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Abstract: The employment of green synthesized nanomaterials for water pollution prevention is increasing 
nowadays. Herein, Mn-doped ZnO nanoparticles were synthesized using Peganum Harmala seed extract and 
subsequently used for crystal violet (CV) dye removal from aqueous solutions. The first part of the study describes 
the preparation of the adsorbent (Mn-ZnO NPs) using a simple coprecipitation method. The surface properties 
of the material were characterized by Fourier transform infrared spectra (FTIR), scanning electron microscopy 
(SEM), and X-ray diffraction (XRD). The second part investigates the adsorption of CV dye onto the surface of 
the prepared Mn-ZnO NPs. Additionally, the isotherm, kinetics, and thermodynamics of the adsorption process 
were studied in detail. Batch adsorption analysis was carried out by evaluating different parameters, such as the 
amount of the adsorbent (0.01g to 0.04 g), CV concentration (20 to 80 mg/L), adsorption time (30 to 120 min), 
and temperature (35 to 65 ⁰C). The maximum CV dye adsorption capacity of the Mn-ZnO NPs was 45.60 mg/g. 
The thermodynamic study revealed the spontaneous, exothermic, and feasible nature of the adsorption process, 
primarily driven by physical forces. Kinetic and isotherm analyses indicated that the adsorption of the dye best fit 
the Freundlich isotherm and pseudo-second-order models, respectively. Mn-doped ZnO is considered an effective 
adsorbent for CV, benefiting from its rapid and easy preparation, non-toxic nature, and 94 % adsorption efficiency. 
The material holds potential for future applications in the removal of organic dyes from wastewater.. 
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Introduction

Heavy metal ions and synthetic organic dyes harm human 
health and living organisms, causing environmental pollution. 
Synthetic organic dyes are widely used in various industries 
and have become indispensable. Crystal violet (CV), a 
cationic triphenylmethane dye, is frequently used in various 
industrial applications. This harmful and toxic material does 
not break down and causes many serious diseases in humans, 
including cancer. Long-term exposure to this dye, even in 
minimal proportions, leads to serious health complications 
for humans (Homagai et al. 2022). In recent years, growing 
concerns about water pollution, climate change, limited natural 
resources, and public health have increased the importance of 
developing environmentally friendly products and procedures. 
Adsorption is one of the viable methods to remove dyes from 
wastewater. It is proven to be an effective strategy because it is 
simple, inexpensive, and sustainable, allowing the adsorbent 
to be reused. Adsorption has been widely applied in research 
to remove organic dyes and heavy metals. The efficiency 
of the dye removal through adsorption greatly relies on the 
adsorbent used. 

Elimination of dyes from wastewater can be achieved using 
various adsorbents in adsorption techniques, one of which 
is nanostructured metal oxides. Metal oxide nanoparticles 
have proven to be effective adsorbents due to their easy and 
cost-effective synthesis, requiring minimal quantities for the 
successful removal of pollutants. Additionally, they are favored 
for their strength, high surface reactivity, and high adsorption 
capacity (Kasbaji et al. 2023). 

Zinc oxide nanoparticles are among the metal oxides 
extensively employed as adsorbents due to their distinct 
chemical, physical, and photocatalytic properties. Additionally, 
ZnO nanoparticles exhibit extraordinary efficacy in the removal 
of heavy metal ions and dyes from water-based solutions. The 
physicochemical characteristics of ZnO nanoparticles can 
be significantly modified by doping them with a secondary 
metal element to improve adsorption efficiency and selectivity 
(Jadoun et al. 2024). Nanobiotechnology, an emerging and 
rapidly growing field, involves the synthesis of nanoscale 
materials. Plant extracts are commonly used for this synthesis 
due to their safety, ready availability, lack of toxicity, and the 
presence of diverse active phytochemicals, which facilitate the 
reduction of metallic ions (Aigbe and Osibote, 2024). 

