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Abstract. Gas turbines are widely used for power generation globally, and their greenhouse gas emissions have increasingly drawn public
attention. Compliance with environmental regulations necessitates sophisticated emission measurement techniques and tools. Traditional sensors
used for monitoring emission gases can provide inaccurate data due to malfunction or miscalibration. Accurate estimation of gas turbine emissions,
such as particulate matter, carbon monoxide, and nitrogen oxides, is crucial for assessing the environmental impact of industrial activities and
power generation. This study used five different machine learning models to predict emissions from gas turbines, including AdaBoost, XGBoost,
k-nearest neighbour, and linear and random forest models. Random search optimization was used to set the regression parameters. The findings
indicate that the AdaBoost regressor model provides superior prediction accuracy for emissions compared to other models, with an accuracy
of 99.97% and a mean squared error of 2.17 on training data. This research offers a practical modelling approach for forecasting gas turbine
emissions, contributing to the reduction of air pollution in industrial applications.

Keywords: emission; gas turbines; efficiency; machine learning; random search optimization.

1. INTRODUCTION

Gas turbines play an important role in various industries, pro-
viding a reliable power source for electricity generation and in-
dustrial processes. However, the environmental impacts of gas
turbine operations, especially in terms of emissions, are receiv-
ing increasing attention [1]. Gas turbines are widely used for
power generation and industrial processes and emit pollutants
such as carbon monoxide (CO), nitrogen oxides (NO, ), and par-
ticulate matter during combustion. Accurate estimation of these
emissions is essential for assessing environmental impacts on
air quality, ecosystems, and human health. It provides valuable
information on the contribution of gas turbine operations to over-
all air pollution [2]. Governments and environmental organiza-
tions worldwide have established strict regulations to control
and limit air pollutants emitted from industrial facilities, includ-
ing gas turbines. Emission estimation serves as a critical tool to
ensure that industries comply with these regulations. Accurate
forecasts enable organizations to proactively take measures to
meet or exceed emission standards, avoid legal repercussions,
and contribute to a cleaner environment [3].

By understanding the factors that influence emissions, engi-
neers and environmentalists can develop targeted approaches to
reduce pollutant levels. This may involve optimizing combus-
tion processes, adjusting operating conditions, or adopting ad-
vanced technologies for emission reduction. Accurate emission
estimation helps policymakers and health authorities assess po-
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tential health risks, enabling them to take preventive measures
and reduce the impact on communities living near industrial
facilities [4].

Traditionally, gas turbine emission estimation has been based
on empirical models and simplified assumptions. While these
simplified approaches provide a basic understanding of emis-
sions, they are limited in their ability to capture the complex
relationships between the various factors affecting gas turbine
operations and pollutant release [5]. While these methods serve
as initial benchmarks for regulatory compliance, they lack the
precision and adaptability required for the dynamic and complex
nature of modern industrial processes [6].

Despite the increasing need for sustainable energy sources,
precise emissions forecasting from gas turbines is still a vital
field of study and development. The integration of advanced
modelling techniques, such as machine learning, offers promis-
ing opportunities to further improve the precision of emission
estimation. Machine learning algorithms are characterized by
their ability to process large and diverse datasets [7]. These al-
gorithms can identify patterns and trends in data, leading to
more accurate predictions. Regression models are among the
machine learning algorithms that have proved to be effective for
predicting gas turbine emissions. These models utilize historical
emission data and a broader set of input parameters such as tur-
bine operating conditions, fuel composition, and environmental
factors. Regression models can capture complex relationships
using statistical techniques, enabling more nuanced and accurate
prediction of emissions [8].

Gas turbine emission estimation faces several challenges that
affect the accuracy and reliability of estimates. One key chal-
lenge is the availability and quality of data. Missing or inac-
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curate data can lead to biases in regression models and hinder
their effectiveness. Furthermore, because gas turbine operations
can vary based on parameters like load demand, fuel type, and
ambient conditions, the dynamic nature of industrial processes
creates additional complications. This variability poses a chal-
lenge in developing models that can robustly address diverse and
changing operational scenarios. Another critical challenge is the
interpretability of the models. Understanding how different in-
put parameters contribute to emissions is essential for informed
decision-making and targeted emission reduction strategies [9].

