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CONTROL, INFORMATICS AND ROBOTICS

Exponential decay of transient values in positive
nonlinear systems

Tadeusz KACZOREK ∗

Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Białystok, Poland

Abstract. The exponential decay of transient values in nonlinear continuous-time standard and fractional orders with linear dynamical positive
feedback systems and of positive linear parts is investigated. Sufficient conditions for the exponential decay of transient values in this class of
positive nonlinear systems are established. Procedures for the computation of gains characterizing the class of nonlinear elements are given and
illustrated in simple examples.
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1. INTRODUCTION

In positive systems inputs, state variables and outputs take only
nonnegative values for any nonnegative inputs and nonnegative
initial conditions [1–6]. Examples of positive systems are indus-
trial processes involving chemical reactors, heat exchangers and
distillation columns, storage systems, compartmental systems,
water and atmospheric pollution models, and electrical circuits.
A variety of models having positive behavior can be found in
engineering, management science, economics, social sciences,
biology, medicine, etc. An overview of the state of the art in
positive systems theory is given in the monographs [1–4].

Mathematical fundamentals of the fractional calculus are
given in the monographs [7, 8]. The positive fractional linear
systems are investigated in [3, 4, 6, 9–16]. Positive linear sys-
tems with different fractional orders are addressed in [6,14,15].
Linear positive electrical circuits are investigated in [4]. The
global stability of nonlinear systems with positive feedback and
positive stable linear parts is investigated in [11–13,17], and the
stability of discrete-time systems with delays in [18].

In this paper, the exponential decay of transient values of non-
linear standard and fractional positive systems with dynamical
positive feedback will be addressed.

The paper is organized as follows. In Section 2 the basic
definitions and theorems concerning the positive standard and
fractional orders linear systems are recalled. The main results of
the paper are given in Section 3 where sufficient conditions for
the exponential decay of transient values in the positive nonlin-
ear systems are established and procedures for computation of
the gains characterizing the class of characteristics of nonlinear
elements are given. In Section 4 the results of Section 3 are ex-
tended to fractional nonlinear positive systems. The procedures
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are illustrated by numerical examples. Concluding remarks are
given in Section 5.

The following notation will be used: ℜ – the set of real
numbers, ℜ𝑛×𝑚 – the set of 𝑛×𝑚 real matrices, ℜ𝑛×𝑚

+ – the
set of 𝑛×𝑚 real matrices with nonnegative entries and ℜ𝑛

+ =

ℜ𝑛×1
+ , 𝑀𝑛 – the set of 𝑛×𝑛 Metzler matrices (real matrices with

nonnegative off-diagonal entries), 𝐼𝑛 – the 𝑛×𝑛 identity matrix.

2. POSITIVE INTEGER AND DIFFERENT FRACTIONAL
ORDERS LINEAR SYSTEMS

Consider the continuous-time linear system

¤𝑥 = 𝐴𝑥 +𝐵𝑢, (1a)
𝑦 = 𝐶𝑥, (1b)

where 𝑥 = 𝑥(𝑡) ∈ ℜ𝑛, 𝑢 = 𝑢(𝑡) ∈ ℜ𝑚, 𝑦 = 𝑦(𝑡) ∈ ℜ𝑝 are the state,
input, and output vectors and 𝐴 ∈ ℜ𝑛×𝑛, 𝐵 ∈ ℜ𝑛×𝑚, 𝐶 ∈ ℜ𝑝×𝑛.

Definition 1. [3, 4] The continuous-time linear system (1) is
called (internally) positive if 𝑥(𝑡) ∈ ℜ𝑛

+, 𝑦(𝑡) ∈ ℜ𝑝
+ , 𝑡 ≥ 0 for any

initial conditions 𝑥(0) ∈ ℜ𝑛
+ and all inputs 𝑢(𝑡) ∈ ℜ𝑚

+ , 𝑡 ≥ 0.