Peganum Harmala L., a plant from the Zygophyllaceae 
family, thrives naturally in North Africa and the Middle 
East. Its seeds are rich in therapeutic alkaloids, known as 
harmala alkaloids, as well as anthraquinones, flavonoids, and 
polysaccharides, Additionally, Peganum Harmala possesses 
a wide array of biological components with antioxidant, 
antimicrobial, and anticancer activities (Zhu et al. 2022). 
Peganum Harmala L. seed powder has been reported as a 
green absorbent for heavy metals such as Ni (Ghasemi et al. 
2014), Co (Alsaiari, 2022), Fe (Alsaiari et al. 2024), and Cu 
(Alsaiari et al. 2021). Moreover, the seed extract has been used 
to synthesize various metals and metal oxides for different 
applications. Biogenic synthesis of Au, Ag (Ullah et al. 2024), 
Pt, Pd (Fahmy et al. 2021), CuO (Fekri et al. 2022), and ZnO 
(Mehar et al. 2019) has been reported using Peganum Harmala 
seeds. The active components, such as harmala alkaloids, 

anthraquinones, and flavonoids, are responsible for the bio-
reduction of various metal ions (Fekri et al. 2022; Mehar et 
al. 2019).

In this work, Peganum Harmala seed extract was used 
as a green agent in the synthesis of Zinc oxide which doped 
with 10% Mn ions. The resulting material was applied as an 
adsorbent to eliminate CV dye from aqueous systems. To 
derive the adsorption isotherm models and kinetics, the impact 
of various factors on the adsorption process of CV dye was 
considered, including adsorbent quantity, contact duration, 
initial dye concentration, and temperature. The thermodynamic 
parameters were also determined to assess the viability of CV 
adsorption onto Mn-doped ZnO.

Experiment

Materials
Peganum Harmala seeds were purchased from a local store. 
The chemicals, which were of analytical grade and used 
without any additional treatment, were obtained from Sigma-
Aldrich (Germany). These chemicals included crystal violate 
dye (CV), zinc sulfate heptahydrate (ZnSO4.7H2O), manganese 
sulfate monohydrate (MnSO4.H2O), ethanol, and sodium 
hydroxide (NaOH). Deionized milli-Q water, obtained from 
the Millipore-Milli-Q CLX 7080 system (MillporeSigma, 
USA) was used in the preparation of all aqueous solutions.

Preparing the Peganum Harmala Seeds extract.
Peganum Harmala seeds were thoroughly rinsed with 
deionized water to eliminate any contaminants and then left 
to dry in the open air. Ten grams of the dried seeds were 
weighed and transferred into a round-bottom flask fitted with 
a condenser, followed by the addition of 100 mL of deionized 
water. The mixture was heated for 45 minutes at 80 °C. After 
heating, the mixture was left to cool at room temperature. The 
Peganum Harmala seeds were then removed by filtration, and 
the aqueous extract was collected and stored at 4 ⁰C (Fekri et 
al. 2022).

Synthesis of 10% Mn-doped ZnO
A green method was adopted to prepare the Mn-doped ZnO 
adsorbent using the alkaline co-precipitation technique with 
Peganum Harmala seed extract. To synthesize the 10% Mn-
ZnO catalyst, 7.030 g (24.45 mmoles) of Zn SO4.7H2O and 
0.4141 g (2.45 mmoles) of MnSO4.H2O were added to 100 mL 
of the Peganum Harmala seed aqueous extract. The mixture 
was stirred with a magnetic stirrer for 2 hours at ambient 
temperature. Then, 2M NaOH was added gradually until the pH 
was adjusted to 11, monitored using a digital pH meter (model 
744, Metrohm AG, Switzerland) equipped with a combined 
glass electrode. The resultant precipitate was subjected to 
centrifugation, followed by two washes with deionized water 
and ethanol. Subsequently, it was dried at 80°C in an oven for 
24 hours. The powdered sample was then calcined at 300°C for 
3 hours (Lemecho et al. 2022).

Characterization of Mn-Doped ZnO Nanostructures
The surface morphology and elemental composition of Mn-
ZnO nanoparticles (NPs) were investigated using a JEOL 
JSM-7600F Field Emission Scanning Electron Microscope 
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(JEOL, Japan). Fourier transform infrared (FT-IR) 
spectroscopy was performed using a 100 FT-IR Spectrometer 
(Perkin Elmer, USA) to determine the functional groups 
within the wavenumber range of 400 to 4000 cm-1.  The 
crystallographic arrangement of Mn-doped ZnO was 
examined using an X’Pert Pro powder X-ray Diffractometer 
(Malvern PANalytical, UK). Optical absorption was 
measured at room temperature using a GENESYS 10S UV-
Vis Spectrophotometer (Thermo Fisher Scientific, USA) in 
the wavelength range of 200-800 nm.