Future directions in gas turbine emission estimation include
addressing current challenges and advancing the field through
innovative approaches. One potential direction is the integration
of advanced sensing technologies and real-time data streams.
Another avenue for improvement is the exploration of hybrid
models that combine regression techniques with artificial intelli-
gence such as machine learning and deep learning. These hybrid
models can utilize the strengths of both approaches, leveraging
the interpretability of regression models and the complex pat-
tern recognition capabilities of Al techniques. Going forward,
ongoing research and collaboration between industry stakehold-
ers, researchers, and regulatory authorities will be crucial in im-
proving and applying regression models for gas turbine emission
prediction [10, 11].

In this study, regression algorithms are used to evaluate
their performance in gas turbine emission prediction. Linear, k-
nearest neighbours, XGBoost, random forest, and AdaBoost re-
gressor algorithms were used for learning. To comprehensively
explore the potential of the model, an extensive hyperparame-
ter search was carried out that affects the variables that define
the regression algorithms and the optimization. Random search
optimization was used for optimization. The aim is to make bet-
ter predictions for measuring emissions from gas turbines using
machine learning and deep learning tools.

In Section 1 of this study, general information about the prob-
lem is given. Section 2 contains literature studies for emission
estimation in gas turbines. Section 3 contains the materials and
methods required for the applications, Section 4 contains the
studies and discussion. Section 5 presents the conclusions and
future work.

2. LITERATURE REVIEW

Research on gas turbine emissions has been an important focus
in the field of environmental engineering and energy studies.
This chapter reviews some of the studies that have contributed
to a better understanding of the environmental impact by provid-
ing valuable insights into the mechanisms affecting gas turbine
emissions.

Starik et al. present a comparative analysis of the combus-
tion characteristics and emissions of a gas turbine engine us-
ing various alternative fuels such as Fischer-Tropsch Synthetic
Paraffinic Kerosene (FT-SPK), cryogenic methane, bioethanol,
biomethanol, biobutanol, dimethyl ether, biodiesel, and the con-
ventional aviation kerosene Jet-A. The analysis reveals that the
use of alternative fuels generally increases H, O emissions, lead-
ing to higher water vapor supersaturation and potential impacts

