝

𝜃𝑝

(
arctan 𝜃𝑝 + 𝜀

)
, 𝜀 = arctan

𝜆𝑝𝜃𝑝

𝜆𝑝 + 1
. (54)

From (52) and (20)

𝑦𝜇 ≈ 𝑦𝑑 (0+) = −
(
2
𝑇

𝑇𝑝
+ 𝜆𝑝

)
𝜆𝑝 (1 + 𝜃2

𝑝), (55)

where 𝑦𝜇 is the first minimum of 𝑦𝑑 (𝑡).
The maximum value 𝑢𝑚 of 𝑢𝑑 (𝑡) results from formula (34) and equals to

𝑢𝑚 = (1 + 𝜆)e−𝑡𝑚/𝑇 − 1, 𝑡𝑚 =
𝜆

𝜆 + 1
𝑇. (56)

Note that since𝜆𝑝 and 𝜃𝑝 are the plant parameters and𝜆 = 𝜏/𝑇 , the only parameter
that depends on the designer is 𝑇 .

The accuracy of the approximations of 𝑦𝑚 is very high. For example, for 𝜆 = 2
there is 𝑦𝑚 = 𝐴𝑔𝑚 = 0.72 for 𝜃 = 1, 𝑦𝑚 = 0.87, 𝐴𝑔𝑚 = 0.95 for 𝜃 = 𝜙 = 0 and
𝑦𝑚 = 0.75, 𝐴𝑔𝑚 = 0.79 for 𝜙 = 2. It can be seen that the accuracy for 𝜃 > 0 and
𝜙 > 0 is better than for 𝜃 = 𝜙 = 0. This is explained by graphs of 𝑢𝑑 (𝑡) in Fig. 13
showing that the control signal for 𝜃 = 𝜙 = 0 is the slowest.

4.2.2. Mixed feedback–feedforward control

Speeding up the control system by making 𝜆 large would lead to large control
signal when changing the setpoint. To resolve this contradiction, a feedback and
feedforward control system can be used as in Fig. 10c, where 𝑇𝑟 (𝑠) is obtained
by feedforward and the faster 𝑇𝑑 (𝑠) by feedback.

Exemplary controller for 𝜆 = 4, 𝑇𝑑 = 0.25 and 𝜃 = 𝜙 = 0 has the form:

𝐶𝑑 (𝑠) = 40
𝑠2 + 0.4𝑠 + 0.4

𝑠(𝑠 + 24) = 0.667
2.5𝑠2 + 𝑠 + 1
𝑠(0.042𝑠 + 1) . (57)

The high frequency gain 40 of this controller is 16 times greater than in (44).
This means that the direct setpoint command following in a single loop system
of Fig. 10b would require 𝑢(0+) = 40 instead of 2.5 as in (43)–(44).

In the mixed feedback–feedforward structure, an appropriate compensator
𝑄𝑟 (𝑠) can be selected to arbitrarily limit the demand for large control signal
values. However, if the increments Δ𝑟 and Δ𝑑 are small, the need for large control
values can be reduced.
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Figure 13: Signals in feedback–feedforward system in Fig. 10c. First column – setpoint command
response, second column – disturbance response, third column – approximation of the disturbance
response when the actual plant input signal 𝑣(𝑡) = 𝑢𝑑 (𝑡) + 1 is replaced by 𝑣(𝑡) = 𝐴𝛿(𝑡). Dotted
lines in the first two columns – step responses of the plant. Dotted lines in the third column show
the limiting disturbance response for 𝜆 → ∞. However, as explained further, the gain margin
Δ𝐿 → 1, and the system tends to the border of stability

It should be noted that although the article focuses on the responses to step
excitations, there are no obstacles to extending the analysis to include stochastic
references, disturbances and noise in order to select controller parameters deter-
mining performance of output and control signals in terms of their variances or
standard deviations.