Dye adsorption experiments  
The following batch adsorption tests were performed: In a 
conical flask, 25 mL of a stock solution containing 40 mg/ L 
of the crystal violet (CV) dye was added. The solution and a 
set quantity of adsorbent (0.02 g) were then stirred at room 
temperature for 60 minutes. The supernatant underwent 
centrifugation at 2000 rpm. The quantity of crystal violet dye 
adsorbed onto the sorbent and the removal percentage were 
determined using the equations provided below (Ahmadi 
& Ganjidoust, 2021; Kumar & Kirthika, 2010; Paksamut & 
Boonsong, 2018).
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Where, qe is the adsorption capacity measured in mg/g, while 
Co and Ce represent the initial and equilibrium concentrations 
of crystal violate dye in water post the removal process (mg/ 
L), respectively. V stands for the solution volume (L), and W 
corresponds to the amount of Mn-doped ZnO adsorbent used 
(g). The adsorption efficiency (%R) was used as the analytical 
response. To achieve optimal results, the study explored the 
influence of Mn-doped ZnO dosages (0.01, 0.02, 0.03, and 
0.04 g), initial CV concentration (20, 40, 60, and 80 mg/L), 
exposure time (30, 60, 90, and 120 min), and temperature (35, 
45, 55, and 65 ⁰C).

Results and discussion

Characterization of Mn-ZnO
Figure 1(a) shows the X-ray diffraction pattern of Mn-doped 
ZnO nanoparticles. The figure illustrates several diffraction 
peaks, indicating the polycrystalline nature of the synthesized 
powder. The primary diffraction peak was recorded at 36.34o 
corresponding to the reflection peak of (101) according to 
ICDD card number 79-2205 for the hexagonal ZnO phase. ZnO 
exists in three phases: cubic Zinc blende, hexagonal Wurtzite, 
and rock salt phases (Shaba et al. 2021). The hexagonal 
Wurtzite phase is recognized as the thermodynamically most 
stable phase among these three, and it is usually obtained as 
reported by many authors (Al-Kahlout, 2012; Darroudi et 
al. 2013; Liu et al. 2002; Sriram et al. 2017; Theyvaraju & 
Muthukumaran, 2015; Yildirimcan et al. 2016). The other two 
phases are considered metal-stable phases which need special 
conditions for preparation. 

The deposited powder shows a preferred orientation in (101) 
direction as recorded. The other diffraction peaks are indexed 
to different planes, as shown in Figure 1. The three strongest 

diffraction peaks belong to the (002), (100), and (101) planes. 
These high intensities of these planes are attributed to the low 
surface free energy of formation. Andrade et al. (Paraguay et 
al. 1999) revealed that the surface free energy densities of these 
three planes are 9.9, 12.3, and 20.9 eV/nm2 for (002), (110), 
and (100), respectively. No additional peaks related to any 
other phases, such as copper oxide or manganese oxide, were 
recorded, confirming the singularity of the ZnO phase and the 
good solubility of Mn into ZnO. This could be due to the low 
concentration of Mn, which is below the recorded solubility 
limit of Mn (30% (Mandal et al. 2006)) in ZnO. Additionally, 
the similar ionic radii of Mn and Zn facilitate the substitution 
of Zn by Mn, preventing the segregation of Mn into separate 
grains (Mn2+(0.8Å (Castañeda et al. 2005)), Mn3+(0.65Å (Trari 
et al. 2005)) and Zn2+(0.74Å  (Aboud et al. 2019)).