on contrail and cirrus cloud formation. The study also reveals
that there are differences in emissions of CO,, NO,, and N-
containing species and that different alternative fuels show dif-
ferent effects on these emissions compared to kerosene [12].
In Lebedev ef al. a reactor model that predicts pollutant pro-
duction in a diffusion-mode combustor was constructed using
methane and kerosene as fuel, and it was validated against NOx
emissions from a model aviation engine combustor based on
three-dimensional computational fluid dynamics (CFD) simula-
tion. The research emphasized how heavily the applied reaction
mechanism influences the expected NOx emission index and
the model that was created demonstrated agreement with exper-
imental data for combustors powered by kerosene and methane.
Based on the power setting of an aviation gas turbine engine,
the model has also been used to estimate emissions of differ-
ent species, such as sulphur compounds, carbon oxide, and un-
burned hydrocarbons [13]. Taha et al. emphasize the importance
of efficiently monitoring operational parameters and environ-
mental variables that affect gas turbine performance to reduce
maintenance costs, component defects, and manpower expenses.
They emphasize that while traditional sensors can miss faults
in the harsh gas turbine environment, machine learning-based
monitoring systems, especially those using deep learning tools,
offer a cost-effective and accurate solution to overcome these
challenges and improve overall efficiency [14]. Kaya et al. pre-
sented new data and introduced a comparative Portable Emis-
sions Measurement System (PEMS), focusing on the estima-
tion of CO and NO, emissions from gas turbines. The research
aimed to improve the accuracy of emission estimates through
the application of this new PEMS methodology [15]. Egware
and Kwasi-Effah’s research introduces a new empirical model
specifically designed to estimate carbon dioxide emissions from
gas turbine power plants. The research focuses on developing
a model that improves the accuracy of estimating CO, emis-
sions and thus contributes to understanding and managing the
environmental impacts associated with gas turbine operations.
The new empirical model proposed in the study provides a valu-
able tool for the assessment and mitigation of carbon dioxide
emissions in the context of gas turbine power plants [16]. Laz-
zaretto and Toffolo present a prediction of both the performance
and emissions of a two-shaft gas turbine based on experimental
data. The model is built in MATLAB/Simulink environment.
This work contributes to the understanding of gas turbine be-
haviour and helps to develop strategies to optimize performance
and reduce emissions in two-shaft gas turbine systems [17].
Coelho et al. focus on estimating carbon oxide (CO) and nitrous
oxide (NO,) emissions from a gas turbine using a dataset of
estimated emission monitoring systems. Innovative feature gen-
eration methods are introduced, and various regression models
are evaluated after feature ranking and hyperparameter tuning.
The results highlight the effectiveness of the deep forest regres-
sion (DFR) model in predicting CO and NO, emissions and
underline the impact of feature engineering and hyperparame-
ter tuning on the overall predictive capacity of the models [18].
Faqih et al. introduce a semi-supervised technique for predicting
the appropriate operating interval of dry-low emission (DLE)
gas turbines to avoid frequent start-ups and guide efficient load
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planning. The hybrid model combines extreme gradient boosting
and k-means algorithms using real plant data and achieves high
accuracy in predicting combustion temperature, nitrous oxide,
and carbon monoxide concentrations. The proposed technique
defines safe operating zones for DLE gas turbines, with a typical
operating range of 744.68°C—829.64°C, provides a preventive
maintenance strategy to reduce tripping problems, and provides
valuable information to improve control strategies in power gen-
eration areas [ 19]. Zhao et al. present a prediction model for NO,
emissions in heavy-duty gas turbine combustors using moderate
and intense low oxygen dilution combustion. Using the optimum
gap-filling design, the research determines the optimum combi-
nation of gas and air temperatures and mass flows, achieving a
minimum NO, emission of 24.11 mg/m3 [20].

The motivation behind this work stems from the growing
global concern about greenhouse gas emissions and their impact
on climate change and public health.

This study makes a significant contribution to the literature
on gas turbine emission prediction using advanced machine
learning techniques, including regression algorithms such as
AdaBoost, XGBoost, k-nearest neighbours, linear regression,
and random forest models. For the regression algorithms to give
the best results, random search optimization was used to adjust
the parameters for each regression. The primary contribution
of the research lies in the comprehensive evaluation of the per-
formance of these models in predicting emissions of critical
pollutants such as nitrogen oxides and carbon monoxide from
gas turbines. By achieving a very high prediction accuracy with
the AdaBoost regressor model (99.97% on training data and
92.04% on test data), this study not only demonstrates the po-
tential of machine learning in environmental monitoring but
also sets a new benchmark for predictive modelling in this field.

Furthermore, the practical implications of the research are
important as the proposed models can serve as valuable tools
for industries and policymakers aiming to reduce air pollution
from gas turbine operations.

In summary, this study provides a robust framework for accu-
rate prediction of gas turbine emissions using machine learning
regression models. It highlights the potential for advanced algo-
rithms such as AdaBoost to outperform conventional methods,
thus adding valuable insights to the emission estimation liter-
ature. While the study is limited by data quality and model
interpretability, it lays a strong foundation for future research
aimed at overcoming these challenges and increasing the appli-
cability of machine learning in environmental monitoring and
industrial emission control.