4.3. Gain margin

The gain margin Δ𝐿, known from the Nyquist plot of 𝐿 ( 𝑗𝜔) = 𝐶 ( 𝑗𝜔)𝑃( 𝑗𝜔)
in classical frequency domain approach, determines the values of 𝑘 for which the
control system with the plant 𝑘𝑃(𝑠), designed for the nominal value of 𝑘 = 1,
remains stable. It can also be found using the characteristic polynomial 𝜒(𝑠) of
the closed loop system.
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𝜒(𝑠) = 𝑘 num{𝐶 (𝑠)}num{𝑃(𝑠)} + den{𝐶 (𝑠)}den{𝑃(𝑠)} (58)

= 𝑎
𝑝

0 (𝑠
2 + 𝑎

𝑝

1 𝑠 + 𝑎
𝑝

0 )
(
𝑠2 + (𝑎1 + 𝑎0𝜏(1 − 𝑘)) 𝑠 + 𝑘𝑎0

)
. (59)

For stability both polynomials in (59) should have positive coefficients, from
which it follows

0 < 𝑘 <
𝑎1

𝑎0𝜏
+ 1. (60)

As a result
Δ𝐿 =

𝑎1

𝑎0𝜏
+ 1 =

𝑏1

𝑏0
𝜆−1 + 1 =

𝐴

𝜏
, (61)

where 𝐴 is the area of the Dirac impulse in (50). Observe that since 𝑎1/(𝑎0𝜏) =
𝑏1/(𝑏0𝜆) is inversely proportional to 𝜆, lim𝜆→∞ Δ𝐿 = 1, i.e. the system tends to
the stability border. From (59), it oscillates then with the frequency

𝜔 =
1
𝑇

√︁
𝑏1𝜆−1 + 𝑏0 . (62)

Gain margin can be considered as measure of robustness to plant gain changes.

5. Conclusions

The article presents the control design of second-order nonminimum-phase
systems directly in the time domain, providing detailed information about the
transients. Certain parameters of the step response, such as undershoot Δ𝜇,
overshoot Δ𝑚, and the times of their occurrence, are accurately determined
regardless of the type of poles. Similar results were obtained for the impulse
response.

Approximations are given for other values characterizing the step response,
such as zero crossing time 𝑡0, rise time 𝑡0.9 and settling time 𝑡𝑠. The resulting
formulas are implemented in MATLAB functions, which provide all results for
the specified system.

The presented results allow the design of feedforward, feedback and combined
feedback–feedforward controllers for both reference tracking and disturbance
rejection.

The proposed parameterization enables good assessment of the influence of
its parameters on transients, and thus their conscious selection. Therefore, the
choice of the type of poles and values of the two parameters: 𝑇 and 𝜃 or 𝜙 of
a target transfer function 𝑇 (𝑠) enables consideration of various constraints and
often contradictory specifications including undershoot, overshoot, characteristic
times 𝑡0, 𝑡0.9 and 𝑡𝑠, maximum value of control signal 𝑢(0+), maximum deviation
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𝑦𝑚 of the output caused by disturbance, gain margin Δ𝐿, etc. Numerous examples
presented in the article support the development of engineering intuition in this
direction.

The results are based on the assumption of linearity, accurate cancellation of
zeros and poles and accurate knowledge of the gain of the object. The question
arises about the impact of discrepancies between the model and the object or
presence of unmodeled fast dynamics of actuators and sensors. The answer to
this question is beyond the scope of this article. However, it can be said that
the system has a certain degree of robustness depending on 𝜆 = 𝜏/𝑇 , where the
higher 𝜆, the worse the robustness.

It should be noted that, assuming a stochastic reference, disturbance, and
noise, the controller parameters in designs can be optimized for the variance of
the resulting control and control error signals or by minimizing more complex
stochastic performance criteria.

All this can be considered as the basis for building an interactive control
design system.

A. Crossing times t0, t0.9, t1, and settling time ts

A.1. Approximate formulas

The formulas approximating the crossing times depend on the character of
poles.

