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Asymptotic behavior of a viscoelastic wave equation
with a delay in internal fractional feedback

Radhouane AOUNALLAHo , Adbelbaki CHOUCHAo ,
Salah BOULAARASo and Abderrahmane ZARAIo

We consider the viscoelastic wave equation with a time delay term in internal fractional
feedback. By employing the energy method along with the Faedo-Galerkin procedure, we estab-
lish the global existence of solutions, subject to certain conditions. Additionally, we demonstrate
how appropriate Lyapunov functionals can lead to general decay results of the energy.

Key words: global existence, general decay, relaxation function, delay fractional feedback,
partial differential equations

1. Introduction

Mathematical modeling and analysis serve as indispensable tools in the realms
of science and engineering, providing a systematic framework for understanding,
predicting, and optimizing complex phenomena.This research is motivated by a
diverse range of viscoelastic phenomena. Over the past two decades, fractional
calculus has demonstrated its efficacy in control processing and various engineer-
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ing fields. The existing literature highlights the considerable attention given to
linear wave equations due to their inherent structural properties [3,8,9,18,25,31].

In [25,26], the researchers investigated the blow-up and asymptotic behavior
of a wave equation characterized by a time delay condition of fractional type.
Focusing on the dynamics of the system, the study explored the conditions under
which blow-up phenomena occurred and delved into the subsequent asymptotic
patterns. By incorporating fractional-type time delay, the research introduced
a nuanced dimension to the analysis, shedding light on the intricate interplay
between temporal delays and wave dynamics. The findings contributed to a deeper
understanding of the behavior of the system, offering insights into the emergence
of blow-up and the long-term trends exhibited by the solution. This research
bridged the gap between wave equations and fractional calculus, enriching the
theoretical framework for understanding time-delayed wave phenomena with
implications for various scientific and engineering applications.

We investigate the following problem:

𝑤𝑡𝑡 (𝑥, 𝑡) − Δ𝑤(𝑥, 𝑡) +
𝑡∫

0

𝑓 (𝑡 − 𝜎)Δ𝑤(𝑥, 𝜎)d𝜎 + 𝜇1𝑤𝑡 (𝑥, 𝑡)

+ 𝜇2𝜕
𝜌,𝛽
𝑡 𝑤(𝑥, 𝑡 − 𝜏) = 0, 𝑥 ∈ Ω, 𝑡 > 0,

𝑤(𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 ­ 0,
𝑤(𝑥, 0) = 𝑤0(𝑥), 𝑤𝑡 (𝑥, 0) = 𝑤1(𝑥), 𝑥 ∈ Ω,

𝑤𝑡 (𝑥, 𝑡 − 𝜏) = 𝑔0(𝑥, 𝑡 − 𝜏), 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝜏),

(1)

where Ω is a bounded domain in R𝑛 (𝑛 ­ 1) with a smooth boundary 𝜕Ω, 𝑓 is a
function which will be specified later, 𝜏 > 0 represents the delay and 𝜇1 and 𝜇2
are positive constants.The notation 𝜕𝜌,𝛽𝑡 stands for the modified Caputo fractional
derivative (see [7]) defined by:

𝜕
𝜌,𝛽
𝑡 𝑤(𝑡) = 1

Γ(1 − 𝜌)

𝑡∫
0

(𝑡 − 𝜎)−𝜌𝑒−𝛽(𝑡−𝜎)𝑤𝜎 (𝜎)d𝜎, 0 < 𝜌 < 1, 𝛽 ­ 0

and 𝑢0 , 𝑢1, 𝑓0 are given functions belonging to suitable spaces.
In recent years, the exploration of partial differential equations (PDEs) in-

corporating time delay effects has witnessed a notable surge in interest. This
burgeoning area of research is underscored by a plethora of works, exemplified
by references such as [2,3,28] and the comprehensive bibliography accompanying
these studies. Significantly, the pivotal work of [6, 8] underscored the vulnera-
bility of systems to instability with even minor delays in boundary control. This
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revelation has instigated a concerted effort in the scientific community to address
stability concerns inherent in hyperbolic systems featuring input delay terms.
The requisite introduction of additional control terms to mitigate such stability
issues has been a subject of thorough investigation, extensively documented in
works like [20] and the rich array of references encapsulated therein. Notably,
the study in [20] scrutinized a system governed by the wave equation, specifically
considering a linear boundary-damping term with a delay, thus contributing to
the elucidation of dynamics in systems grappling with temporal delays in control
mechanisms.

This study aims to investigate the existence and asymptotic stability of a vis-
coelastic wave equation embedded with a delay in internal fractional feedback.
This nuanced exploration integrates the complexities of viscoelasticity and frac-
tional calculus, addressing a dynamic system with a temporal delay in internal
feedback mechanisms. The research aims to establish the existence of solutions for
this intricate equation while unraveling the nuanced interplay between viscoelas-
tic properties and fractional-order dynamics. Furthermore, the focus extends to
the asymptotic stability analysis, probing the long-term behavior of solutions
under the influence of delayed internal fractional feedback. By elucidating the
stability characteristics, the study contributes to the broader understanding of the
intricate dynamics inherent in viscoelastic wave equations, thereby fostering ad-
vancements in the theoretical underpinnings of these phenomena with potential
implications for applications across various scientific and engineering domains.
This study focused on investigating the following system:

𝑤𝑡𝑡 − Δ𝑤 = 0, 𝑥 ∈ Ω, 𝑡 > 0,
𝑤(𝑥, 𝑡) = 0, 𝑥 ∈ Γ0, 𝑡 > 0,
d𝑤
d𝜈

(𝑥, 𝑡) = 𝜇1𝑤𝑡 (𝑥, 𝑡) + 𝜇2𝑤𝑡 (𝑥, 𝑡 − 𝜏), 𝑥 ∈ Γ0, 𝑡 > 0,

𝑤(𝑥, 0) = 𝑤0(𝑥), 𝑤𝑡 (𝑥, 0) = 𝑤1(𝑥), 𝑥 ∈ Ω,

𝑤(𝑥, 𝑡 − 𝜏) = 𝑔0(𝑥, 𝑡 − 𝜏), 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝜏),

(2)

They found that the energy of the system is exponentially stable under the as-
sumption

𝜇2 < 𝜇1, (3)
while a sequence of delays exists that can make the system unstable if (3) is not
satisfied. The primary methodology employed in [20] involves an observability
inequality coupled with a Carleman estimate. Similar findings were obtained
when both the damping and delay were present within the domain. Notably, [30]
achieved a parallel outcome to [20] in one spatial dimension by adopting a spectral
analysis approach. As established by the aforementioned studies, the rate of decay
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of solutions is contingent upon the delay. In fact, as demonstrated in [25], the
decay rate diminishes as the delay increases. In simpler terms, the decay process
becomes slower as 𝜏 becomes larger.

The issue of time-varying delay in the wave equation has been recently inves-
tigated by Nicaise et al. [26] in the context of one spatial dimension. In their study,
they established an exponential stability result subject to the following condition:

𝜇2 <
√

1 − 𝑑𝜇1 , (4)

where 𝑑 is a constant such that

𝜏′(𝑡) ¬ 𝑑 < 1, ∀𝑡 > 0. (5)

The inclusion of the term viscoelastic in the study is justified from a physical
perspective by the desire to capture the material properties that exhibit both
viscous and elastic behavior. Viscoelastic materials possess characteristics of both
viscosity, where they deform continuously under stress, and elasticity, where they
can return to their original shape after deformation. This dual nature is prevalent in
a variety of real-world materials, such as biological tissues, polymers, and certain
geological substances. Understanding the viscoelastic properties is crucial in
accurately modeling the behavior of these materials under dynamic conditions,
especially in the context of wave equations where the response to stress and
strain is dynamic. Therefore, the incorporation of the term viscoelastic in the
equation reflects a commitment to representing the physical reality of materials
that exhibit a combination of viscous and elastic traits, enhancing the relevance
and applicability of the mathematical model to real-world scenarios.

Extensive research has been conducted on problems similar to (1) in bounded
domains or in the entire N-dimensional space in the absence of the delay term,
specifically when 𝜇2 = 0. Over the past three decades, various authors have inves-
tigated the existence, blow-up, and asymptotic behavior of both smooth and weak
solutions. For further information and references, please refer to [3, 6, 9] and the
sources cited therein. In [15], the authors investigated the blow-up phenomenon
in nonlinear viscoelastic wave equations, specifically focusing on solutions with
positive initial energy. This research provided insights into the dynamics of vis-
coelastic systems, highlighting the conditions under which solutions exhibited
blow-up behavior. The general decay behavior of solution energy in a viscoelas-
tic equation featuring a nonlinear source was investigated in the literature [17].
The researchers explored the temporal evolution of energy within the system,
offering insights into the dynamics and stability of viscoelastic equations with
nonlinear influences. In [28], the authors focused on the asymptotic behavior
of energy in materials characterized by partial viscoelasticity. Investigating the
dynamics of energy within such materials provided valuable insights into their
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long-term behavior and contributed to the understanding of partially viscoelastic
systems.

In [13], the authors focused on the stabilization of wave systems confronted
with input delay in the boundary control. Employing a systematic approach, the
authors delved into the intricacies of managing delayed control inputs in the con-
text of wave systems. Through a comprehensive analysis, the study addressed the
challenges posed by delays in boundary control and proposed effective strategies
to achieve system stabilization. The work was grounded in established control
theory principles, drawing on insights from previous research in wave systems
with input delay. The methodologies presented contributed to the development
of robust control strategies, offering valuable contributions to the broader field of
control theory and its application to wave systems. The findings had implications
for various domains, including engineering and physics, where the robust stabi-
lization of dynamic systems was of paramount importance. In the following, we
present a brief overview of key findings related to the viscoelastic wave equation.
The viscoelastic wave equation is given by:

𝑤𝑡𝑡 − Δ𝑤 +
𝑡∫

0

𝑓 (𝑡 − 𝜎)Δ𝑤(𝑥, 𝜎)d𝜎 + 𝑔(𝑤𝑡) = ℎ(𝑢𝑡), (6)

in Ω× (0,∞) has been extensively studied by Cavalcanti et al. [9]. This equation
considers the case where ℎ = 0 and 𝑔(𝑤𝑡) = 𝑎(𝑥)𝑤𝑡 , and is subject to initial
conditions and Dirichlet-type boundary conditions. Specifically, Cavalcanti et al.
focused on the problem formulated by

𝑤𝑡𝑡 − Δ𝑤 +
𝑡∫

0

𝑓 (𝑡 − 𝜎)Δ𝑤(𝑥, 𝜎)d𝜎 + 𝑎(𝑥)𝑤𝑡 = 0. (7)

Here 𝑎 : Ω → R+ is a function, which may be null in certain regions of the
domain. Under the assumptions that 𝑎(𝑥) ­ 𝑎0 on a subset 𝜔 ⊂ Ω and

−𝜁1 𝑓 (𝑡) ¬ 𝑓 ′(𝑡) ¬ −𝜁2 𝑓 (𝑡), ∀𝑡 ­ 0,

the authors established an exponential decay result with geometric restrictions
on the subset 𝜔. This finding was subsequently improved upon by Berrimi and
Messaoudi [6], who obtained the same exponential decay result with weaker
conditions on both a and 𝑓 . Moreover, in [3], a more general abstract formulation
of Eq. (6) was considered, leading to the derivation of a uniform stability result.
Notably, the decay rates obtained in [3] align with those found in [6] for Eq. 6,
highlighting the consistency of the findings across different studies.
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Cavalcanti and Oquendo [11] employed the piecewise multipliers method to
investigate a more general problem than the one addressed in [9]. Specifically,
they examined the following problem:

𝑤𝑡𝑡 − 𝑘0Δ𝑤 +
∫
𝑡0

div[𝑎(𝑥) 𝑓 (𝑡 − 𝜎)Δ𝑤(𝑥, 𝜎)]d𝜎 + 𝑏(𝑥)𝑔(𝑤𝑡) + ℎ(𝑤) = 0. (8)

Their study established stability results under certain conditions on the function
g and when 𝑎(𝑥) + 𝑏(𝑥) ­ 𝜌 > 0. If 𝑓 decays exponentially and 𝑔 is a linear
function, an exponential stability result was proven. On the other hand, if 𝑓

decays polynomially and 𝑔 is a nonlinear function, a polynomial stability result
was demonstrated. These findings highlight the influence of the decay behavior
of 𝑓 and the linearity / nonlinearity of 𝑔 on the stability properties of the system.