3. MATERIAL AND METHOD

Artificial neural networks such as linear, k-nearest neighbours,
XGBoost, random forest, and AdaBoost regressor were used
to detect emissions from gas turbines. Figure 1 shows a flow
diagram showing the model development procedure. Initially,
80% of the DLE gas turbine data of a real plant is split into
training and 20% into testing sets. Preprocessing of the training
data is done, along with correlation testing, to find significant
characteristics for the model input.
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Fig. 1. Flow diagram

3.1. Dataset

Exhaust Emission Dataset (https://www.kaggle.com/data
sets/muniryadi/gasturbine-co-and-nox-emission-data. Accessed
January 24, 2024) contains hourly average sensor readings of
eleven variables, including nine input and two target variables,
collected over five years, resulting in a total of 36733 sam-
ples [21]. Table 1 lists the nine input measures along with their
names, acronyms, and basic statistics. These measurements are
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categorized as ambient variables (such as temperature, humid-
ity, and pressure) and process parameters (such as turbine energy
efficiency, and air filter differential pressure). The gas emissions
measured by the gas analyser are NO, and CO concentration.

Table 1
Basic statistical information about the data used in the dataset [15]

Variable ‘ Abb ‘ Unit ‘ Min ‘ Max ‘ Mean ‘
Ambient temperature AT °C | -6.23 | 37.10 | 17.71
Ambient pressure AP | mbar | 985.8 | 1036 | 1013
Ambient humidity AH | (%) | 24.08 | 100.2 | 77.87
Alr filter difference AFDF| mbar | 2.09 | 7.61 | 393
pressure
Gas turbine exhaust | Grpp | nbar | 17.70 | 4072 | 25.56
pressure
Turbine inlet temperature | TIT °C |1000.8|1100.8|1081.43
Turbine after temperature | TAT | °C |511.04|550.61| 546.16
Compressor discharge | o | 1bar | 9.85 | 15.16 | 12.06
pressure
Turbine energy yield TEY | MWH | 100. | 179.5 | 13.51
Carbon monoxide CO mg/m3 0.0 |44.10 | 237
Nitrogen oxides NOx mg/m3 2590 | 119.9 | 65.29
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3.2. Data preprocessing

The correlation matrix result is shown in Fig. 2 to help visu-
alize the link between the dataset parameters. The relationship
is then examined using the pairwise correlation between the
input and target parameters as well as the correlation of each
input parameter. This correlation matrix shows the relationships
between various variables measured in the gas turbine exhaust
emission dataset considered in the study. The matrix contains
the correlation coefficients between pairs of variables ranging
from —1 to +1. When the correlation coefficient is +1, there
is a positive and strong relationship between the two variables,
while —1 indicates a negative and strong relationship. A correla-
tion coeflicient of 0 indicates that there is no linear relationship
between the variables. In this analysis, a strong positive cor-
relation is observed, especially between TEY and CDP (0.99).
These strong correlations indicate that as the turbine energy
efficiency increases, the compressor discharge pressure also in-
creases. Conversely, a negative correlation is observed between
NO, and TAT (-0.70), indicating that higher final temperatures
may be associated with lower NO, emissions.

Overall, the correlation matrix highlights critical interdepen-
dencies between variables and provides vital insights for the
development of predictive models for emission estimation. Un-
derstanding these relationships is essential for improving the
accuracy of neural network models in predicting emissions and
thus helping to reduce environmental impacts from gas turbine
operations.
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Fig. 2. Correlation matrix
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3.3. Linear regression

This regression is a basic model used in statistics and machine
learning [22]. This model is used to model the relationship of a
dependent variable with one or more independent variables.

3.4. K-nearest neighbours

It is a basic classification and regression algorithm. This algo-
rithm is used to predict a data point by the label or value of
k-nearest neighbours around it. The working principle of k-nn is
quite simple. The data point calculates the distances to all other
data points according to the similarity measure. The k closest
data points are selected.

3.5. XGBoost

Itis alearning algorithm that has recently achieved great success
in machine learning competitions and industrial applications. It
is based on Gradient Boosting methods but has been improved,
especially in terms of scalability, speed, and accuracy. The basic
working principle of XGBoost is to combine many weak pre-
dictors into a strong predictor. The model trains these predictors
sequentially, focusing on correcting the errors of previous pre-
dictions. This is a gradient descent approach to minimize the
errors in the data set used to train the next predictor.