• Complex poles, 𝜃 > 0.
The time 𝑡0 to return to positive values is found as the intersection of the
tangent calculated at the inflection point 𝑡𝑖 with the zero axis. The rise
time 𝑡0.9 is calculated from the linear approximation of the output between
𝑡0 and 𝑡1. Settling time 𝑡

𝑝
𝑠 is approximated by the time it takes for the

exponential envelope to enter into the strip [1 − 𝑝, 1 + 𝑝].

𝑡0 ≈ 𝑡𝑖 +
2𝜃 − (1 + 𝜃2) sin 𝜑e𝑡𝑖/𝑇

𝜃 (1 + 𝜃2)
𝑇, 𝑡1 =

𝜋 − 𝜑

𝜃
𝑇, (A1)

𝑡𝑖 = 𝑡𝜇 +
𝑇

𝜃
arctan 𝜃, 𝑡𝜇 =

𝑇

𝜃
arctan

𝜆𝜃

𝜆 + 1
, (A2)

𝑡0.9 ≈ 𝑡0 + 9𝑡1
10

, 𝑡
𝑝
𝑠 ≈ −𝑇 ln(sin 𝜑𝑝) (A3)

with
𝜑 = arctan

𝜃

𝜆(1 + 𝜃2) + 1
. (A4)
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• Double pole, 𝜃 = 𝜙 = 0.
All time instants of interest can be found using the Lambert𝑊−1(𝑧) function
[29, 30] defined as an infinite expansion

𝑊−1(𝑧) = ln
−𝑧

− ln −𝑧

−ln
−𝑧
· · ·

. (A5)

Then denoting

𝑥 = −
(
e−(𝜆+1)−1/(𝜆 + 1)

)
(A6)

there is

𝑡𝜇 =
𝜆

𝜆 + 1
𝑇, (A7)

𝑡0 = −
(
𝑊−1(𝑥) + (𝜆 + 1)−1

)
𝑇, (A8)

𝑡0.9 = −
(
𝑊−1(0.1𝑥) + (𝜆 + 1)−1

)
𝑇, (A9)

𝑡
𝑝
𝑠 = −

(
𝑊−1(𝑝𝑥) + (𝜆 + 1)−1

)
𝑇. (A10)

• Different real poles, 𝜙 > 0

𝑡0 ≈ 𝑡𝑖 +
2 + 𝜙 −

(
(𝜆 + 1 + 𝜆𝜙)

(
1 + 𝜙

𝜆 + 1

) (1+𝜙)) 1
𝜙

1 + 𝜙
𝑇, (A11)

𝑡𝑖 = 𝑡𝜇 +
𝑇

𝜙
ln(1 + 𝜙), 𝑡𝜇 =

𝑇

𝜙
ln

𝜆 + 1 + 𝜆𝜙

𝜆 + 1
, (A12)

𝑡0.9 ≈ −𝑇 ln
𝜙

10(𝜆 + 1) (1 + 𝜙) , (A13)

𝑡
𝑝
𝑠 ≈ −𝑇 ln

𝜙𝑝

(𝜆 + 1) (1 + 𝜙) . (A14)

The results are shown in Fig. A1, where approximations of 𝑡0, 𝑡0.9 and 𝑡0.02
𝑠 are

presented for both complex and real poles. The exact values obtained for the
double poles are shown as blue dots. The actual values of 𝑡0.9 and 𝑡0.02

𝑠 for 𝜆 = 1
obtained by the simulation are plotted with black lines.
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Figure A1: Times characterizing the step output: 𝑡0 – time to return to positive values, 𝑡0.9 – time
to reach 0.9, 𝑡0.02

𝑠 – settling time with tolerance 𝑝 = 0.02 as functions of 𝜃 or 𝜙 for various 𝜆 at
constant 𝜏. Since for 0 < 𝜃 < 1 and 0 < 𝜙 < 1 the approximations may deviate from the exact
values they are bounded by values calculated for the double root case 𝜃 = 𝜙 = 0

A.2. MATLAB codes of nmp2impulse and nmp2step functions

Function nmp2impulse returns 𝑔(0+), 𝑔𝑚, and 𝑡𝑖. Function nmp2step returns
Δ𝜇, Δ𝑚, 𝑡𝜇, 𝑡𝑚, 𝑡0, 𝑡0.9, 𝑡1 and 𝑡0.02