Scherer’s equation is applied to estimate the crystallite size 
of the deposited powder (Aboud et al. 2023);
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Figure 1. (a) XRD pattern and (b) FT-IR spectra for Mn-doped 
ZnO nanoparticles.
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The lattice parameters of the prepared powder were found 
to be a=3.245 Å and c=5.196 Å. These values are slightly 
smaller than the recorded values in the ICDD card, which are 
a=3.25 and c=5.2Å. Consequently, the volume is recorded 
to be 47.398 Å3, which is smaller than the ICDD value of 
47.63Å3. This reduction in lattice volume can be explained by 
the replacement of Zn2+ with Mn2+, which has a smaller ionic 
radius. The bond length was found to be 2.01 Å, matching the 
value of the Zn-O bond in bulk ZnO (Chen et al. 2019).

Figure 1(b) shows the FT-IR spectrum of the deposited 
Mn-doped ZnO nanoparticles, revealing several absorption 
peaks. The IR spectrum depends not only on the nature of 
the material but also on its morphology (Yang et al. 2009). 
The broad peak between 2970 to 3660 cm−1 is assigned to 
water molecules present in the nanoparticles or adsorbed 
on the surface (Khan et al. 2011). Weak peaks at 1408 cm−1 
and 1596 cm−1 correspond to the vibrations of symmetric 
and asymmetric C=O bonds, respectively. Additional bands 
were detected at below 1400 cm−1 associated with Zn-O bond 
vibrations (Zafar et al. 2019).

The surface morphology, grain size, and chemical 
composition of the prepared powder have been investigated 
using SEM and EDX techniques. Figure 2 displays the SEM 
image of the prepared powder along with the statistical 
distribution of the recorded grains. The figure shows particles 
of various shapes with irregular size distribution. The average 
particle size was measured to be 209.6 nm, significantly 
larger than the calculated crystallite size obtained from 
Scherer’s equation. This discrepancy could be attributed to the 
agglomeration phenomena. Figure 3 shows the EDX spectrum, 
where Zn, Mn, and O peaks are recorded at their regular 
positions. The elemental ratios of the recorded elements are 
found to be O:Mn: Zn = 54.62:0.2:45.18. 

The UV-Vis spectrometer was employed to examine 
the optical characteristics of ZnO doped with Mn at room 
temperature. The analysis revealed a decrease in absorbance 
with an increase in wavelength, as illustrated in Figure 4. 
Tauc’s relation was then applied to the UV-Vis absorbance data 
to construct plots for calculating the energy band gap (Eg): 

(αhν)2 = A (hν – Eg)

Where α is the absorption coefficient, h is Planck’s constant, 
Eg is the optical band gap of a semiconductor, ν is the photon 
frequency, and A is the proportionality constant. The band gap 
can be determined by extending the linear portion of the (αhν)² 
versus hν plot to the X-axis. The point of intersection on the 
X-axis provides the band gap value. The estimated Eg value of 
the Mn-doped ZnO is 2.9 eV, as shown in Figure 4, exhibiting 
a slight decrease compared to the generally acknowledged 
value. This agrees with the reported values by Ahmed (Ahmed, 
2017). It is reported that a higher concentration of Mn in ZnO 
(Mn>4%) causes a decrease in the optical band (Singh et al. 
2016).

Absorption study
Effect of Adsorbent dose 
The influence of the dosage of Mn-ZnO on CV removal was 
studied by varying the dosage from 0.01, 0.02, 0.03, and 0.04 g 
at an initial CV concentration of 40 mg/L. As shown in Figure 
5, Mn-doped ZnO nanoparticles exhibited a rise in removal 
percentage, achieving 91% removal at a dosage of 0.01 g. 
There was no additional increase in the amount of Crystal 

Figure 2. SEM image for Mn-doped ZnO nanoparticle  
and the statistical distribution of the grain size.

Figure 4. UV spectrum and Energy band gap  
of Mn-doped ZnO.

Figure 3. EDX spectrum of Mn-doped ZnO nanoparticles.
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Violet dye adsorbed when the adsorbent dose was increased 
beyond 0.01g. The adsorption potential of an adsorbent at a 
particular starting concentration is largely dependent on the 
adsorbent dosage. One primary explanation for the variance 
in adsorption capabilities at different adsorbent doses is 
the number of accessible adsorption sites. As the dosage 
increased, the adsorbent’s surface area and active sites became 
more accessible for adsorption. However, once adsorption 
reached equilibrium, the additional adsorbent dosage induced 
unavailable sites that did not contribute to further adsorbate 
uptake (Elsayed et al. 2020). Moreover, the equilibrium 
concentration of Mn-doped ZnO nanoparticles was lower 
despite the increased adsorbent dosage, which increased the 
interference of the adsorbent surface among the active groups. 
This occurred because there was insufficient driving force for 
the adsorbate to spread and bind to the adsorbent surface. These 
results align with earlier investigations (Park et al. 2008). 