3.6. Random forest

It is an ensemble learning algorithm based on decision trees.
It is essentially an ensemble method that combines multiple
decision trees. Random forest trains each tree differently and
then aggregates their predictions to create a more robust and
balanced predictor.

3.7. AdaBoost

AdaBoost is a variation of the adaptive boosting algorithm and
is an ensemble method for regression problems. AdaBoost com-
bines weak predictors to form a strong predictor.

@ SEV ) GOV
Opening Opening

3.8. Random search optimization

Random search optimization is a highly effective method for
tuning the hyperparameters of machine learning models. In-
stead of systematically evaluating every possible combination
as in grid search, random search evaluates a set number of ran-
domly selected points within the parameter space. This method
greatly reduces the computational burden, especially when deal-
ing with models that have large and intricate hyperparameter
spaces, and often yields good results in a shorter amount of
time. The randomness inherent in this approach also enhances
the likelihood of exploring a broader region of the hyperparam-
eter space, thereby increasing the chances of finding the global
optimum.

Random search is particularly advantageous when working
with high-dimensional datasets and complex models. This effi-
ciency is particularly valuable in real-world applications, such
as power system fault detection using machine learning, where
the flexibility and computational efficiency of random search
make it a powerful tool for model optimization. By prevent-
ing overfitting and enhancing performance metrics, this method
plays a crucial role in improving the reliability and accuracy of
machine learning models.

3.9. Gas turbine data acquisition

The system flow diagram and the measurement sensors for a
typical dry low-emission (DLE) gas turbine are depicted in
Fig. 3 [19]. Compressor components are subject to mechani-
cal failure and are not guaranteed to burn out as components of
a combustion engine. The operation of the gas turbine is dictated
by the load demand, as noted in 1. The load being driven de-
termines the power output by ensuring that the rotational speed
of the mechanical turbine is maintained at a specific speed, re-
ferred to as 2. The ambient air temperature, which is 3, has a
significant impact on power production since rising tempera-
tures reduce air density, which in turn lowers mass flow through
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Fig. 3. Flow diagram of the DLE gas turbine
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the turbine and lowers power output. As a result, keeping an eye
on the outside air temperature is essential to maintaining the
dependability and efficiency of a gas turbine. The compressor
receives air through the inlet guide vanes (IGV), shown at 4.
The air is then compressed, and the discharge pressure is mea-
sured as the compressor discharge pressure (CDP), shown at 5.
The compressed air is then mixed with fuel in the combus-
tion chamber. The fuel entering the combustion chamber passes
through the stop ratio valve (SRV) indicated at 6, which main-
tains constant gas pressure and regulates the pressure drop. The
gas control valve (GCV) at 7 controls the fuel flow necessary for
the combustion process. Given that the DLE combustor requires
separate sections for main fuel and pilot fuel, a splitter valve,
designated at 8, manages the division of main and pilot fuel
before they enter their respective chambers. At positions 9 and
10, the fuel flow and pressure are recorded. Because of the harsh
circumstances and temperature differences inside the chamber,
monitoring the combustion temperature is difficult. The tem-
perature of the gas leaving the chamber has a direct bearing on
the firing temperature. As direct measurement of temperature
within the combustion chamber is not feasible due to sensor
limitations, the temperature is instead measured at the exhaust
point, labelled as T5. Consequently, in this study, TS is con-
sidered the combustion temperature and will be employed for
estimating the operating range. In the turbine exhaust section,
temperature and pressure are monitored at 12 and 13, respec-
tively. The process generates NO, and CO emissions, which are
measured at 14 and 15, respectively [19].