Theorem 1. [3, 4] The continuous-time linear system (1) is
positive if and only if

𝐴 ∈ 𝑀𝑛 𝐵, ∈ ℜ𝑛×𝑚
+ , 𝐶 ∈ ℜ𝑝×𝑛

+ . (2)

Definition 2. [3, 4] The positive continuous-time system (1)
for 𝑢(𝑡) = 0 is called asymptotically stable if

lim
𝑡→∞

𝑥(𝑡) = 0 for any 𝑥(0) ∈ ℜ𝑛
+ . (3)

Theorem 2. [3, 4] The positive continuous-time linear system
(1) for 𝑢(𝑡) = 0 is asymptotically stable if and only if one of the
following equivalent conditions is satisfied:
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1. All coefficients of the characteristic polynomial

𝑝𝑛 (𝑠) = det[𝐼𝑛𝑠− 𝐴] = 𝑠𝑛 + 𝑎𝑛−1𝑠
𝑛−1 + . . .+ 𝑎1𝑠+ 𝑎0 (4)

are positive, i.e. 𝑎𝑖 > 0 for 𝑖 = 0,1, . . . , 𝑛−1.
2. There exists a strictly positive vector 𝜆𝑇 =

[
𝜆1 · · · 𝜆𝑛

]𝑇 ,
𝜆𝑘 > 0, 𝑘 = 1, ..., 𝑛 such that

𝐴𝜆 < 0 or 𝜆𝑇 𝐴 < 0. (5)

If the matrix 𝐴 is nonsingular then we can choose 𝜆 = 𝐴−1𝑐,
where 𝑐 ∈ ℜ𝑛 is strictly positive.

In this paper, the following Caputo definition of the fractional
derivative of 𝛼 order will be used [3, 4]

0𝐷
𝛼
𝑡 𝑓 (𝑡) = 𝑑𝛼 𝑓 (𝑡)

𝑑𝑡𝛼

=
1

Γ(1−𝛼)

𝑡∫
0

¤𝑓 (𝜏)
(𝑡 − 𝜏)𝛼 d𝜏, 0 < 𝛼 < 1, (6)

where ¤𝑓 (𝜏) = 𝑑𝑓 (𝜏)
𝑑𝜏

and Γ(𝑧) =
∞∫

0

𝑡𝑥−1𝑒−𝑡 d𝑡, Re(𝑥) > 0 is the

Euler gamma function.
Consider the fractional continuous-time linear system

𝑑𝛼𝑥(𝑡)
𝑑𝑡𝛼

= 𝐴𝑥(𝑡) +𝐵𝑢(𝑡), (7a)

𝑦(𝑡) = 𝐶𝑥(𝑡), (7b)

where 𝑥(𝑡) ∈ ℜ𝑛, 𝑢(𝑡) ∈ ℜ𝑚, 𝑦(𝑡) ∈ ℜ𝑝 are the state, input, and
output vectors and 𝐴 ∈ ℜ𝑛×𝑛, 𝐵 ∈ ℜ𝑛×𝑚, 𝐶 ∈ ℜ𝑝×𝑛.

Definition 3. [3, 4] The fractional system (7) is called (inter-
nally) positive if 𝑥(𝑡) ∈ ℜ𝑛

+ and 𝑦(𝑡) ∈ ℜ𝑝
+ , 𝑡 ≥ 0 for any initial

conditions 𝑥(0) ∈ ℜ𝑛
+ and all inputs 𝑢(𝑡) ∈ ℜ𝑚

+ , 𝑡 ≥ 0.

Theorem 3. [3, 4] The fractional system (7) is positive if and
only if

𝐴 ∈ 𝑀𝑛 , 𝐵 ∈ ℜ𝑛×𝑚
+ , 𝐶 ∈ ℜ𝑝×𝑛

+ . (8)

Definition 4. [3, 4] The positive continuous-time system (1)
for 𝑢(𝑡) = 0 is called asymptotically stable if

lim
𝑡→∞

𝑥(𝑡) = 0 for any 𝑥(0) ∈ ℜ𝑛
+ . (9)

Theorem 4. [3, 4] The positive linear system (1) is asymp-
totically stable if and only if one of the following equivalent
conditions is satisfied:
1. All coefficients of the characteristic polynomial