The authors in [12] addressed the problem (7) with a constant coefficient
𝑎(𝑥) = 𝑎0 and demonstrated that the solution of the problem (7) exhibits ex-
ponential decay only if the relaxation kernel g also decays exponentially. This
implies that the presence of the memory term can hinder exponential decay caused
by the linear frictional damping term.

Cavalcanti et al. [8] conducted an investigation on the problem described by

|𝑤𝑡 |𝜌𝑤𝑡𝑡 − Δ𝑤 − Δ𝑤𝑡𝑡 +
𝑡∫

0

𝑓 (𝑡 − 𝜎)Δ𝑤(𝑥, 𝜎)d𝜎 − 𝛾Δ𝑤𝑡 = 0, 𝜌 > 0, (9)

in the domain Ω × (0,∞). They established a global existence result for 𝛾 ­ 0.
Additionally, under the condition 𝛾 > 0 and assuming exponential decay of the
function 𝑓 , they obtained an exponential decay result for the solution.

Building upon the theoretical framework of potential well theory, Tatar and
Messaoudi [18] undertook an extension of the results elucidated in [8] to a broader
context. In this extended scenario, the investigation encompasses the introduction
of an additional source term represented as |𝑤 |𝑝−2𝑤 into the governing equation
denoted as (9). This augmentation introduces a nonlinearity characterized by
the power exponent 𝑝, enriching the mathematical model with a nonlinear term
that influences the system’s behavior. The incorporation of such a source term
is significant as it reflects a departure from the linear dynamics considered in
the initial formulation (9). Tatar and Messaoudi’s extension contributes to the
broader understanding of the impact of nonlinearity on the dynamics described
by potential well theory, paving the way for more comprehensive analyses and
applications in diverse scientific and mathematical contexts.

Messaoudi and Tatar [19] conducted a study on equation (9) with 𝛾 = 0 and
demonstrated that the viscoelastic damping term is sufficiently strong to stabilize
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the system. Another noteworthy paper is [10], where the authors explored a similar
problem to (6) but with a nonlinear feedback applied to the domain boundary Ω.
They established uniform decay rates for the system’s energy without imposing
restrictive growth assumptions on the damping term. For additional insights, we
refer to [1, 14], which provide results on asymptotic stability and global non-
existence of the wave equation with memory-type boundary dissipation. In [29],
a wave equation with acoustic and memory boundary conditions on a portion of
the domain Ω boundary was investigated. The authors proved the existence and
uniqueness of a global solution for this particular case.

Aounallah, Benaissa, and Zarai [2] recently investigated the system with a
fractional time delay, given by
𝑤𝑡𝑡 −Δ𝑤 + 𝜇1𝑤𝑡 (𝑥, 𝑡) + 𝜇2𝜕

𝜌,𝛽
𝑡 𝑤𝑡 (𝑥, 𝑡 − 𝜏) = 𝑤 |𝑤 |𝑝−1, 𝑥 ∈ Ω, 𝑡 > 0,

𝑤(𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,
𝑤(𝑥, 0) = 𝑤0(𝑥), 𝑤𝑡 (𝑥, 0) = 𝑤1(𝑥), 𝑥 ∈ Ω,

𝑤(𝑥, 𝑡 − 𝜏) = 𝑔0(𝑥, 𝑡 − 𝜏), 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝜏),

(10)

where they used semi-group theory to establish the existence of solutions for the
problem and proved a decay rate estimate for the energy by introducing suitable
Lyapunov functionals. Furthermore, they demonstrated that the solution blows
up in finite time if the initial energy is negative, and under the condition

𝛽𝜌−1𝜇2 < 𝜇1 (11)

the system is well-posed. It is worth mentioning that Benaissa and Gaouar [5]
used the same method as in [2] to prove the well-posedness and exponential
decay for the Lamè system with internal fractional delay and boundary damping
of Neumann type.

In this study, we focus on problem (1). Our objective is twofold:
Firstly, by employing Faedo-Galerkin approximations along with energy esti-

mates and imposing certain constraints on the parameters 𝜇1 and 𝜇2, we establish
the well-posedness of the system.

Secondly, under the assumption that 𝛽𝜌−1𝜇2 < 𝜇1, which relates to the rel-
ative weights of the delay term in the feedback and the term without delay,
we demonstrate a general decay of the total energy in our problem. The proof
methodology employed in this study leverages conceptual foundations estab-
lished in prior works, particularly [2, 3], which have addressed wave equations
incorporating delay. Our approach intricately incorporates estimates tailored to
the specific nuances of the viscoelastic wave equation under consideration. The
application of these specialized techniques enables the systematic construction
of pertinent Lyapunov functionals, pivotal in establishing the desired outcomes
of the analysis. Through this methodical utilization of established concepts and
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tailored estimates, we derive rigorous results integral to the understanding and
characterization of the dynamics inherent in the viscoelastic wave equation with
temporal delay.

The paper is structured as follows: in the subsequent section, we introduce
the notation and provide a summary of useful lemmas for the convenience of
the reader, without including their proofs. In Section 3, we establish the well-
posedness of the solution. In Section 4, we establish a general decay of the energy
defined by equation (40), provided that the weight of the delay term is smaller
than the weight of the damping term.

2. Preliminaries

In this section, we provide the essential background information required to
prove our main result. We introduce the following set of assumptions:

(A0) 𝑓 : R+ → R+ is a 𝐶1 function satisfying

𝑓 (0) > 0 and 1 −
∞∫

0

𝑓 (𝜎)d𝜎 = 𝑙 > 0.

(A1) There exists a positive, non-increasing differentiable function 𝜁 (𝑡) such
that

𝑓 ′(𝑡) ¬ −𝜁 (𝑡) 𝑓 (𝑡),∀𝑡 ­ 0, (12)

and
∞∫

0

𝜁 (𝑡)d𝑡 = ∞.

We suppose further that

𝛽𝜌−1𝜇2 < 𝜇1, (13)

𝜏𝛽𝜌−1𝜇2 < 𝛼 < 𝜏
[
2𝜇1 − 𝛽𝜌−1𝜇2

]
. (14)

We introduce the following notations:

(𝜑 ∗ 𝜓) (𝑡) =
𝑡∫

0

𝜑(𝑡 − 𝜏)𝜓(𝜏)d𝜏,

(𝜑 ⋄ 𝜓) (𝑡) =
𝑡∫

0

𝜑(𝑡 − 𝜏) |𝜓(𝑡) − 𝜓(𝜏) |d𝜏,
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(𝜑 ◦ 𝜓) (𝑡) =
𝑡∫

0

𝜑(𝑡 − 𝜏)
∫
Ω

|𝜓(𝑡) − 𝜓(𝜏) |2d𝑥𝑑𝜏.

We present the following lemmas without providing their proofs.
Lemma 1. [27] For any function 𝜑 ∈ 𝐶1(R) and any 𝜓 ∈ 𝐻1(0, 𝑇), we have

(𝜑 ∗ 𝜓) (𝑡)𝜓′(𝑡) = −1
2
𝜑(𝑡) |𝜓(𝑡) |2 + 1

2
(𝜑′ ⋄ 𝜓) (𝑡)

− 1
2
𝑑

𝑑𝑡

(𝜑 ⋄ 𝜓) (𝑡) − ©­«
𝑡∫

0

𝜑(𝜎)d𝜎ª®¬ |𝜓(𝑡) |2
 .

Lemma 2. [27] For 𝑤 ∈ 𝐻1
0 (Ω), we have∫

Ω

©­«
𝑡∫

0

𝑓 (𝑡 − 𝜎) (𝑤(𝑡) − 𝑤(𝜎)) d𝜎ª®¬
2

d𝑥 ¬ (1 − 𝑙)𝐵2
1,Ω ( 𝑓 ◦ ∇𝑤) (𝑡), (15)

where 𝐵1,Ω is the Poincaré constant and 𝑙 is given in (A1).
Lemma 3. [16] Let 𝜂 be the function:

𝜂(𝑦) = |𝑦 |
(2𝜌−1)

2 , 𝑦 ∈ R, 0 < 𝜌 < 1.

Then the relationship between the ”input” 𝑤 and the ”output” O of the system

𝜕𝑡𝑣(𝑦, 𝑡) + (𝑦2 + 𝛽)𝑣(𝑦, 𝑡) − 𝑤(𝑥, 𝑡)𝜂(𝑦) = 0, 𝑦 ∈ R, 𝑡 > 0, 𝛽 ­ 0,
𝑣(𝑦, 0) = 0,

𝑂 (𝑡) = (𝜋)−1 sin (𝜌𝜋)
+∞∫

−∞

𝑣(𝑦, 𝑡)𝜂(𝑦)𝑑𝑦,
(16)

is given by
𝑂 = 𝐼1−𝜌,𝛽𝑤,

where

𝐼𝜌,𝛽𝑤(𝑡) = 1
Γ(𝜌)

𝑡∫
0

(𝑡 − 𝜎)𝜌−1𝑤(𝜎)𝑒−𝛽(𝑡−𝜎)d𝜎.

Lemma 4. [2] For all 𝜆 ∈ 𝐷𝛽 = {𝜆 ∈ C : ℜ𝑒𝜆 + 𝛽 > 0} ∪ {𝜆 ∈ C : ℑ𝑚𝜆 ≠ 0},

𝐴𝜆 =

+∞∫
−∞

𝜂2(𝑦)
𝜆 + 𝛽 + 𝑦2 𝑑𝑦 =

𝜋

sin (𝜌𝜋) (𝜆 + 𝛽)
𝜌−1.
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3. Well-posedness of the problem

This section is dedicated to presenting rigorous proof for the global existence
and uniqueness of the solution to the problem (1). Our methodology entails
the introduction of an additional unknown, facilitating the transformation of the
original problem (1) into an equivalent form denoted as (19), outlined below.
Through the systematic application of Faedo-Galerkin approximations and the
judicious utilization of energy estimates, we will establish the existence and
uniqueness of the solution to the transformed problem (19).