4. RESULTS AND DISCUSSION

In this study, the performance of regression algorithms used in
gas turbine emission estimation was evaluated. Linear, k-nearest
neighbours, XGBoost, random forest, and AdaBoost regressor
algorithms were trained. To examine the potential of the model
in detail, a comprehensive study was conducted on the variables
and hyperparameters that define the regression algorithms.
The parameters employed in the training with linear regres-
sion, as utilized in the study, are listed in Table 2. Following the
training process, linear regression achieved a training perfor-
mance of 52.17% and a test performance of 51.37% in predict-
ing emissions in gas turbines. The RMSE was calculated as 8.13,

Table 2

Linear regression parameters

Parameter Value
Fit_intercept true
copy_X true
n_job none
positive true
Max_iter 10
Random_state 10

the MAE as 5.90, and the RZscore as 51.37%. A graph illustrat-
ing the gas turbine emissions predicted by the linear regression
algorithm compared to the actual emission values is presented
in Fig. 4. Additionally, the actual values from the dataset and the
values predicted by the linear regression algorithm are provided
in Table 7.

Gas-turbine emission prediction Prediction for Linear Regressor

Fig. 4. Graph of actual value and predicted value with linear regression

The parameters used in training with random forest regression
are given in Table 3.

Table 3
Random forest regression parameters

Parameter Value
n_estimators 1000
criterion log_loss
Max_depth none
Max_iter 10
Random_state 10

As aresult of the training of random forest regression, 98.05%
training performance and 86.72% test performance were ob-
tained in predicting emissions in gas turbines. RMSE is 4.24,
MAE is 2.69, R? Score is 86.72. The graph showing the gas
turbine emissions estimated by the random forest regression al-
gorithm and the prediction of actual emission values is given in
Fig. 5. Table 7 shows the values that the random forest regression
algorithm predicted and the actual values in the data set.

Gas-turbine emission prediction Prediction for Random Forest Regressor

Fig. 5. Graph of actual value and predicted value with random forest
regression
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The parameters used for training with the k-nearest neighbour
(k-nn) regression algorithm are listed in Table 4. After training,
the k-nn regression achieved a training performance of 84.15%
and a test performance of 80.42% in predicting emissions in
gas turbines. The RMSE was 5.16, the MAE was 3.41, and
the R2score was 80.42%. A graph depicting the gas turbine
emissions predicted by the k-nn regression algorithm alongside
the actual emission values is shown in Fig. 6. Additionally,
Table 7 provides a comparison between the actual values in
the dataset and the predictions made by the k-nn regression
algorithm.

Table 4
k-nn regression parameters
Parameter Value

Probability true
Epsilon 0.1
Degree 3
Max_iter 10
Random_state 10

Gas-turbine emission Prediction for KNN Regressor

@

a0
Gas-turbine emission

Fig. 6. Graph of actual value and predicted value with k-nn regression

The parameters used for training with the XGBoost regres-
sion algorithm are presented in Table 5. The training process
with XGBoost regression resulted in a training performance of
91.81% and a test performance of 84.51% in predicting emis-
sions in gas turbines. RMSE was 4.58, the MAE was 3.09, and
the R2score was 84.54%. Figure 7 displays a graph comparing

Table 5

XGBoost regression parameters

Parameter Values
booster gbtree
verbosity 1
eta 0.3
learning_rate 0.99
max_dept 6
n_estimators 50

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 6, p. 151956, 2024

the gas turbine emissions predicted by the XGBoost regression
algorithm with the actual emission values. Additionally, Table 7
provides the actual values from the dataset alongside the pre-
dictions made by the XGBoost regression algorithm.

Gas-turbine emission Prediction for XGBoost Regressor

o
Gas-turbine emission

Fig. 7. Graph of actual value and predicted value with XGBoost
regression

The hyperparameters of the AdaBoost regressor are presented
in Table 6. AdaBoost regression training produced a test perfor-
mance of 92.04% and a training performance of 99.97% for
emissions prediction in gas turbines. RMSE is 3.95, MAE is
2.17 and R? Score is 92.04. The graph showing the gas turbine
emission predicted by the AdaBoost regression algorithm and
the prediction of actual emission values is given in Fig. 8. Ta-
ble 7 shows the values that the AdaBoost regression method
predicted and the actual values in the data set.