𝑝𝑛 (𝑠) = det[𝐼𝑛𝑠− 𝐴] = 𝑠𝑛 + 𝑎𝑛−1𝑠
𝑛−1 + . . .+ 𝑎1𝑠+ 𝑎0 (10)

are positive, i.e. 𝑎𝑖 > 0 for 𝑖 = 0,1, ..., 𝑛−1.
2. There exists a strictly positive vector 𝜆𝑇 =

[
𝜆1 · · · 𝜆𝑛

]𝑇 ,
𝜆𝑘 > 0, 𝑘 = 1, . . . , 𝑛 such that

𝐴𝜆 < 0 or 𝜆𝑇 𝐴 < 0. (11)

Theorem 5. The positive system (1) (and (7)) is asymptotically
stable if the sum of entries of each column (row) of the matrix
𝐴 is negative.

Proof. Using (11) we obtain

𝐴𝜆 =


𝑎11 ... 𝑎1𝑛
... ...

...

𝑎𝑛1 ... 𝑎𝑛𝑛



𝜆1
...

𝜆𝑛


=


𝑎11
...

𝑎1𝑛

 𝜆1 + . . .+


𝑎𝑛1
...

𝑎𝑛𝑛

 𝜆𝑛 <

0
...

0

 (12)

and the sum of entries of each column of the matrix 𝐴 is negative
since 𝜆𝑘 > 0, 𝑘 = 1, . . . , 𝑛. The proof for rows is similar. □

3. EXPONENTIAL DECAY OF TRANSIENT VALUES
IN NONLINEAR SYSTEMS WITH POSITIVE DYNAMICAL
FEEDBACK

Consider the nonlinear feedback system shown in Fig. 1 which
consists of the positive linear part, the nonlinear element with
characteristic 𝑢 = 𝑓 (𝑒) and positive dynamical feedback. The
linear part is described by the equations

¤𝑥 = 𝐴𝑥 +𝐵𝑢,
𝑦 = 𝐶𝑥,

(13a)

with interval matrices

𝐴 ≤ 𝐴 ≤ 𝐴, 𝐵 ≤ 𝐵 ≤ 𝐵, 𝐶 ≤ 𝐶 ≤ 𝐶, (13b)

where 𝑥 = 𝑥(𝑡) ∈ ℜ𝑛1
+ , 𝑢 = 𝑢(𝑡) ∈ ℜ+, 𝑦 = 𝑦(𝑡) ∈ ℜ+ is the

state, input, and output vectors of the system (13), and 𝐴 ∈ 𝑀𝑛1 ,
𝐵 ∈ ℜ𝑛1×1

+ , 𝐶 ∈ ℜ1×𝑛1
+ . It is assumed that the matrix 𝐴 of (13a)

has all eigenvalues 𝑠𝑘 with real parts smaller than

Re 𝑠𝑘 < −𝛾, i.e. 𝛾 > 0, 𝑘 = 1, . . . , 𝑛. (13c)

The characteristic of the nonlinear element is shown in Fig. 2
and it satisfies the condition

0 ≤ 𝑓 (𝑒)
𝑒

≤ 𝑘 <∞. (14)

Fig. 1. The nonlinear feedback system
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Fig. 2. The characteristic of the nonlinear element

The positive feedback system is described by the equations

¤𝑧 = 𝐹𝑧+𝐺𝑦,

𝑒 = 𝐻𝑧,
(15a)

with interval matrices

𝐹 ≤ 𝐹 ≤ 𝐹, 𝐺 ≤ 𝐺 ≤ 𝐺, 𝐻 ≤ 𝐻 ≤ 𝐻, (15b)

where 𝑧 = 𝑧(𝑡) ∈ ℜ𝑛2
+ , 𝑒 = 𝑒(𝑡) ∈ ℜ+ are the state vector and

output vectors.
It is assumed that the matrix 𝐹 + 𝐼𝑛𝛾 ∈ 𝑀𝑛2 is also asymptot-

ically stable.
From (13) and (15) we have[

¤𝑥
¤𝑧

]
= 𝐴̂

[
𝑥

𝑧

]
+ 𝐵̂𝑢, (16a)

where

𝐴̂ =

[
𝐴 0
𝐺𝐶 𝐹

]
∈ 𝑀𝑛, 𝐵̂ =

[
𝐵

0

]
∈ ℜ𝑛1×1

+ , 𝑛 = 𝑛1 +𝑛2 . (16b)

The following theorem gives sufficient conditions for the expo-
nential decay of transient values in the positive feedback non-
linear system faster than 𝑒−𝛾𝑡 .