𝑠 for given 𝑇 , 𝜆 and 𝜃 or 𝜙.
f u n c t i o n [ g0 , gm , t i ] = nmp2impulse ( v a r a r g i n )
% −−Impu l se Response I n f o f o r Second−Order Nonminimum−Phase Systems−−
% [ ] = nmp2impulse ( lambda , T , t h e t a , ’ t h e t a ’ ) − Complex p o l e s
% [ ] = nmp2impulse ( lambda , T ) − Double po l e
% [ ] = nmp2impulse ( lambda , T , phi , ’ phi ’ ) − D i f f e r e n t r e a l p o l e s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
n = l e n g t h ( v a r a r g i n ) ;
%
i f n >= 2

L = v a r a r g i n {1} ;
T = v a r a r g i n {2} ;
sy s = 0 ; % Double po l e
i f n == 4
f a c t o r = lower ( v a r a r g i n {4} ) ;
s w i t c h f a c t o r

c a s e ’ t h e t a ’
Th = v a r a r g i n {3} ;
i f Th > 0 , sy s = 1 ; end % Complex p o l e s

c a s e ’ ph i ’
F i = v a r a r g i n {3} ;
i f F i > 0 , sy s = 2 ; end % D i f f e r e n t r e a l p o l e s

end
end
s w i t c h sy s

c a s e 0
g0 = −L / T ;
t i = (2∗L+1) / ( L+1) ∗T ;
gm = (L+1) ∗exp(−tm / T ) / T ;

c a s e 1
g0 = −L∗(1+Th ^2 ) / T ;
p s i = a t a n (L∗Th / ( L+1) ) ;
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t i = ( p s i + a t a n ( Th ) ) / Th∗T ;
gm = L∗Th∗(1+Th ^2 ) ^0 .5∗ exp(−tm / T ) / s i n ( p s i ) / T ;

c a s e 2
g0 = −L∗(1+ F i ) / T ;
t i = l og ( ( 1+ F i ) ∗ (L+1+L∗ Fi ) / ( L+1) ) / F i ∗T ;
gm = (L+1) ∗ ( ( L+1) / ( 1 + F i ) / ( L+1+L∗ Fi ) ) ^ ( 1 / F i ) / T ;

end
end
end % end nmp2impulse

MATLAB code for nmp2step function

f u n c t i o n [Du ,Dm, tu , tm , t0 , t90 , t1 , t s ] = nmp2step ( v a r a r g i n )
% −−Step Response I n f o f o r Second−Order Nonminimum−Phase Systems−−
% [ ] = nmp2step ( lambda , T , t h e t a , ’ t h e t a ’ , { p } ) − Complex p o l e s
% [ ] = nmp2step ( lambda , T , { p } ) − Double po l e
% [ ] = nmp2step ( lambda , T , phi , ’ phi ’ , { p } ) − D i f f e r e n t r e a l p o l e s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
n = l e n g t h ( v a r a r g i n ) ;
%
i f n >= 2

L = v a r a r g i n {1} ;
T = v a r a r g i n {2} ;
sy s = 0 ; % Double po l e
i f n == 4 | | n == 2 , p = 0 . 0 2 ; % p +− 2%
e l s e , p = v a r a r g i n { end } ; end
i f n >= 4

f a c t o r = lower ( v a r a r g i n {4} ) ;
s w i t c h f a c t o r

c a s e ’ t h e t a ’
Th = v a r a r g i n {3} ;
i f Th > 0 , sy s = 1 ; end % Complex p o l e s

c a s e ’ ph i ’
F i = v a r a r g i n {3} ;
i f F i > 0 , sy s = 2 ; end % D i f f e r e n t r e a l p o l e s

end
end
s w i t c h sy s

c a s e 0
t u = L / ( L+1) ∗T ; Du = −(1−(L+1) ∗exp(− t u / T ) ) ;
tm = I n f ; Dm = 0 ;

x = −exp ( −1/(L+1) ) / ( L+1) ;
W = LambertW_Veberic (−1 ,x ) ;

t 0 = −(W+ 1 / (L+1) ) ∗T ;
t 1 = I n f ;