Table 6
AdaBoost regression parameters

Parameter Values
Base_estimator dtree
learning_rate 0.99
loss linear
n_estimators 50
Max_iter 10
Random_state 10

Gas-turbine emission Prediction for AdaBoost Regressor

Gasturbine emission

Fig. 8. Graph of actual value and predicted value with AdaBoost
regression
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Table 7
Actual and predicted temperature
True gas Predicted gas turbine emission
ID | turbine
emission | Linear ‘ RF ‘ K-NN ‘ XGBoost ‘ AdaBoost
1| 48.876 |52.547 | 49.924 | 50.239 | 48.662 49.293
2| 68.584 |69.840 | 69.120 | 69.245 | 70.115 70.781
3| 55.400 |56.953 | 55.547 | 53.564 | 55.997 55.008
4| 52.123 | 54.989 | 57.015 | 57.710 | 55.233 51.225
5| 57.123 | 60.928 | 56.658 | 50.371 | 55.096 58.994
6| 69.161 |71.102 | 74912 | 78.651 | 73.354 71.165
7| 80.834 | 74.863 | 80.999 | 80.939 | 73.750 80.544
8| 66.639 |59.598 | 63.958 | 62.099 | 63.642 68.739
9| 63.983 |66.383 | 65.198 | 68.761 | 65.319 67.533
10| 67.361 | 71.133 | 65.605 | 70.462 | 67.958 66.716

Table 7 compares the actual values of gas turbine emissions
with the predicted values by five different regression algorithms.
The deviations between the actual emission values and the pre-
dicted values are a critical indicator for understanding the accu-
racy and reliability of the model.

As seen in the table, linear and random forest algorithms gen-
erally show higher deviations in their predictions. The k-nn, XG-
Boost, and AdaBoost algorithms also show deviations in some
cases, but generally, their predicted values are closer to the true
values. In particular, the AdaBoost algorithm was more consis-
tent than the other algorithms in many cases. For example, in ID
5, the true value was 57.123, while AdaBoost predicted 58.994,
which is a lower deviation compared to the other algorithms.
This shows that the prediction algorithms have different lev-
els of performance. It is observed that the AdaBoost algorithm
performs the best overall, while the linear model produces the
largest deviations. These results show that the AdaBoost algo-
rithm outperforms the other algorithms in gas turbine emission
forecasting and is therefore a reliable tool for gas turbine emis-
sion forecasting.

Table 8 shows the metrics used to evaluate the scaling success
and performance of the regression algorithms. Table 8 presents
various metrics comparing the performance of five different

Table 8
Comparison of regression algorithms
Regressor Training | Testing | RMS | MAE R?
algorithm accuracy | accuracy | score | score | score
Linear 52.17 51.37 813 | 590 | 51.37
Random Forest 98.05 86.72 424 | 2.69 | 86.72
K-NN 84.15 80.42 5.16 | 3.41 | 80.42
XGBoost 91.81 84.51 4.58 | 3.09 | 84.51
AdaBoost 99.97 92.04 395 | 217 | 92.04

regression algorithms on training and test data. These metrics
evaluate the ability of the algorithms to predict gas turbine emis-
sions and are used to determine which one performs the best.
Table 8 shows that the linear regression performance is quite low
compared to the other algorithms. With a training accuracy of
52.17% and a test accuracy of 51.37%, linear regression has the
lowest accuracy rates compared to other models. Furthermore,
with an RMS Score of 8.13 and an MAE Score of 5.90, linear
regression has the largest margin of error in emission estimates.
The R? score is also 51.37%, indicating that the model has a low
capacity to explain the data. The random forest algorithm per-
formed very well with a training accuracy of 98.05%. However,
the testing accuracy drops to 86.72%, indicating that the model
may be slightly overfitting. The RMS score is 4.24 and the MAE
score is 2.69, indicating relatively low errors in predictions. The
R? score is 86.72%, indicating that the model explains the data
quite well. The k-nn algorithm also performed reasonably well,
but with a test accuracy of 80.42%, it lags behind the random
forest and AdaBoost algorithms. The RMS score of k-nn is 5.16
and the MAE score is 3.41, indicating that this model may also
have significant errors in prediction in some cases. The R? score
is 80.42%, which can reasonably explain the data.