To establish the existence and uniqueness of a solution to problem (1), we
will follow the approach outlined in [23]. This approach involves introducing a
new variable, which allows us to rewrite the problem in a suitable form.

Let

𝑢(𝑥, 𝜉, 𝑡) = 𝑤𝑡 (𝑥, 𝑡 − 𝜏𝜉), 𝑥 ∈ (0, 1), 𝜉 ∈ (0, 1), 𝑡 > 0. (17)

Then, we have

𝜏𝑢𝑡 (𝑥, 𝜉, 𝑡) + 𝑢𝜉 (𝑥, 𝜉, 𝑡) = 0, 𝑥 ∈ (0, 1), 𝜉 ∈ (0, 1), 𝑡 > 0. (18)

Therefore, problem (1) is equivalent to:

𝑤𝑡𝑡 (𝑥, 𝑡) − Δ𝑤(𝑥, 𝑡) +
𝑡∫

0

𝑓 (𝑡 − 𝜎)Δ𝑤(𝑥, 𝜎)d𝜎 + 𝜇1𝑤𝑡 (𝑥, 𝑡)

+ 𝑎1

+∞∫
−∞

𝑣(𝑥, 𝑦, 𝑡)𝜂(𝑦)d𝑦 = 0,

𝜕𝑡𝑣(𝑥, 𝑦, 𝑡) + (𝑦2 + 𝛽)𝑣(𝑥, 𝑦, 𝑡) − 𝑢(𝑥, 1, 𝑡)𝜂(𝑦) = 0,
𝜏𝑢𝑡 (𝑥, 𝜉, 𝑡) + 𝑢𝜉 (𝑥, 𝜉, 𝑡) = 0,

(19)

where 𝑥 ∈ Ω, 𝑦 ∈ (−∞, +∞), 𝜉 ∈ (0, 1), 𝑡 > 0 and 𝑎1 = (𝜋)−1 𝑠𝑖𝑛(𝜌𝜋)𝜇2. The
above system is subject to the initial and boundary conditions

𝑤(𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,
𝑣(𝑥, 𝑦, 0) = 0, 𝑥 ∈ Ω, 𝑦 ∈ (−∞, +∞),
𝑢(𝑥, 0, 𝑡) = 𝑤𝑡 (𝑥, 𝑡), 𝑥 ∈ Ω, 𝑡 > 0,
𝑢(𝑥, 𝜉, 0) = 𝑔0(𝑥, 𝑡 − 𝜏), 𝑥 ∈ Ω, 𝜉 ∈ (0, 1), 𝑡 ∈ (0, 𝜏).

(20)

The existence result reads as follows:

Theorem 1. Assume that 𝛽𝜌−1𝜇2 ¬ 𝜇1. Then given 𝑤0 ∈ 𝐻1
0 (Ω), 𝑤1 ∈ 𝐿2(Ω),

𝑔0 ∈ 𝐿2(Ω × (0, 1)) and 𝑇 > 0, there exists a unique weak solution (𝑤, 𝑣, 𝑢) of
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the problem (19)-(20) on (0, 𝑇) such that

𝑤 ∈ 𝐶 ( [0, 𝑇], 𝐻1
0 (Ω)) ∩ 𝐶

1( [0, 𝑇], 𝐿2(Ω)),
𝑤𝑡 ∈ 𝐿2(0, 𝑇 ;𝐻1

0 (Ω)) ∩ 𝐿
2((0, 𝑇) ×Ω).

Proof. The proof of Theorem 1 can be divided into two steps: first, we construct
approximations, and second, we use specific energy estimates to pass to the limit.
Step 1: Approximate problem.

We construct approximations of the solution (𝑤, 𝑣, 𝑢) by the Faedo-Galerkin
method as follows. For every 𝑛 ­ 1, let 𝑍𝑛 = span{𝑧1, 𝑧2, ..., 𝑧𝑛} and
𝐾𝑛 = span{𝑘1, 𝑘2, ..., 𝑘𝑛} are the Hilbertian basis of the spaces 𝐻1

0 (Ω) and
𝐿2 (Ω × (−∞, +∞)) respectively.

Now, we define for 1 ¬ 𝑗 ¬ 𝑛, the sequence 𝜙 𝑗 (𝑥, 𝜉) as follows:

𝜙 𝑗 (𝑥, 0) = 𝑤 𝑗 (𝑥).
Then, we may extend 𝜙 𝑗 (𝑥, 0) by 𝜙 𝑗 (𝑥, 𝜉) over 𝐿2 (Ω × (0, 1)) and denote with
𝑈𝑛 = {𝜙1, 𝜙2, ..., 𝜙𝑘 }.

We construct approximate solutions (𝑤𝑛 (𝑥, 𝑡), 𝑣𝑛 (𝑥, 𝑦, 𝑡), 𝑢𝑛 (𝑥, 𝜉, 𝑡)) (𝑛 =

1, 2, 3, ...) in the form

𝑤𝑛 (𝑥, 𝑡) =
𝑛∑︁
𝑗=1
𝑤𝑛 𝑗 (𝑡)𝑧 𝑗 (𝑥), 𝑣𝑛 (𝑥, 𝑦, 𝑡) =

𝑛∑︁
𝑗=1
𝑣𝑛 𝑗 (𝑡)𝑘 𝑗 (𝑥, 𝑦),

and 𝑢𝑛 (𝑥, 𝜉, 𝑡) =
𝑛∑︁
𝑗=1
𝑢𝑛 𝑗 (𝑡)𝜙 𝑗 (𝑥, 𝜉),

(21)

where (𝑤𝑛 𝑗 , 𝑣𝑛 𝑗 , 𝑢𝑛 𝑗 ) (𝑛 = 1, 2, 3, ...) are determined by the following ordinary
differential equations:∫
Ω

𝑤𝑛𝑡𝑡 (𝑥, 𝑡)𝑧 𝑗 (𝑥)d𝑥 +
∫
Ω

∇𝑤𝑛 (𝑥, 𝑡)∇𝑧 𝑗 (𝑥)d𝑥 −
𝑡∫

0

𝑓 (𝑡 − 𝜎)
∫
Ω

∇𝑤𝑛 (𝑥, 𝜎)∇𝑧 𝑗 (𝑥)d𝑥d𝜎

+ 𝜇1

∫
Ω

𝑤𝑛𝑡 (𝑥, 𝑡)𝑧 𝑗 (𝑥)d𝑥 + 𝑎1

+∞∫
−∞

𝜂(𝑦)
∫
Ω

𝑣𝑛 (𝑥, 𝑦, 𝑡)𝑧 𝑗 (𝑥)d𝑥d𝑦 = 0, (22)

𝑤𝑛 (0) = 𝑤0𝑛 =

𝑛∑︁
𝑗=1

(𝑤0, 𝑧 𝑗 )𝑤 𝑗 → 𝑤0 in 𝐻1
0 (Ω) as 𝑛→ +∞,

𝑤𝑛𝑡 (0) = 𝑤1𝑛 =

𝑛∑︁
𝑗=1

(𝑤1, 𝑧 𝑗 )𝑤 𝑗 → 𝑤1 in 𝐿2(Ω) as 𝑛→ +∞,
(23)
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Ω

𝑣𝑛𝑡 (𝑥, 𝑦, 𝑡)𝑘 𝑗 (𝑥, 𝑦)d𝑥 +
∫
Ω

(
𝑦2 + 𝛽

)
𝑣𝑛 (𝑥, 𝑦, 𝑡)𝑘 𝑗 (𝑥, 𝑦)d𝑥

−
∫
Ω

𝜂(𝑦)𝑢𝑛 (𝑥, 1, 𝑡)𝑘 𝑗 (𝑥, 𝑦)d𝑥 = 0, (24)

𝑣𝑛 (𝑦, 0) = 𝑣0𝑛 =

𝑛∑︁
𝑗=1

(𝑣0, 𝑘 𝑗 )𝑘 𝑗 → 𝑣0 = 0

in 𝐿2(Ω × (−∞, +∞)) as 𝑛→ +∞, (25)

and ∫
Ω

𝜏𝑢𝑛𝑡 (𝑥, 𝜉, 𝑡)𝜙 𝑗 (𝑥, 𝜉)d𝑥 +
∫
Ω

𝑢𝑛𝜉 (𝑥, 𝜉, 𝑡)𝜙 𝑗 (𝑥, 𝜉)d𝑥 = 0, (26)

𝑢𝑛 (𝜉, 0) = 𝑢0𝑛 =

𝑛∑︁
𝑗=1

(𝑔0, 𝜙 𝑗 )𝜙 𝑗 → 𝑔0 in 𝐿2(Ω × (0, 1)) as 𝑛→ +∞. (27)

In accordance with the standard theory of ordinary differential equations, the
finite-dimensional problem (22)–(27) admits a solution (𝑞 𝑗𝑛 (𝑡), ℎ 𝑗𝑛 (𝑡)) 𝑗=1,𝑛, de-
fined on the interval [0, 𝑡𝑛). The a priori estimates obtained indicate that 𝑡𝑛 is
equal to 𝑇 .