Effect of contact time 
The time needed to achieve equilibrium is a crucial element 
in the wastewater treatment process. The impact of contact 
time on CV adsorption on Mn-doped ZnO was investigated 

at varying times (30, 60, 90, 120 min). Figure 6 displays the 
results of this effect on CV removal efficiency and adsorption 
capacity. The findings indicate that the adsorption efficacy 
for CV and the percentage elimination of CV increased as the 
contact time increased, reaching equilibrium after 30 min. The 
abundant pores in the Mn ZnO structure led to a faster transfer 
of CV mass from the solution onto the material, resulting in 
faster adsorption at the initial contact. This demonstrates the 
strong accessibility of adsorbent’s CV binding sites, which is 
favorable for efficient adsorption. Mn-ZnO can bind CV in two 
different ways. CV can be readily adsorbed by the mesoporous 
Mn-ZnO material due to the abundant active sites and strong 
mass transfer driving force in the initial phase of adsorption. 
However, over time, a significant layer of CV builds up on 
the surface of Mn-ZnO, limiting the available active sites and 
obstructing the mobility of CV, leading to nonlinear adsorption. 
After suitable contact times of 30 and 60 minutes, the highest 
percentage of CV removal was achieved, reaching 91.20%.

Effect of initial CV concentration 
The influence of initial CV concentration (20, 40, 60, 80 
mg/L) on the removal efficiency of CV by Mn-ZnO is shown 

Figure 5. Effect of adsorbent dose on a) adsorption capacity and b) removal efficiency of CV.

Figure 6. Effect of contact time on a) adsorption capacity and b) removal efficiency of CV.

a)

a)

b)

b)
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in Figure 7. The graph indicates that the adsorbed amount 
increases very marginally with increasing concentrations, 
exhibiting an upward incline at low concentrations and a 
steady, flat plateau at higher values. At equilibrium, the 
adsorption capacity (qe) rose from 22.24 mg/g to 44.70 mg/g 
when the initial CV concentration increased from 20 mg/L 
to 40 mg/L respectively. At a concentration of 80 mg/L, the 
highest adsorption capacity recorded was 95.14 mg/g. The 
increase in the initial concentration enhanced the driving 
power of mass transfer, leading to increased CV adsorption. 
At an initial concentration of 20 mg/L, the efficiency of CV 
removal was 94%.

Effect of Temperature
To investigate the impact of the temperature on the adsorption 
process of CV, experiments were conducted at various 
temperatures: 35, 45, 55, and 65°C, while maintaining the 
CV concentration at 40 mg/L. Figure 8 shows that as the 
temperature increased from 35°C to 45°C, both the percentage 

removal of CV and the adsorption capacity increased. The 
amount of CV adsorbed onto Mn-ZnO increased from 45.18 
mg/g to 45.53 mg/g. As temperature increased, adsorbent 
degradation altered the sorbent’s surface chemistry, enhancing 
the accessibility of active functional groups and decreasing CV 
adsorption. In addition, the increased temperature facilitated 
the desorption process by altering bond structures (Sharaf & 
Hassan, 2014). This effect was due to the diminished boundary 
layer thickness with increasing temperature, which caused 
metal ions to escape from the surface into the solution phase, 
limiting the adsorption capacity. Similar findings have been 
reported by  Sharaf and Hassan (2014).