The XGBoost algorithm performed very well with 91.81%
training accuracy and 84.51% test accuracy. The RMS score of
4.58 and MAE score of 3.09 indicate that the predictions of this
model have a relatively low margin of error. XGBoost emerges as
a strong option for model performance. The AdaBoost algorithm
performs the best compared to the other algorithms, offering
the highest test accuracy (92.04%). The accuracy is 99.97%,
indicating that the ability of this model to learn the data is very
high. The RMS score of 3.95 and MAE score of 2.17 show that
AdaBoost has the lowest margin of error and can produce the
most accurate predictions. The R? score is 92.04%, indicating
that the model has a very high capacity to explain the data.
Table 8 clearly shows that the AdaBoost algorithm is superior
to the other algorithms in predicting gas turbine emissions and
performs the best in this area. Random forest and XGBoost also
stand out as strong alternatives, but the overall performance
of AdaBoost makes it the most suitable model for this study.
However, it should be noted that each algorithm may perform
differently under certain datasets and conditions.

One of the limitations of this work is the dependence on the
quality and completeness of the dataset. As with most machine
learning applications, the accuracy of the models is highly de-
pendent on the quality of the input data. Missing or inaccurate
data points can lead to biases, potentially affecting the reliability
of the predictions. Furthermore, while the dataset used in this
study is comprehensive, it may not fully capture the variability
of real-world gas turbine operations across different geographic
locations, fuel types, and operating conditions. This limitation
may affect the generalizability of the models to other contexts.
Another limitation is the complexity and interpretability, es-
pecially of well-performing machine learning models such as
AdaBoost and XGBoost.

The limitations of the study can be improved by developing
hybrid models that combine the strengths of traditional regres-
sion techniques with the advanced pattern recognition capa-
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bilities of machine learning and deep learning algorithms. In
addition, future research could focus on expanding the dataset
to include a wider range of operational scenarios, fuel compo-
sitions, and environmental conditions.

5. CONCLUSIONS

This study evaluated and compared the performance of different
regression algorithms for predicting gas turbine emissions. Al-
though gas turbines are a widely used technology in industrial
power generation, their emissions are a major concern in terms
of compliance with environmental regulations and protection
of public health. Accurately estimating these emissions is there-
fore a critical requirement for sustainable energy production and
environmental protection efforts. Among the five regression al-
gorithms used in the study, the AdaBoost regressor model was
the most successful in predicting gas turbine emissions, offer-
ing the highest accuracy and the lowest margin of error. The
AdaBoost model outperformed the other models with a training
accuracy of 99.97% and a test accuracy of 92.04%. Moreover,
the low RMS and MAE scores of this model indicate that Ad-
aBoost not only provides high accuracy but also minimizes the
margin of error in predictions. Random forest and XGBoost al-
gorithms also showed remarkable performances and achieved
results close to AdaBoost. The results of this study prove that
machine learning methods, especially robust models such as Ad-
aBoost, are effective tools for emission estimation in industrial
processes. By offering higher accuracy and lower margin of er-
ror compared to conventional methods, these models can make
a significant contribution to assessing environmental impacts
and ensuring compliance with regulatory requirements. This
provides important support to efforts to reduce environmen-
tal pollution by enabling industrial facilities to more accurately
predict their emissions and proactively take necessary measures.
However, this study also has some limitations. For example, the
size and diversity of the dataset used are important factors that
can affect model performance. Future studies should test the
general validity of these models by using larger and more di-
verse data sets and evaluate their performance under different
operational conditions. Furthermore, the interpretability of the
models needs to be emphasized, because in industrial applica-
tions, not only high accuracy but also comprehensibility of the
model decision mechanisms is of great importance.
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