Theorem 6. The state variables of the nonlinear system consist-
ing of the positive linear part (13), the nonlinear element satis-
fying the condition (14), and the positive asymptotically stable
dynamical feedback system (15) decay exponentially faster than
𝑒−𝛾𝑡 if [

𝐴+ 𝐼𝑛1𝛾 𝑘𝐵𝐻

𝐺𝐶 𝐹 + 𝐼𝑛2𝛾

]
∈ 𝑀𝑛 (17)

is asymptotically stable.

Proof. The proof will be accomplished using the Lyapunov
method [19, 20]. As the Lyapunov function 𝑉 (𝑥, 𝑧) we choose

𝑉 (𝑥, 𝑧) = 𝜆𝑇

[
𝑥

𝑧

]
≥ 0 for 𝑥 ∈ ℜ𝑛1

+ , 𝑧 ∈ ℜ𝑛2
+ , (18)

where𝜆 ∈ℜ𝑛
+ is a strictly positive vector, i.e.𝜆𝑘 > 0, 𝑘 = 1, . . . , 𝑛.

It is well-known that if the matrix 𝐴 ∈ 𝑀𝑛 is asymptotically
stable then state variables of the system ¤𝑥 = (𝐴 + 𝐼𝑛𝛾)𝑥 expo-
nentially decay faster than 𝑒−𝛾𝑡 .

Using (18), (13) and (15) we obtain

¤𝑉 (𝑥, 𝑧) = 𝜆𝑇

[
¤𝑥
¤𝑧

]
= 𝜆𝑇

{[
𝐴 0
𝐺𝐶 𝐹

] [
𝑥

𝑧

]
+
[
𝐵

0

]
𝑢

}

= 𝜆𝑇

{[
𝐴 0
𝐺𝐶 𝐹

] [
𝑥

𝑧

]
+
[
𝐵

0

]
kHz

}

= 𝜆𝑇

[
𝐴 𝑘𝐵𝐻

𝐺𝐶 𝐹

] [
𝑥

𝑧

]
≤ 0 (19)

since 𝐵𝑢 = 𝐵 𝑓 (𝑒) ≤ 𝑘𝐵𝐻𝑧 by the condition (14). □

From (19) it follows that ¤𝑉 (𝑥, 𝑧) ≤ 0 if the condition (17) is
satisfied then the state variables exponentially decay faster than
𝑒−𝛾𝑡 .

Theorem 6 can be applied to solve the following two prob-
lems:

Problem 1. Given matrices 𝐴, 𝐵,𝐶 and 𝐹, 𝐺, 𝐻 of the positive
systems (13), (15) and the nonlinear characteristic 𝑢 = 𝑓 (𝑒) of
the nonlinear element. Knowing the value of 𝑘 satisfying the
condition (14) check if the transient values in the nonlinear
system decay faster than 𝑒−𝛾𝑡 .

Problem 2. Given matrices 𝐴, 𝐵,𝐶 and 𝐹, 𝐺, 𝐻 of the positive
systems (13), (15) and the nonlinear characteristic 𝑢 = 𝑓 (𝑒) of
the nonlinear element. Find the maximal value of 𝑘 for which
the characteristic 𝑢 = 𝑓 (𝑒) of the nonlinear element satisfies the
condition (14) and the transient values of the nonlinear system
decay faster than 𝑒−𝛾𝑡 .

The Problem 1 can be solved using the following:

Procdure 1.
Step 1. Knowing the characteristic 𝑢 = 𝑓 (𝑒) find the minimal

value of 𝑘 satisfying the condition (14).
Step 2. Using Theorem 6 find the sum of entries of each column

(row) of the matrix (17). If all these sums are negative,
then the transient values in the nonlinear system decay
faster than 𝑒−𝛾𝑡 .