The first estimate

Multiplying Eq. (22) by 𝑤′
𝑛, 𝑗

(𝑡), summing with respect to 𝑗 and using Lemma
1, we obtain:

1
2

d
d𝑡

©­«1 −
𝑡∫

0

𝑓 (𝜎)d𝜎ª®¬ ∥∇𝑤𝑛 (𝑡)∥2
2 + ∥𝑤𝑛𝑡 (𝑡)∥2

2 + ( 𝑓 ◦ ∇𝑤𝑛) (𝑡)


+ 𝜇1∥𝑤𝑛𝑡 (𝑡)∥2
2 +

1
2
𝑓 (𝑡)∥∇𝑤𝑛 (𝑡)∥2

2 −
1
2
( 𝑓 ′ ◦ ∇𝑤𝑛) (𝑡)

+ 𝑎1

∫
Ω

𝑤𝑛𝑡 (𝑥, 𝑡)
+∞∫

−∞

𝑣𝑛 (𝑥, 𝑦, 𝑡)𝜂(𝑦)d𝑦d𝑥 = 0. (28)
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The last term on the left-hand side of (28) can be estimated as follows

����� ∫
Ω

𝑤𝑛𝑡 (𝑥, 𝑡)
+∞∫

−∞

𝑣𝑛 (𝑥, 𝑦, 𝑡)𝜂(𝑦)𝑑𝑦d𝑥

�����
¬ ©­«

+∞∫
−∞

𝜂2(𝑦)
𝑦2 + 𝛽

𝑑𝑦
ª®¬ ∥𝑤𝑛𝑡 (𝑥, 𝑡)∥2

2 +
1
4

+∞∫
−∞

∫
Ω

(
𝑦2 + 𝛽

)
(𝑣𝑛 (𝑥, 𝑦, 𝑡))2d𝑥d𝑦. (29)

Inserting (29)in (28) and integrating over (0, 𝑡), we get

1
2

[(
1 −

𝑡∫
0

𝑓 (𝜎)d𝜎
)
∥∇𝑤𝑛 (𝑡)∥2

2 + ∥𝑤𝑛𝑡 (𝑡)∥2
2 + ( 𝑓 ◦ ∇𝑤𝑛) (𝑡)

]

− 𝑎1

4

𝑡∫
0

+∞∫
−∞

∫
Ω

(
𝑦2 + 𝛽

)
(𝑣𝑛 (𝑥, 𝑦, 𝜎))2d𝑥d𝑦d𝜎

+ 1
2

𝑡∫
0

𝑓 (𝜎)∥∇𝑤𝑛 (𝜎)∥2
2d𝜎 − 1

2

𝑡∫
0

( 𝑓 ′ ◦ ∇𝑤𝑛) (𝜎)d𝜎

+
(
𝜇1 − 𝛽𝜌−1𝜇2

) 𝑡∫
0

∥𝑤𝑛𝜎 (𝜎)∥2
2d𝜎 ¬

1
2
∥∇𝑤0𝑛∥2

2 +
1
2
∥𝑤1𝑛∥2

2. (30)

Multiplying Eq. (24) by 𝑎1𝑣 𝑗𝑛 (𝑡), summing with respect to j and integrating over
(0, 𝑡) × (−∞, +∞),we get:

𝑎1

2
∥𝑣𝑛∥2

𝐿2 (Ω×(−∞,+∞)) + 𝑎1

𝑡∫
0

+∞∫
−∞

∫
Ω

(
𝑦2 + 𝛽

)
(𝑣𝑛 (𝑥, 𝑦, 𝜎))2d𝑥d𝑦d𝜎

−𝑎1

𝑡∫
0

∫
Ω

𝑢𝑛 (𝑥, 1, 𝜎)
+∞∫

−∞

𝑣(𝑥, 𝑦, 𝜎)𝜂(𝑦)d𝑦d𝑥d𝜎 = 0. (31)
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The last term on the left-hand side of (31) can be estimated as follows

�����
𝑡∫

0

∫
Ω

𝑢𝑛 (𝑥, 1, 𝜎)
+∞∫

−∞

𝑣𝑛 (𝑥, 𝑦, 𝜎)𝜂(𝑦)d𝑦d𝑥d𝜎

�����
¬ ©­«

+∞∫
−∞

|𝜂(𝑦) |2
𝑦2 + 𝛽

d𝑦ª®¬
𝑡∫

0

∫
Ω

(𝑢𝑛 (𝑥, 1, 𝜎))2d𝑥d𝜎

+ 1
4

𝑡∫
0

+∞∫
−∞

∫
Ω

(
𝑦2 + 𝛽

)
(𝑣𝑛 (𝑥, 𝑦, 𝜎))2d𝑥d𝑦d𝜎. (32)

Consequently, equation (31) becomes

𝑎1

2
∥𝑣𝑛∥2

𝐿2 (Ω×(−∞,+∞)) − 𝛽
𝜌−1𝜇2

𝑡∫
0

∫
Ω

(𝑢𝑛 (𝑥, 1, 𝜎))2d𝑥d𝜎

+ 3𝑎1

4

𝑡∫
0

+∞∫
−∞

∫
Ω

(
𝑦2 + 𝛽

)
(𝑣𝑛 (𝑥, 𝑦, 𝜎))2d𝑥d𝑦d𝜎 ¬ 0. (33)

Multiplying Eq. (26) by 𝛼𝑢𝑛, 𝑗 (𝑡), summing with respect to 𝑗 , and integrating over
(0, 1) × (0, 𝑡), we have:

𝛼

2
∥𝑢𝑛∥2

𝐿2 (Ω×(0,1)) = −𝛼
𝜏

𝑡∫
0

1∫
0

∫
Ω

𝑢𝑛 (𝑥, 𝜉, 𝜎)𝑢𝑛𝜉 (𝑥, 𝜉, 𝜎)d𝑥d𝜉d𝜎 − 𝛼

2
∥𝑢𝑛0∥2

𝐿2 (Ω×(0,1))

= − 𝛼
2𝜏

𝑡∫
0

∫
Ω

[
(𝑢𝑛 (𝑥, 1, 𝜎))2 − (𝑢𝑛 (𝑥, 0, 𝜎))2

]
d𝑥d𝜎

− 𝛼

2
∥𝑢𝑛0∥2

𝐿2 (Ω×(0,1)) . (34)
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From (30), (33) and (34), we obtain

E𝑛 (𝑡) +
(
𝜇1 − 𝛽𝜌−1𝜇2 −

𝛼

2𝜏

) 𝑡∫
0

∥𝑤𝑛𝜎 (𝜎)∥2
2d𝜎

+
(
𝛼

2𝜏
− 𝛽𝜌−1𝜇2

) 𝑡∫
0

∫
Ω

(𝑢𝑛 (𝑥, 1, 𝜎))2d𝑥d𝜎

+ 1
2

𝑡∫
0

𝑓 (𝜎)∥∇𝑤𝑛 (𝜎)∥2
2d𝜎 − 1

2

𝑡∫
0

( 𝑓 ′ ◦ ∇𝑤𝑛) (𝜎)d𝜎

+ 𝑎1

2

𝑡∫
0

+∞∫
−∞

∫
Ω

(
𝑦2 + 𝛽

)
(𝑣𝑛 (𝑥, 𝑦, 𝜎))2d𝑥d𝑦d𝜎 ¬ E𝑛 (0), (35)

where,

E𝑛 (𝑡) = 1
2

[(
1 −

𝑡∫
0

𝑓 (𝜎)d𝜎
)
∥∇𝑤𝑛 (𝑡)∥2

2 + ∥𝑤𝑛𝑡 (𝑡)∥2
2 + ( 𝑓 ◦ ∇𝑤𝑛) (𝑡)

]
+ 𝑎1

2
∥𝑣𝑛∥2

𝐿2 (Ω×(−∞,+∞)) +
𝛼

2
∥𝑢𝑛∥2

𝐿2 (Ω×(0,1)) . (36)

At this point, we suppose that 𝛽𝜌−1𝜇2 < 𝜇1 and us choose then 𝛼 that satisfies
inequality (13). Then, we can find two positive constants 𝑐1 and 𝑐2 such that:

E𝑛 (𝑡) + 𝑐1

𝑡∫
0

∥𝑤𝑛𝜎 (𝜎)∥2
2d𝜎𝑐2

𝑡∫
0

∫
Ω

(𝑢𝑛 (𝑥, 1, 𝜎))2d𝑥d𝜎

+ 1
2

𝑡∫
0

𝑓 (𝜎)∥∇𝑤𝑛 (𝜎)∥2
2d𝜎 − 1

2

𝑡∫
0

( 𝑓 ′ ◦ ∇𝑤𝑛) (𝜎)d𝜎

+ 𝑎1

2

𝑡∫
0

+∞∫
−∞

∫
Ω

(
𝑦2 + 𝛽

)
(𝑣𝑛 (𝑥, 𝑦, 𝜎))2d𝑥d𝑦d𝜎 ¬ E𝑛 (0). (37)

Now, in both cases and since the sequences (𝑤0𝑛)𝑛∈N,(𝑤1𝑛)𝑛∈N and (𝑢0𝑛)𝑛∈N
converge, we can find a positive constant 𝐶 independent of n such that

E𝑛 (𝑡) ¬ 𝐶. (38)
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So, inequality (38) together with (36) give us, for all 𝑛 ∈ N, 𝑡𝑛 = 𝑇 ; we deduce

(𝑤𝑛)𝑛∈N is bounded in 𝐿∞
(
0, 𝑇 ;𝐻1

0 (Ω)
)
,

(𝑤𝑛𝑡 )𝑛∈N is bounded in 𝐿∞
(
0, 𝑇 ; 𝐿2(Ω)

)
,

(𝑣𝑛)𝑛∈N is bounded in 𝐿∞
(
0, 𝑇 ; 𝐿2 ((Ω) × (−∞, +∞))

)
,

(𝑢𝑛)𝑛∈N is bounded in 𝐿∞
(
0, 𝑇 ; 𝐿2 ((Ω) × (0, 1))

)
.

(39)

Consequently, we can deduce the following conclusions:

𝑤𝑛 ⇀ weak* 𝑤 in 𝐿∞
(
0, 𝑇 ;𝐻1

0 (Ω)
)
,

𝑤𝑛𝑡 ⇀ weak* 𝑤𝑡 in 𝐿∞
(
0, 𝑇 ; 𝐿2(Ω)

)
𝑣𝑛 ⇀ weak* 𝑣 in 𝐿∞

(
0, 𝑇 ; 𝐿2 ((Ω) × (−∞, +∞))

)
𝑢𝑛 ⇀ weak* 𝑢 in 𝐿∞

(
0, 𝑇 ; 𝐿2 ((Ω) × (0, 1))

)
.

From (39), we have (𝑤𝑛)𝑛∈N is bounded in 𝐿∞(0, 𝑇 ;𝐻1
0 (Ω)). Then, (𝑤𝑛)𝑛∈N is

bounded in 𝐿2(0, 𝑇 ;𝐻1
0 (Ω)). Since (𝑤𝑛𝑡 )𝑛∈N is bounded in 𝐿∞(0, 𝑇 ; 𝐿2(Ω)), then

(𝑤𝑛𝑡 )𝑛∈N is bounded in 𝐿2(0, 𝑇 ; 𝐿2(Ω)). Consequently, (𝑢𝑛)𝑛∈N is bounded in
𝐻1(0, 𝑇 ;𝐻1(Ω)). Since the embedding 𝐻1(0, 𝑇 ;𝐻1(Ω)) ↩→ 𝐿2(0, 𝑇 ; 𝐿2(Ω))
is compact, using Aubin-Lions theorem [20], we can extract a subsequence
(𝑤𝑛′)𝑛′∈N of (𝑤𝑛)𝑛∈N such that

𝑤𝑛
′ → 𝑤 strongly 𝐿2

(
0, 𝑇 ; 𝐿2(Ω)

)
,

therefore,
𝑤𝑛

′ → 𝜑 strongly and a.e on(0, 𝑇) × (Ω).
The proof now can be completed by arguing as in [20]. 2

The Faedo-Galerkin method demonstrates notable efficacy within specific
contextual domains, particularly in the treatment of non-linear problems. The
rationale behind its application in the present scenario may be rooted in the
congruence between the inherent attributes of the method and specific facets
of the problem or the sought-after solution. An elucidation of the merits and
discernments derived from the employment of the Faedo-Galerkin method would
be advantageous. Such an exposition should delineate how this methodological
approach significantly contributes to the comprehension and resolution of the
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linear problem under consideration. It is imperative to recognize that the selection
of a particular methodological framework transcends conventional adherence and
extends to the judicious identification of the most apt tool for the analytical task
at hand.