Adsorption Isotherms
The isotherms of the adsorption are produced using the well-
known Langmuir and Freundlich isotherm models to identify 
the appropriate model for optimizing the adsorption processes. 
The Langmuir isotherm presumes homogenous adsorption, 
whereas the Freundlich isotherm is an empirical equation 

Figure 8. Effect of temperature on a) adsorption capacity and b) removal efficiency of CV.
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employed to model heterogeneous systems. The Langmuir 
Isotherm model is presented as:
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(mg/L). Figure 10 illustrates a linear regression plot log qe 
against log Ce, the Freundlich constants Kf and n are easily 
derived from that plot (Freundlich, 1906). From the Freundlich 
isotherm, the value of 1/n signifies the favorability of the 
isotherm type: it is favorable when 1/n is smaller than 1 and 
unfavorable when 1/n is greater than 1. That accounts for 
the arrangement of active sites on the surface as well as any 
element that causes the adsorbent-adsorbate interaction to 
weaken with increasing surface density. 
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and Freundlich isotherm models, along with correlation 
coefficients, for the adsorption of CV on Mn-ZnO. Based on 
the correlation coefficient R2 values from the isotherm models, 
the adsorption data demonstrated better conformity with the 
Freundlich isotherm (R2 = 0.99) compared to the Langmuir 
model (R2 = 0.92) (Solmaz et al. 2024). Both Kf and n values 
of the present investigation indicate that CV adsorption on Mn-
ZnO is favorable.

Adsorption kinetics studies
The two kinetic models, namely the pseudo-first-order 
and pseudo-second-order models, were employed to fit the 
adsorption mechanisms and identify potential rate-determining 
phases. The solid capacitance is a key factor in the pseudo-first-
order model, while the pseudo-second-order model effectively 
replicates the sorption of analytes from aqueous solutions when 
chemisorption involves the integration of valence forces. This 
encompasses the sharing or exchange of electrons between 
adsorbents and forces (Taha et al. 2017). 

Langmuir Freundlich

qmax (mg/g) b (L/mg) R2 n Kf (mg/g) R2

94.3 0.0014 0.92 1 0.906 0.99
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The following equation can be applied to the pseudo-first-
order kinetic model:
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from the pseudo-first-order model varies significantly from 
the actual observed value, suggesting that this model does not 
represent the adsorption kinetics. In contrast, the pseudo-second-
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valence forces through the exchange of electrons between the 
dye and adsorbent. A significant affinity exists between CV and 
the adsorbent, as demonstrated by the short half-adsorption time 
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are obtained to comprehend the adsorption process, such as the 
changes in the entropy (ΔS°), enthalpy (∆H°), and free energy 
(ΔG°). These parameters were determined using the equations 
below:
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Table 2. Kinetic parameters and correlation coefficients  
for CV adsorption on Mn-doped ZnO.  

[Experimental adsorption capacity qe(exp) = 45.60 mg/g].

Table 3. Thermodynamic parameters for CV adsorption  
on Mn-doped ZnO.

Pesedo-1st order Pesedo-2nd order

qe,cal  (mg/g) 62.95 qe,cal  (mg/g) 45.45

k1 (min-1) -0.003 k2 (g/g.min) 0.0026

R2 0.99 R2 0.99

T (K) ∆G° (J/mol) ∆H° (J/mol) ∆S° (J/mol.k)

308 -2074.18

-0.0024 1.45
318 -317.26

328 -736.28

338 - 777.78
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The adsorption process is spontaneous, as confirmed by the 
negative ΔG° values across different temperatures (Aregawi & 
Mengistie, 2013).

Conclusion

Current research demonstrates that Mn-doped ZnO is an 
efficient adsorbent for removing Crystal violet (CV) dye 
from aqueous systems (%Removal= 91-94%). The synthesis 
of Mn-ZnO adsorbent was carried out using a sustainable 
method involving the seed extract of Peganum Harmala. 
Various parameters, including the dosage of adsorbent, initial 
CV dye concentration, temperature, and contact time, strongly 
influenced the absorption performance of CV dyes. Compared 
to Langmuir’s model, the Freundlich isotherm model was better 
adapted for CV dye equilibrium data adsorption (R2= 0.99). 
The CV dye adsorption onto Mn-doped ZnO followed the 
pseudo-second-order model, indicating chemisorption (qe,(cal)= 
45.45 mg/g, qe(exp) = 45.60 mg/g). The adsorption process was 
exothermic (∆H°=-0.0024) and occurred spontaneously (ΔG°˂ 
0), according to thermodynamic calculations. Overall, the 
findings imply that Mn-doped ZnO can serve as a proficient, 
green, and sustainable adsorbent for the removal of CV dye 
from aqueous systems. 
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