The Problem 2 can be solved using the following:

Procdure 2.
Step 1. Using Theorem 6 find the sum of entries of each column

(row) of the matrix (17).
Step 2. Find the maximal value of 𝑘𝑐 (𝑘𝑟 ) for which the sums

of entries of all columns (rows) of (17) are negative.
Step 3. Find 𝑘max = min(𝑘𝑐, 𝑘𝑟 ).

In this case, the transient values in the nonlinear system de-
crease faster than 𝑒−𝛾 𝑡 for all nonlinear characteristics 𝑢 = 𝑓 (𝑒)
satisfying the condition

0 < 𝑓 (𝑒) < 𝑘max𝑒. (20)
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Remark 1. The value of 𝑘max depends only on the first 𝑛1 rows
and of the last 𝑛2 columns of the matrix (17).

Example 1. Consider the nonlinear system shown in Fig. 1 with
linear positive parts described by (13) and (15) with

𝐴 =

[
−6.5 1

2 −6.2

]
, 𝐴 =

[
−7 1.5
2.3 −6.5

]
,

𝐵 =

[
0.5
0.7

]
, 𝐵 =

[
0.5
0.7

]
,

𝐶 =

[
0.4 0.5

]
, 𝐶 =

[
0.5 0.6

]
(21)

and

𝐹 =

[
−6 2
1.6 −7

]
, 𝐹 =

[
−6.2 2.2
1.8 −7.3

]
,

𝐺 =

[
0.8
0.6

]
, 𝐺 =

[
1

0.8

]
,

𝐻 =

[
0.4 0.2

]
, 𝐻 =

[
0.5 0.4

]
,

(22)

respectively and the nonlinear element with characteristics sat-
isfying the condition (14).

Case 1. Using 𝑘 = 1 check the global stability of the nonlinear
system for 𝛾 = −2.

In this case using (17), (21), and (22) we obtain

[
𝐴+ 𝐼𝑛1𝛾 𝑘𝐵𝐻

𝐺𝐶 𝐹 + 𝐼𝑛2𝛾

]
=


−4.5 1 0.3 0.24

2 −4.2 0.4 0.32
0.5 0.6 −4 2
0.4 0.48 1.6 −5


. (23)

The sums of the entries of columns of the matrix (23) are:
column 1: = −1.6,, column 2: = −2.12, column 3: = −1.7, col-
umn 4: = −2.44. Therefore, by Theorem 6 the nonlinear system
is globally stable.

Case 2. Find the maximal value of 𝑘max satisfying the condi-
tion (14) for which the transient values in the nonlinear system
decrease faster than 𝑒−𝛾𝑡 .

Using Procedure 2 we obtain the following:
Step 1. The sums of entries of each column (row) of the matrix

[
𝐴+ 𝐼𝑛1𝛾 𝑘𝐵𝐻

𝐺𝐶 𝐹 + 𝐼𝑛2𝛾

]
=


−4.5 1 0.3𝑘 0.24𝑘

2 −4.2 0.4𝑘 0.32𝑘
0.5 0.6 −4 2
0.4 0.48 1.6 −5


(24)

are: column 1: = −1.6, column 2: = −2.12, column 3:
= 0.7𝑘 − 2.4, column 4: = 0.56𝑘 − 3, row 1: = −2.96,
row 2: = −1.48, row 3: = 0.54𝑘 −3.5, row 4: = 0.72𝑘 −
2.2.

Step 2. From Theorem 6 we have: for column 3: 𝑘 < 3.428,
and for column 4: 𝑘 < 5.357, and for row 1: 𝑘 < 6.482,
row 2: 𝑘 < 3.0555.

Step 3. The desired value of 𝑘 is 𝑘max = min(𝑘𝑐, 𝑘𝑟 ) = 3.0555.
Therefore, the transient values in the nonlinear system with

characteristics satisfying the condition (14) with 𝑘 < 3.0555
decrease faster than 𝑒−𝛾𝑡 .