4. Asymptotic behavior

In this section, our aim is to ascertain the convergence of the solution to the
problem (19)-(20) towards the trivial steady state under the condition 𝛽𝜌−1𝜇2 <
𝜇1. To attain this objective, we will employ the energy method in conjunction
with the selection of an apt Lyapunov functional.

To define the energy functional for problem (19)–(20), we introduce a positive
constant 𝛼 that satisfies the inequality (14). The energy functional is then defined
as follows:

E(𝑡) = 1
2

©­«1 −
𝑡∫

0

𝑓 (𝜎)d𝜎ª®¬ ∥∇𝑤(𝑡)∥2
2 + ∥𝑤𝑡 (𝑡)∥2

2 + ( 𝑓 ◦ ∇𝑤) (𝑡)


+ 𝑎1

2
∥𝑣∥2

𝐿2 (Ω×(−∞,+∞)) +
𝛼

2
∥𝑢∥2

𝐿2 (Ω×(0,1)) . (40)

Our objective now is to establish that the energy E(𝑡) is a monotonically decreas-
ing function along the trajectories. Specifically, we have the following result:

Lemma 5. Suppose that (A0) and (A1) hold and let (𝑢, 𝜑, 𝑧) be a solution of the
problem (19)- (20). Then, the energy functional defined by (40) is a nonincreasing
function, that is there exists a positive constant 𝐶 such that

E′(𝑡) ¬ − 𝐶
(
∥𝑤𝑡 (𝑡)∥2

2 +
∫
Ω

(𝑢(𝑥, 1, 𝑡))2d𝑥

)
− 1

2
𝑓 (𝑡)∥∇𝑤(𝑡)∥2

2

+ 1
2
( 𝑓 ′ ◦ ∇𝑤) (𝑡) − 𝑎1

2

+∞∫
−∞

∫
Ω

(
𝑦2 + 𝛽

)
|𝑣(𝑥, 𝑦, 𝑡) |2d𝑥d𝑦 ¬ 0,

∀𝑡 ­ 0. (41)

Proof. Multiplying the first equation in (19) by 𝑤𝑡 , integrating over Ω and using
integration by parts, we get 1, we obtain:
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1
2
𝑑

𝑑𝑡

[
∥∇𝑤(𝑡)∥2

2 + ∥𝑤𝑡 (𝑡)∥2
2

]
+ 𝜇1∥𝑤𝑡 (𝑡)∥2

2

+ 𝑎1

∫
Ω

𝑤𝑡 (𝑥, 𝑡)
+∞∫

−∞

𝑣𝑛 (𝑥, 𝑦, 𝑡)𝜂(𝑦)d𝑦d𝑥

=

𝑡∫
0

𝑓 (𝑡 − 𝜎)
∫
Ω

∇𝑤(𝑡)∇𝑤(𝜎)d𝑥d𝜎. (42)

Now, using Lemma 1, the first term in the right-hand side of (42) can be rewritten
as follows

𝑡∫
0

𝑓 (𝑡−𝜎)
∫
Ω

∇𝑤(𝑡)∇𝑤(𝜎)d𝑥d𝜎 + 1
2
𝑓 (𝑡)∥∇𝑤(𝑡)∥2

2

=
1
2
𝑑

𝑑𝑡

[ 𝑡∫
0

𝑓 (𝜎)d𝜎∥∇𝑤(𝑡)∥2
2 − ( 𝑓 ◦ ∇𝑤) (𝑡)

]
− 1

2
( 𝑓 ′ ◦ ∇𝑤) (𝑡). (43)

Consequently, equality (42) becomes

1
2
𝑑

𝑑𝑡

[(
1 −

𝑡∫
0

𝑓 (𝜎)d𝜎
)
∥∇𝑤(𝑡)∥2

2 + ∥𝑤𝑡 (𝑡)∥2
2 + ( 𝑓 ◦ ∇𝑤) (𝑡)

]

= −𝜇1∥𝑤𝑡 (𝑡)∥2
2 − 𝑎1

∫
Ω

𝑤𝑡 (𝑥, 𝑡)
+∞∫

−∞

𝑣𝑛 (𝑥, 𝑦, 𝑡)𝜂(𝑦)d𝑦d𝑥

− 1
2
𝑓 (𝑡)∥∇𝑤(𝑡)∥2

2 +
1
2
( 𝑓 ′ ◦ ∇𝑤) (𝑡). (44)

We multiply the second equation in (19) by 𝑎1𝑣 and integrate the result over
Ω × (∞, +∞), to obtain:

𝑎1

2
𝑑

𝑑𝑡
∥𝑣∥2

𝐿2 (Ω×(−∞,+∞)) = −𝑎1

+∞∫
−∞

∫
Ω

(
𝑦2 + 𝛽

)
(𝑦𝑛 (𝑥, 𝑦, 𝑡))2d𝑥d𝑦

+ 𝑎1

∫
Ω

𝑢(𝑥, 1, 𝑡)
+∞∫

−∞

𝑣(𝑥, 𝑦, 𝑡)𝜂(𝑦)d𝑦d𝑥. (45)
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We multiply the second equation in (19) by 𝛼𝑢 and integrate the result over
Ω × (0, 1), to obtain:

𝛼

2
𝑑

𝑑𝑡

1∫
0

∫
Ω

(𝑢(𝑥, 𝜉, 𝑡))2d𝑥𝑑𝜉 = − 𝛼
2𝜏

1∫
0

∫
Ω

𝜕

𝜕𝜉

(
𝑢(𝑥, 𝜉, 𝑡)

)2
d𝑥d𝜉

= − 𝛼
2𝜏

∫
Ω

[
(𝑢(𝑥, 1, 𝑡))2 − (𝑢(𝑥, 0, 𝑡))2

]
d𝑥. (46)

From (44), (45), (46), using the equation (17) and Young inequality, we obtain
𝑑

𝑑𝑡
E(𝑡) = −

[
𝜇1 − 𝛽𝜌−1𝜇2 −

𝛼

2

]
∥𝑤𝑡 (𝑡)∥2

2

−
[ 𝛼
2𝜏

− 𝛽𝜌−1𝜇2

] ∫
Ω

(𝑢(𝑥, 1, 𝑡))2d𝑥

− 1
2
𝑓 (𝑡)∥∇𝑤(𝑡)∥2

2 +
1
2
( 𝑓 ′ ◦ ∇𝑤) (𝑡)

− 𝑎1

2

+∞∫
−∞

∫
Ω

(
𝑦2 + 𝛽

)
|𝑣(𝑥, 𝑦, 𝑡) |2d𝑥d𝑦. (47)

Then, using (14) our conclusion holds. 2

Our stability result reads as follows:

Theorem 2. Let𝑤 be the solution of (1). Assume that 𝛽𝜌−1𝜇2 < 𝜇1 and 𝑓 satisfies
(𝐴0) and (𝐴1). Then, there exist two positive constants 𝐾 and 𝜆 such that the
energy of problem (1) satisfies

E(𝑡) ¬ 𝐾𝑒
−𝜆

𝑡∫
0
𝜁 (𝑠)𝑑𝑠

, ∀𝑡 ­ 0. (48)

The proof of Theorem 2 will be carried out by utilizing several Lemmas. We
will introduce a functional L(𝑡), which is equivalent to the energy E(𝑡), and
satisfies the following condition:

𝑑

𝑑𝑡
L(𝑡) ¬ −𝛾L(𝑡), ∀𝑡 ­ 0,

where 𝛾 is a positive constant. In order to construct such functional, let us first
define the following

𝐼1(𝑡) =
𝑡∫

0

𝑤𝑤𝑡 d𝑥. (49)
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Then, we have the following estimate.

Lemma 6. Let (𝑤, 𝑣, 𝑢) be the solution of (19)-(20), then for any 𝛼1 > 0, we have

d
d𝑡
𝐼1(𝑡) ¬

(
1 + 𝜇1

4𝛼1

)
∥𝑤𝑡 ∥2

2 −
(
𝑙

2
− 𝛼1𝐵

2
1,Ω

(
𝜇1 + 𝛽𝜌−1𝜇2

))
∥∇𝑤∥2

2

+ 𝑎1

4𝛼1

∫
Ω

+∞∫
−∞

(
𝑦2 + 𝛽

)
|𝑣(𝑥, 𝑦, 𝑡) |2d𝑦d𝑥 + 1 − 𝑙

2𝑙
( 𝑓 ◦ ∇𝑤) (𝑡). (50)

Proof. Using the first equation in (19), a direct computation leads to the following
identity

𝐼′1(𝑡) = ∥𝑤𝑡 ∥2
2 − ∥∇𝑤∥2

2 +
∫
Ω

∇𝑤(𝑡)
𝑡∫

0

𝑓 (𝑡 − 𝜎)∇𝑤(𝜎)d𝑠d𝑥 (51)

− 𝜇1

∫
Ω

𝑤𝑡𝑤d𝑥 − 𝑎1

∫
Ω

𝑤

+∞∫
−∞

𝑣(𝑥, 𝑦, 𝑡)𝜂(𝑦)d𝑦d𝑥. (52)

Now, the third term in the right-hand side of (51) can be estimated as follows:∫
Ω

∇𝑤(𝑡)
𝑡∫

0

𝑓 (𝑡 − 𝜎)∇𝑤(𝜎)d𝜎d𝑥 ¬
1
2
∥∇𝑤(𝑡)∥2

2

+ 1
2

∫
Ω

©­«
𝑡∫

0

𝑓 (𝑡 − 𝜎)∇𝑤(𝜎)d𝜎ª®¬
2

d𝑥

¬
1
2
∥∇𝑤(𝑡)∥2

2 +
1
2

∫
Ω

©­«
𝑡∫

0

𝑓 (𝑡 − 𝜎) |∇𝑤(𝜎) − ∇𝑤(𝑡) | + |∇𝑤(𝑡) |d𝜎ª®¬
2

d𝑥.