W = LambertW_Veberic ( −1 ,0.1∗ x ) ;
t 90 = −(W+ 1 / (L+1) ) ∗T ;

W = LambertW_Veberic (−1 ,p∗x ) ;
t s = −(W+ 1 / (L+1) ) ∗T ;

c a s e 1
t u = a t a n (L∗Th / ( L+1) ) / Th∗T ;
Du = −(1−((L+1) ^2+(L∗Th ) ^2 ) ^0 .5∗ exp(− t u / T ) ) ;
tm = t u + p i / Th∗T ;
Dm = ( ( L+1) ^2+(L∗Th ) ^2 ) ^0 .5∗ exp(−tm / T ) ;

t i = t u + a t a n ( Th ) / Th∗T ;
p s i = a t a n ( Th / ( 1 +L∗(1+Th ^2 ) ) ) ;

t 0 = t i +(2∗Th −(1+Th ^2 ) ∗ s i n ( p s i ) ∗exp ( t p / T ) ) / Th / ( 1 + Th ^2 ) ∗T ;
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t 1 = ( pi−p s i ) / Th∗T ;
t 90 = ( t 0 +9∗ t 1 ) / 1 0 ;
t s = −l og ( s i n ( p s i ) ∗p ) ∗T ;

c a s e 2
t u = log ( ( L+1+L∗ Fi ) / ( L+1) ) / F i ∗T ;
Du = −(1−( (L+1) ^(1+ F i ) / ( L+1+L∗ Fi ) ) ^ ( 1 / F i ) ) ;
tm = I n f ; Dm = 0 ;

t i = t u + log (1+ F i ) / F i ∗T ;
t 0 = t i +(2+ Fi −((L+1+L∗ Fi ) ∗ ( ( 1+ F i ) / ( L+1) ) ^(1+ F i ) ) ^ ( 1 / F i ) ) / ( 1 + F i ) ∗T ;
t 1 = I n f ;
t 90 = −l og ( F i / ( L+1) / ( 1 + F i ) / 1 0 ) ∗T ;
t s = −l og ( p∗ Fi / ( L+1) / ( 1 + F i ) ) ∗T ;

end
i f s y s > 0

x = −exp ( −1/(L+1) ) / ( L+1) ; W = LambertW_Veberic (−1 ,x ) ;
t 0_0 = −(W+ 1 / (L+1) ) ∗T ; W = LambertW_Veberic ( −1 ,0.1∗ x ) ;
t90_0 = −(W+ 1 / (L+1) ) ∗T ; W = LambertW_Veberic (−1 ,p∗x ) ;
t s _ 0 = −(W+ 1 / (L+1) ) ∗T ;
t 0 = min ( t0 , t 0_0 ) ;
t 90 = min ( t90 , t90_0 ) ;
t s = min ( t s , t s _ 0 ) ;

end
end
end % end nmp2step

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
f u n c t i o n W = LambertW_Veberic ( k , z )
% Darko Veber ic , " Having Fun wi th Lambert W( x ) Func t i o n "
% W_k( z ) = LambertW_Veberic ( k , z )
% k = 0 or −1
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
i t = 1e3 ; % l i c z b a i t e r a c j i
e = exp ( 1 ) ;
%
i f k == 0

i f z >= −1/e && z < e
W = z ;
f o r i = 1 : i t , W = z / exp (W) ; end

e l s e
W = log ( z ) ;
f o r i = 1 : i t , W = log ( z /W) ; end

end
e l s e i f k == −1

i f z >= −1/e && z < 0
W = log (−z ) ;
f o r i = 1 : i t , W = log (−z /(−W) ) ; end

e l s e i f z == 0 , W = −I n f ;
e l s e , W = NaN ;
end

end
end % end LambertW_Veberic
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