Using the estimate (15) in Lemma 2, Young’s inequality and the fact that
𝑡∫

0

𝑓 (𝜎)d𝜎 ¬
∞∫

0

𝑓 (𝜎)d𝜎 = 1 − 𝑙, We get for any 𝜈 > 0, (see relation (20)

in [17]).
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∫
Ω

©­«
𝑡∫

0

𝑓 (𝑡 − 𝜎) |∇𝑤(𝜎) − ∇𝑤(𝑡) | + |∇𝑤(𝑡) |d𝜎ª®¬
2

d𝑥

¬ (1 + 𝜈)
∫
Ω

©­«
𝑡∫

0

𝑓 (𝑡 − 𝜎) |∇𝑤(𝑡) |d𝜎ª®¬
2

d𝑠

+
(
1 + 1

𝜈

) ∫
Ω

©­«
𝑡∫

0

𝑓 (𝑡 − 𝜎) |∇𝑤(𝜎) − ∇𝑤(𝑡) |d𝜎ª®¬
2

d𝑥

¬
(
1 + 1

𝜈

)
(1 − 𝑙) ( 𝑓 ◦ ∇𝑤) (𝑡) + (1 + 𝜈) (1 − 𝑙)2∥∇𝑤(𝑡)∥2

2 . (53)

Consequently, we arrive at

∫
Ω

∇𝑤(𝑡)
𝑡∫

0

𝑓 (𝑡 − 𝜎)∇𝑤(𝜎)d𝜎d𝑥 ¬
1
2

(
1 + 1

𝜈

)
(1 − 𝑙) ( 𝑓 ◦ ∇𝑤) (𝑡)

+ 1
2

(
1 + (1 + 𝜈) (1 − 𝑙)2

)
∥∇𝑤(𝑡)∥2

2 . (54)

Next, Young inequality and Poincaré’s inequality imply that, for any 𝛿1 > 0∫
Ω

𝑤𝑡𝑤d𝑥 ¬ 𝛿1𝐵
2
1,Ω

∫
Ω

|∇𝑤(𝑡) |2d𝑥 + 1
4𝛼1

∥𝑤𝑡 (𝑡)∥2
2, (55)

and ∫
Ω

𝑤

+∞∫
−∞

𝑣(𝑥, 𝑦, 𝑡)𝜂(𝑦)d𝑦d𝑥 ¬ 𝛼1𝐵
2
1,Ω

©­«
+∞∫

−∞

𝜂2(𝑦)
𝑦2 + 𝛽

d𝑦ª®¬ ∥∇𝑤(𝑡)∥2
2

+ 1
4𝛼1

∫
Ω

+∞∫
−∞

(𝑦2 + 𝛽) |𝑣(𝑥, 𝑦, 𝑡) |2d𝑦d𝑥. (56)

By inserting the estimates (54), (55) and (56) into (51) and choosing 𝜈 = 𝑙/(1− 𝑙),
then (50) holds. 2
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For the second lemma, we introduce the functional

𝐼2(𝑡) :=
𝑎1

2
∥𝑣∥2

𝐿2 (Ω×(−∞,+∞)) +
𝑎1

2

∫
Ω

+∞∫
−∞

(𝑦2 + 𝛽)


𝑡∫
0

𝑦(𝑥, 𝑦, 𝜎)d𝜎

− 𝜏𝜂(𝑦)
𝑦2 + 𝛽

1∫
0

𝑔0(𝑥, 𝑡 − 𝜏)d𝜉 +
𝜂(𝑦)𝑤0

𝑦2 + 𝛽


2

d𝑦d𝑥. (57)

It satisfies an estimate stated in the

Lemma 7. Let (𝑤, 𝑣, 𝑢) be a solution of (19)and (20), then for any 𝛼1 > 0, we
have

𝐼′2(𝑡) ¬
(
−𝑎1 +

3𝑎1

4𝛼1

)∫
Ω

+∞∫
−∞

(𝑦2 + 𝛽)𝑣2(𝑥, 𝑦, 𝑡)d𝑦d𝑥

+ 𝛽𝜌−1𝜇2𝛼1

∫
Ω

|𝑢(𝑥, 1, 𝑡) |2d𝑥 − 𝑎1∥𝑣∥2
𝐿2 (Ω×(−∞,+∞))

+ 𝛽𝜌−1𝜇2𝛼1𝐵
2
1,Ω∥∇𝑤∥

2
2 + 𝛽

𝜌−1𝜇2𝜏
2𝛼1

∫
Ω

1∫
0

|𝑢(𝑥, 𝜉, 𝑡) |2d𝜉d𝑥. (58)

Proof. By taking the time derivative of (57), we get

𝐼′2(𝑡) = −𝑎1

∫
Ω

+∞∫
−∞

(𝑦2 + 𝛽)𝑣2(𝑥, 𝑦, 𝑡)d𝑦d𝑥

+ 𝑎1

∫
Ω

𝑢(𝑥, 1, 𝑡)
+∞∫

−∞

𝜂(𝑦)𝑣(𝑥, 𝑦, 𝑡)d𝑦d𝑥

+ 𝑎1

∫
Ω

+∞∫
−∞

(𝑦2 + 𝛽)𝑣(𝑥, 𝑦, 𝑡)


𝑡∫
0

𝑣(𝑥, 𝑦, 𝜎)d𝜎

− 𝜏𝜂(𝑦)
𝑦2 + 𝛽

1∫
0

𝑔0(𝑥, 𝑡 − 𝜏)d𝜉 +
𝜂(𝑦)𝑤0

𝑦2 + 𝛽


 d𝑦d𝑥.
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Using the second equation in (19), we have

𝑡∫
0

𝑣(𝑥, 𝑦, 𝜎)d𝜎 = −𝑣(𝑥, 𝑦, 𝑡)
𝑦2 + 𝛽

+ 𝜂(𝑦)
𝑦2 + 𝛽

𝑡∫
0

𝑢(𝑥, 1, 𝜎)d𝜎. (59)

Using the third equation in (19), the last term in the left-hand side of (59) can be
handled as

𝑡∫
0

𝑢(𝑥, 1, 𝜎)d𝜎 = −𝜏
1∫

0

𝑢(𝑥, 𝜉, 𝑡)d𝜉 + 𝜏
1∫

0

𝑔0(𝑥, 𝑡 − 𝜏)d𝜉 + 𝑤(𝑥, 𝑡) − 𝑤0 . (60)

Consequently, using Lemma 4, we arrive at

𝐼′2(𝑡) = − 𝑎1

∫
Ω

+∞∫
−∞

(𝑦2 + 𝛽)𝑣2(𝑥, 𝑦, 𝑡)d𝑦d𝑥 − 𝑎1∥𝑣∥2
𝐿2 (Ω×(−∞,+∞))

+ 𝑎1

∫
Ω

𝑢(𝑥, 1, 𝑡)
+∞∫

−∞

𝜂(𝑦)𝑣(𝑥, 𝑦, 𝑡)d𝑦d𝑥

− 𝑎1𝜏

∫
Ω

+∞∫
−∞

𝜂(𝑦)𝑣(𝑥, 𝑦, 𝑡)
1∫

0

𝑢(𝑥, 𝜉, 𝑡)d𝜉d𝑦d𝑥

+ 𝑎1

∫
Ω

+∞∫
−∞

𝜂(𝑦)𝑣(𝑥, 𝑦, 𝑡)𝑤(𝑥, 𝑡)d𝑦d𝑥. (61)

Using Young and Poicarè inequalities, we obtain (61).

𝑎1

∫
Ω

𝑢(𝑥, 1, 𝑡)
+∞∫

−∞

𝜂(𝑦)𝑣(𝑥, 𝑦, 𝑡)d𝑦d𝑥 ¬ 𝛼1𝛽
𝜌−1𝜇2

∫
Ω

|𝑢(𝑥, 1, 𝑡) |2d𝑥

+ 𝑎1

4𝛼1

∫
Ω

+∞∫
−∞

(𝑦2 + 𝛽)𝑣2(𝑥, 𝑦, 𝑡)d𝑦d𝑥. (62)
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𝑎1𝜏

∫
Ω

+∞∫
−∞

𝜂(𝑦)𝑣(𝑥, 𝑦, 𝑡)
1∫

0

𝑢(𝑥, 𝜉, 𝑡)d𝜉d𝑦d𝑥 ¬ 𝜏2𝛼1𝛽
𝜌−1𝜇2

∫
Ω

1∫
0

|𝑢(𝑥, 𝜉, 𝑡) |2d𝜉d𝑥

+ 𝑎1

4𝛼1

∫
Ω

+∞∫
−∞

(𝑦2 + 𝛽)𝑣2(𝑥, 𝑦, 𝑡)d𝑦d𝑥. (63)

𝑎1

∫
Ω

+∞∫
−∞

𝜂(𝑦)𝑣(𝑥, 𝑦, 𝑡)𝑤(𝑥, 𝑡)d𝑦d𝑥 ¬ 𝛼1𝐵
2
1,Ω𝛽

𝜌−1𝜇2∥∇𝑢(𝑡)∥2
2

+ 𝑎1

4𝛼1

∫
Ω

+∞∫
−∞

(𝑦2 + 𝛽)𝑣2(𝑥, 𝑦, 𝑡)d𝑦d𝑥. (64)

By inserting the estimates (62), (63)and (64)into (61) , we have

𝐼′2(𝑡) ¬
(
−𝑎1 +

3𝑎1

4𝛼1

) ∫
Ω

+∞∫
−∞

(𝑦2 + 𝛽)𝑣2(𝑥, 𝑦, 𝑡)d𝑦d𝑥

+ 𝛽𝜌−1𝜇2𝛼1

∫
Ω

|𝑢(𝑥, 1, 𝑡) |2d𝑥 − 𝑎1∥𝑣∥2
𝐿2 (Ω×(−∞,+∞))

+ 𝛽𝜌−1𝜇2𝛼1𝐵
2
1,Ω∥∇𝑢∥

2
2 + 𝛽

𝜌−1𝜇2𝜏
2𝛼1

∫
Ω

1∫
0

|𝑢(𝑥, 𝜉, 𝑡) |2d𝜉d𝑥. (65)

For the third lemma, we introduce the functional

𝐼3(𝑡) :=
∫
Ω

1∫
0

𝑒−2𝜏𝜉𝑢2(𝑥, 𝜉, 𝑡)d𝜉d𝑥. (66)

It satisfies an estimate stated in the below Lemma:

Lemma 8. Let (𝑤, 𝑣, 𝑢) be a solution of (19)-(20). Then we have

𝑑𝐼3(𝑡)
𝑑𝑡

¬ −𝜉𝐼3(𝑡) −
𝛾1

2𝜏

∫
Ω

|𝑢(𝑥, 1, 𝑡) |2d𝑥 + 1
2𝜏

∫
Ω

|𝑢(𝑥, 0, 𝑡) |2d𝑥. (67)
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Proof. Differentiating (66), we obtain

𝑑𝐼3

𝑑𝑡
(𝑡) = −1

𝜏

∫
Ω

1∫
0

𝑒−2𝜏𝜉𝑢𝑢𝜉 (𝑥, 𝜉, 𝑡)d𝜉d𝑥

= −
∫
Ω

1∫
0

𝜉𝑒−2𝜏𝜉 |𝑢(𝑥, 𝜉, 𝑡) |2d𝜉d𝑥 − 1
2𝜏

∫
Ω

1∫
0

𝜕

𝜕𝜉

(
𝑒−2𝜏𝜉 |𝑢(𝑥, 𝜉, 𝑡) |2

)
d𝜉d𝑥.

Then, there exists a positive constant 𝛼2 such that (67) holds.
For the last lemma, we introduce the functional

𝐼4(𝑡) := −
∫
Ω

𝑤𝑡

𝑡∫
0

𝑓 (𝑡 − 𝜎) (𝑤(𝑡) − 𝑤(𝜎)) d𝜎d𝑥. (68)

Next, we prove the following Lemma for further analysis:

Lemma 9. Let (𝑤, 𝑣, 𝑢) be the solution of (19)-(20), then, we have

d
d𝑡
𝐼4(𝑡) ¬ ©­«𝛼3(1 + 𝜇1) −

𝑡∫
0

𝑓 (𝑠)d𝑠ª®¬ ∥𝑤𝑡 ∥2
2 +

(
𝛼2 + 2𝛼2(1 − 𝑙)2

)
∥∇𝑢∥2

2

+ 𝛼4𝑎1

∫
Ω

+∞∫
−∞

(𝑦2 + 𝛽) |𝑣(𝑥, 𝑦, 𝑡) |2d𝑦d𝑥 −
𝐵2

1,Ω 𝑓 (0)
4𝛼3

( 𝑓 ′ ◦ ∇𝑤) (𝑡)

+
(
𝛽𝜌−1𝜇2(1 − 𝑙)𝐵2

1,Ω

4𝛼4
+
𝐵2

1,Ω𝜇1

4𝛼3
+ 1 − 𝑙

2𝛼2
+ 2𝛼2(1 − 𝑙)

)
( 𝑓 ◦ ∇𝑤) (𝑡), (69)

where 𝛼𝑖, (𝑖 = 2, 3, 4) are arbitrary positive constants.

Proof. By derivative of 𝜓, we obtain

𝐼′4(𝑡) = −
∫
Ω

𝑤𝑡𝑡 (𝑡)
𝑡∫

0

𝑓 (𝑡 − 𝜎) (𝑤(𝑡) − 𝑤(𝜎)) d𝜎d𝑥

−
∫
Ω

𝑤𝑡 (𝑡)
𝑡∫

0

𝑓 ′(𝑡 − 𝜎) (𝑤(𝑡) − 𝑤(𝜎)) d𝑠d𝑥

− ©­«
𝑡∫

0

𝑓 (𝜎)d𝜎ª®¬ ∥𝑤𝑡 (𝑡)∥2
2. (70)
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Using problem (19) and using integration by parts over Ω, we get

𝐼′4(𝑡) =
∫
Ω

∇𝑤(𝑡)
𝑡∫

0

𝑓 (𝑡 − 𝜎) (∇𝑤(𝑡) − ∇𝑤(𝜎)) d𝜎d𝑥

−
∫
Ω


𝑡∫

0

𝑓 (𝑡 − 𝜎)∇𝑤(𝜎)d𝑠



𝑡∫

0

𝑓 (𝑡 − 𝜎) (∇𝑤(𝑡) − ∇𝑤(𝜎)) d𝜎
 d𝑥

−
∫
Ω

𝑤𝑡 (𝑡)
𝑡∫

0

𝑓 ′(𝑡 − 𝜎) (𝑤(𝑡) − 𝑤(𝜎)) d𝜎d𝑥 − ©­«
𝑡∫

0

𝑓 (𝜎)d𝜎ª®¬ ∥𝑤𝑡 (𝑡)∥2
2

+ 𝑎1

∫
Ω


+∞∫

−∞

𝜇(𝑦)𝑣(𝑥, 𝑦, 𝑡)d𝑦



𝑡∫

0

𝑓 (𝑡 − 𝜎) (𝑤(𝑡) − 𝑤(𝜎)) d𝜎
 d𝑥

+ 𝜇1

∫
Ω

𝑤𝑡 (𝑡)
𝑡∫

0

𝑓 (𝑡 − 𝜎) (𝑤(𝑡) − 𝑤(𝜎)) d𝜎d𝑥. (71)

Similarly as in (69), we estimate the right-hand side terms of (71) as follows:
First, using Young inequality and (15), we obtain for any 𝛼2 > 0,

������
∫
Ω

∇𝑤(𝑡)
𝑡∫

0

𝑓 (𝑡 − 𝑠) (∇𝑤(𝑡) − ∇𝑤(𝑠)) d𝑠d𝑥

������
¬ 𝛼2∥∇𝑤(𝑡)∥2

2 +
(1 − 𝑙)

4𝛼2
( 𝑓 ◦ ∇𝑤) (𝑡). (72)

Also, the second term can be estimated as follows (see [14])

������
∫
Ω


𝑡∫

0

𝑓 (𝑡 − 𝑠)∇𝑤(𝑠)d𝑠



𝑡∫

0

𝑓 (𝑡 − 𝑠) (∇𝑤(𝑡) − ∇𝑤(𝑠)) d𝑠
 d𝑥

������
¬ 2𝛼2(1 − 𝑙)2∥∇𝑤(𝑡)∥2

2 + (2𝛼2 +
1

4𝛼2
) (1 − 𝑙) ( 𝑓 ◦ ∇𝑤) (𝑡). (73)
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Concerning the third term, we have for 𝛼3 > 0,������
∫
Ω

𝑤𝑡 (𝑡)
𝑡∫

0

𝑓 ′(𝑡 − 𝑠) (𝑤(𝑡) − 𝑤(𝑠)) d𝑠d𝑥

������
¬ 𝛼3∥𝑤𝑡 (𝑡)∥2

2 −
𝐵2

1,Ω 𝑓 (0)
4𝛼3

( 𝑓 ′ ◦ ∇𝑤) (𝑡). (74)

The fifth term can be estimated as follows:∫
Ω


+∞∫

−∞

𝜇(𝑦)𝑣(𝑥, 𝑦, 𝑡)d𝑦



𝑡∫

0

𝑓 (𝑡 − 𝑠) (𝑤(𝑡) − 𝑤(𝑠)) d𝑠
 d𝑥

¬
1

4𝛼4

∫
Ω


+∞∫

−∞

𝜇2(𝑦)
𝑦2 + 𝛽

d𝑦



𝑡∫

0

𝑓 (𝑡 − 𝑠) (𝑤(𝑡) − 𝑤(𝑠)) d𝑠


2

d𝑥

+ 𝛼4

∫
Ω

+∞∫
−∞

(𝑦2 + 𝛽) |𝑣(𝑥, 𝑦, 𝑡) |2d𝑦d𝑥

¬
𝐴0𝐵

2
1,Ω(1 − 𝑙)
4𝛼4

( 𝑓 ◦ ∇𝑤) (𝑡)

+ 𝛼4

∫
Ω

+∞∫
−∞

(𝑦2 + 𝛽) |𝑣(𝑥, 𝑦, 𝑡) |2d𝑦d𝑥, 𝛼4 > 0. (75)

For the sixth term, we have������
∫
Ω

𝑤𝑡 (𝑡)
𝑡∫

0

𝑓 ′(𝑡 − 𝑠) (∇𝑤(𝑡) − ∇𝑤(𝑠)) d𝑠d𝑥

������
¬ 𝛼3∥𝑤𝑡 (𝑡)∥2

2 +
𝐵2

1,Ω

4𝛼3
( 𝑓 ◦ ∇𝑤) (𝑡). (76)

Inserting the above estimates (72)–(76) into (71), the assertion of the Lemma 9
is established. 2

Proof. of Theorem 2, we define the following Lyapunov function L as:

L(𝑡) = 𝑑1𝐸 (𝑡) + 𝑑2𝐼1(𝑡) + 𝑑2𝐼2(𝑡) + 𝑑3𝐼3(𝑡) + 𝐼4(𝑡), (77)

where 𝑑𝑖, (𝑖 = 1, 2, 3) are positive real numbers which will be chosen later.
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Since the function 𝑓 is positive and continuous and 𝑓 (0) > 0, then for all
𝑡0 > 0, we get

𝑡∫
0

𝑓 (𝑠)d𝑠 ­
𝑡∫

𝑡0

𝑓 (𝑠)d𝑠 = 𝑓0 > 0, ∀𝑡 ­ 𝑡0 . (78)

Now, using (50), (58), (67) and (69), we get, for all 𝑡 ­ 𝑡0,

L′(𝑡) ¬
(
−𝐶𝑑1 + 𝑑2

(
1 + 𝜇

4𝛼1

)
+ (𝛼3(1 + 𝜇) − 𝑓0) +

𝑑3

2𝜏

)
∥𝑤𝑡 ∥2

2

+
(
𝛼2

(
1 + 2(1 − 𝑙)2

)
− 𝑑2

(
𝑙

2
− 𝛼1𝐵

2
1,Ω(𝜇1 + 2𝛽𝜌−1𝜇2)

))
∥∇𝑤∥2

2

+ 𝑎1

(
−𝑑1

2
+ 𝛼4

) ∫
Ω

+∞∫
−∞

(𝜉2 + 𝛽) |𝑣(𝑥, 𝑦, 𝑡) |2d𝑦d𝑥 − 𝑑2𝑎1∥𝑣∥2
𝐿2 (Ω×(−∞,+∞))

+
(
𝑑1

2
−
𝐵2

1,Ω 𝑓 (0)
4𝛼3

)
( 𝑓 ′ ◦ ∇𝑤) (𝑡)

+
(
−𝐶𝑑1 + 𝑑2𝛽

𝜌−1𝜇2𝛼1 −
𝑑3𝛾1

2𝜏

) ∫
Ω

𝑢2(𝑥, 1, 𝑡)d𝑥

+
(
(1 − 𝑙)𝑑2

2𝑙
+

(
𝐵2

1,Ω𝜇1

4𝛼3
+
𝛽𝜌−1𝜇2(1 − 𝑙)𝐵2

1,Ω

4𝛼4
(79)

+ 1 − 𝑙
2𝛼2

+ 2𝛼2(1 − 𝑙)
))
( 𝑓 ◦ ∇𝑤) (𝑡)

+
(
−𝑑3𝜉𝑒

−2𝜏 + 𝑑2𝛽
𝜌−1𝜇2𝜏

2𝛼1

) ∫
Ω

1∫
0

𝑢2(𝑥, 𝜉, 𝑡)d𝜉d𝑥. (80)

At this point, we choose 𝛼1 small that

𝛼1𝐵
2
1,Ω(𝜇1 + 2𝛽𝜌−1𝜇2) ¬

𝑙

4
.

Now, we pick 𝑑2 large that

𝑑2

(
𝑙

2
− 𝛼1𝐵

2
1,Ω(𝜇1 + 2𝛽𝜌−1𝜇2)

)
­ 2𝛼2

(
1 + 2(1 − 𝑙)2
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After that, we pick 𝑑3 large that

𝑑3 ­ max
{
𝜏𝑑2𝛽

𝜌−1𝜇2𝛼1

𝛾1
,
𝑑2𝛽

𝜌−1𝜇2𝜏
2𝛼1

2𝜉𝑒−2𝜏

}
.

Then, we select 𝛼3 large enough that

𝛼3(1 + 𝜇) > 2 𝑓0 .

Finally, we choose 𝑑1 large enough such that

𝑑1

2
­ max

{
𝑑2

(
1 + 𝜇

4𝛼1

)
+ (𝛼3(1 + 𝜇) − 𝑓0) + 𝑑3

2𝜏

𝐶
,
𝑑2𝛽

𝜌−1𝜇2𝛼1 − 𝑑3𝛾1
2𝜏

𝐶
, .

2𝛼4,
𝐵2

1,Ω 𝑓 (0)
8𝛼3

}
.

Consequently, from the above, we deduce that there existe tow positive constants
m and 𝑐2 such that (79) becomes

L′(𝑡) ¬ −𝑚E(𝑡) + 𝑐2 ( 𝑓 ◦ ∇𝑤) (𝑡), for all 𝑡 ­ 𝑡0. (81)

Multiplying (81), by 𝜁 (𝑡), we arrive at

𝜁 (𝑡)L′(𝑡) ¬ −𝑚𝜁 (𝑡)E(𝑡) + 𝑐2𝜁 (𝑡) ( 𝑓 ◦ ∇𝑤) (𝑡), for all 𝑡 ­ 𝑡0 .

Recalling (A1) and using (5), we get

𝜁 (𝑡)L′(𝑡) ¬ −𝑚𝜁 (𝑡)E(𝑡) − 𝑐2 ( 𝑓 ′ ◦ ∇𝑤) (𝑡)
¬ −𝑚𝜁 (𝑡)E(𝑡) − 2𝑐2E′(𝑡), for all 𝑡 ­ 𝑡0.

That is

(𝜁 (𝑡)L(𝑡) + 2𝑐2E(𝑡))′ − 𝜁 ′(𝑡)L(𝑡) ¬ −𝑚𝜁 (𝑡)E(𝑡), for all 𝑡 ­ 𝑡0 .

Using the fact that 𝜁 ′(𝑡) ¬ 0 and letting

𝐺 (𝑡) = 𝜁 (𝑡)L(𝑡) + 2𝑐2E(𝑡) ∼ E(𝑡),

we have
𝐺′(𝑡) ¬ −𝑚𝜁 (𝑡)E(𝑡) ¬ −𝑤𝜁 (𝑡)𝐺 (𝑡), ∀𝑡 ­ 𝑡0. (82)

A simple integration of (82) over (𝑡0, 𝑡) leads to

𝐺 (𝑡) ¬ 𝐺 (𝑡0)𝑒
−𝑤

𝑡∫
𝑡0
𝜁 (𝑠)d 𝑠

, 𝑡 ­ 𝑡0.
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Using G(t) and E(𝑡) are equivalent, we obtein

E(𝑡) ¬ 𝑘𝑒
−𝑤

𝑡∫
𝑡0
𝜁 (𝑠)d 𝑠

, 𝑡 ­ 𝑡0. (83)

The final step in proving Theorem 2 is to establish the equivalence between
L(𝑡) and E(𝑡). To accomplish this, we present the following lemma.

Lemma 10. For any (𝑤, 𝑣, 𝑢) solution of problem (19), the following inequality
holds:

𝜖1E(𝑡) ¬ L(𝑡) ¬ 𝜖2E(𝑡), (84)

where 𝜖1 and 𝜖2 are positive constants.

Proof. We consider the functional

𝐻 (𝑡) = 𝑑2𝐼1(𝑡) + 𝑑2𝐼2(𝑡) + 𝑑2𝐼3(𝑡) + 𝐼4(𝑡) (85)

and show that
|𝐻 (𝑡) | ¬ 𝐶E(𝑡), 𝐶 > 0. (86)

Using Young inequality, Poincaré’s inequality and Lemma 2, we obtain

|𝐼4(𝑡) | ¬
1
2
∥𝑤𝑡 (𝑡)∥2 + 1

2

∫
Ω

©­«
𝑡∫

0

𝑓 (𝑡 − 𝜎) (𝑤(𝑡) − 𝑤(𝜎))d𝜎ª®¬
2

d𝑥

¬
1
2
∥𝑤𝑡 (𝑡)∥2 + 1

2
(1 − 𝑙)𝐵2

1,Ω ( 𝑓 ◦ ∇𝑤) (𝑡). (87)

Similarly, we have

|𝑑2𝐼1 + 𝑑3𝐼3 | ¬
𝑑2

2
∥𝑤𝑡 (𝑡)∥2 +

𝑑2𝐵
2
1,Ω

2
∥∇𝑤(𝑡)∥2

2

+ 𝑑3𝑐̃

∫
Ω

1∫
0

|𝑢(𝑥, 𝜉, 𝑡) |2d𝜉d𝑥. (88)

Finally, from (59) and (60), we get
𝑡∫

0

(𝑦2 + 𝛽)𝑣(𝑥, 𝑦, 𝜎)d𝜎 = 𝑤(𝑥, 𝑡)𝜂(𝑦) − 𝑣(𝑥, 𝑦, 𝑡) − 𝑤0(𝑥)𝜂(𝑦)

− 𝜂(𝑦)𝜏
1∫

0

𝑢(𝑥, 𝜉, 𝑡)d𝜉 + 𝜂(𝑦)𝜏
1∫

0

𝑔0(𝑥, 𝑡 − 𝜏)d𝜉. (89)
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Thus

(
𝑦2 + 𝛽

) ©­«
𝑡∫

0

𝑣(𝑥, 𝑦, 𝜎)d𝜎 − 𝜂(𝑦)𝜏
𝑦2 + 𝛽

1∫
0

𝑔0(𝑥, 𝑡 − 𝜏)d𝜉 +
𝑤0(𝑥)𝜂(𝑦)
𝑦2 + 𝛽

ª®¬
2

¬
|𝑣(𝑥, 𝑦, 𝑡) |2
𝑦2 + 𝛽

+ 𝐴0 |𝑤(𝑥, 𝑡) |2 + 𝐴0𝜏
2 ©­«

1∫
0

𝑢(𝑥, 𝜉, 𝑡)d𝜉ª®¬
2

+ 2
|𝑣(𝑥, 𝑦, 𝑡)𝑤(𝑥, 𝑡)𝜂(𝑦) |

𝑦2 + 𝛽
+ 2𝐴0𝜏

������𝑤(𝑥, 𝑡)
1∫

0

𝑢(𝑥, 𝜉, 𝑡)d𝜉

������
+ 2

�����𝜂(𝑦)𝜏𝑣(𝑥, 𝑦, 𝑡) 1∫
0
𝑢(𝑥, 𝜉, 𝑡)d𝜉

�����
𝑦2 + 𝛽

. (90)

Integrating over Ω × (−∞, +∞), we obtain the following expression:

2
𝑎1

|𝐼2(𝑡) | ¬ ∥𝑣∥2
𝐿2 (Ω×(−∞,+∞)) + 𝐴0∥𝑤(𝑥, 𝑡)∥2

2

+
∫
Ω

+∞∫
−∞

|𝑣(𝑥, 𝑦, 𝑡) |2
𝑦2 + 𝛽

d𝑦d𝑥 + 𝐴0𝜏
2
∫
Ω

©­«
1∫

0

𝑢(𝑥, 𝜉, 𝑡)d𝜉ª®¬
2

d𝑥

+ 2

������
∫
Ω

+∞∫
−∞

𝑣(𝑥, 𝑦, 𝑡)𝑤(𝑥, 𝑡)𝜂(𝑦)
𝑦2 + 𝛽

d𝑦d𝑥

������
+ 2𝐴0𝜏

������
∫
Ω

𝑤(𝑥, 𝑡)
1∫

0

𝑢(𝑥, 𝜉, 𝑡)d𝜉d𝑥

������
+ 2𝜏

����������
∫
Ω

+∞∫
−∞

𝜂(𝑦)𝑣(𝑥, 𝑦, 𝑡)
1∫

0
𝑢(𝑥, 𝜉, 𝑡)d𝜉

𝑦2 + 𝛽
d𝑦d𝑥

���������� . (91)
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Now, we will estimate the right hand side of (91). First using Holder’s inequality,
we have

1∫
0

𝑢(𝑥, 𝜉, 𝑡)d𝜉 ¬ ©­«
1∫

0

|𝑢(𝑥, 𝜉, 𝑡) |2d𝜉ª®¬
1
2

. (92)

Applying Young’s inequality and using the fact 1
𝑦2+𝛽 ¬

1
𝛽
, we get:������

∫
Ω

+∞∫
−∞

𝑣(𝑥, 𝑦, 𝑡)𝑤(𝑥, 𝑡)𝜇(𝑦)
𝑦2 + 𝛽

d𝑦d𝑥

������ ¬ 1
2𝛽

∥𝑣∥2
𝐿2 (Ω×(−∞,+∞)) +

𝐴0

2
∥𝑤∥2

2 , (93)

𝜏

������
∫
Ω

𝑤(𝑥, 𝑡)
1∫

0

𝑢(𝑥, 𝜉, 𝑡)d𝜉d𝑥

������ ¬ 𝜏2

2

∫
Ω

1∫
0

|𝑢(𝑥, 𝜉, 𝑡) |2d𝜉d𝑥 + 1
2
∥𝑤∥2

2 , (94)

and

𝜏

����������
∫
Ω

+∞∫
−∞

𝜂(𝑦)𝑣(𝑥, 𝑦, 𝑡)
1∫

0
𝑢(𝑥, 𝜉, 𝑡)d𝜉

𝑦2 + 𝛽
d𝑦d𝑥

���������� ¬
𝜏2𝐴0

2

∫
Ω

1∫
0

|𝑢(𝑥, 𝜉, 𝑡) |2d𝜉d𝑥

+ 1
2𝛽

∥𝑣∥2
𝐿2 (Ω×(−∞,+∞)) . (95)

By inserting the estimates (92), (93), (94) and (95) into (91), we get

|𝐼2(𝑡) | ¬
𝑎1

2

(
1 + 3

𝛽

)
∥𝑣∥2

𝐿2 (Ω×(−∞,+∞)) +
3𝛽𝜌−1𝐵2

1,Ω

2
∥∇𝑤(𝑡)∥2

2

+ 3𝛽𝜌−1

2

∫
Ω

1∫
0

|𝑢(𝑥, 𝜉, 𝑡) |2d𝜉d𝑥. (96)

By utilizing the inequality 1 −
𝑡∫

0

𝑓 (𝜎)d𝜎 ­ 𝑙, along with equations (40), (87),

(88), and (96), we can derive equation (86) with the existence of a positive constant
𝐶. It becomes evident that, based on (77), (86), and by selecting a sufficiently
large value for 𝑑1, our desired result is proven. 2
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5. Conclusion

The exploration of the asymptotic stability of a viscoelastic wave equation
with a delay is a commendable endeavor that sheds light on the intricate dynamics
inherent in such systems. The consideration of viscoelasticity and temporal delays
adds layers of complexity to the analysis, making it a challenging yet intellectually
stimulating subject. In this work, we examined the viscoelastic wave equation,
incorporating a time delay term in internal fractional feedback. The investigation
utilized the energy method in conjunction with the Faedo-Galerkin procedure
to rigorously establish the global existence of solutions, contingent upon spe-
cific conditions. Furthermore, the study demonstrated the efficacy of employing
suitable Lyapunov functionals, elucidating their role in yielding comprehensive
decay results for the energy within the system.
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