Remark 2. From the matrix (17) and the computation proce-
dure, it follows that the 𝑘 depends only on the matrices 𝐹, 𝐺, 𝐻
and is independent of the matrices 𝐴, 𝐶, 𝐺.

4. EXPONENTIAL DECAY IN FRACTIONAL POSITIVE
NONLINEAR FEEDBACK SYSTEMS

Consider the fractional nonlinear feedback system with a similar
structure as shown in Fig. 1, which consists of the fractional
positive linear part, the nonlinear element with characteristics
shown in Fig. 2, and the dynamical positive feedback element.

The fractional positive linear part is described by equations
(7a)–(7b) and the fractional positive feedback element by equa-
tions

𝑑𝛽𝑧

𝑑𝑡𝛽
= 𝐹𝑧+𝐺𝑦, (25a)

𝑒 = 𝐻𝑧, (25b)

where 𝑧 = 𝑧(𝑡) ∈ ℜ𝑛2
+ , 𝑦 = 𝑦(𝑡) ∈ ℜ+, 𝑒 = 𝑒(𝑡) ∈ ℜ+ are the state,

input, and output vectors, and the fractional derivative is defined
by (6).

It is assumed that the fractional positive linear systems (7) and
(25) are asymptotically stable and the nonlinear characteristic
𝑢 = 𝑓 (𝑒) satisfies the condition (14).

From (7) and (25) we obtain
𝑑𝛼𝑥

𝑑𝑡𝛼

𝑑𝛽𝑧

𝑑𝑡𝛽

 = 𝐴̂

[
𝑥

𝑧

]
+ 𝐵̂𝑢, (26)

where the matrices 𝐴̂ and 𝐵̂ are defined by (16b).

Definition 5. The fractional nonlinear positive system is called
globally stable if it is asymptotically stable for all nonnegative
initial conditions 𝑥(0) ∈ ℜ𝑛1

+ .

The following theorem gives sufficient conditions for the
global stability of the fractional positive nonlinear system.

Theorem 7. The fractional nonlinear system consisting of the
positive linear part (7), the nonlinear element satisfying the
condition (14), and the positive fractional dynamical feedback
(25) is globally stable if the matrix[

𝐴+ 𝐼𝑛1𝛾 𝑘𝐵𝐻

𝐺𝐶 𝐹 + 𝐼𝑛2𝛾

]
∈ 𝑀𝑛 (27)

is asymptotically stable.
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Proof. The proof will be accomplished using the Lyapunov
method [19, 20]. As the Lyapunov function 𝑉 (𝑥, 𝑧) we choose
the scalar function defined by (18).

Using (18) and (26) we obtain


𝑑𝛼𝑉 (𝑥, 𝑧)

𝑑𝑡𝛼

𝑑𝛽𝑉 (𝑥, 𝑧)
𝑑𝑡𝛽

 = 𝜆𝑇


𝑑𝛼𝑥

𝑑𝑡𝛼

𝑑𝛽𝑧

𝑑𝑡𝛽

 = 𝜆𝑇

{[
𝐴 0
𝐺𝐶 𝐹

] [
𝑥

𝑧

]
+
[
𝐵

0

]
𝑢

}

= 𝜆𝑇

{[
𝐴 0
𝐺𝐶 𝐹

] [
𝑥

𝑧

]
+
[
𝐵

0

]
kHz

}
= 𝜆𝑇

[
𝐴 𝑘𝐵𝐻

𝐺𝐶 𝐹

] [
𝑥

𝑧

]
≤ 0 (28)

since 𝐵𝑢 = 𝐵 𝑓 (𝑒) ≤ 𝑘𝐵𝐻𝑧.
From (28) it follows that the fractional derivatives of the

Lyapunov function are negative if the condition (27) is satisfied
and the fractional nonlinear system is globally stable. □

Note that if the condition (27) is satisfied then the transient
values in the nonlinear system decrease faster than 𝑒−𝛾𝑡 .

For the fractional nonlinear feedback systems, we can also
formulate and solve similar two problems as for the standard
nonlinear systems presented in Section 3.

Example 2. Consider the nonlinear fractional positive system
shown in Fig. 1 described by (13) and (15a) with the matrices

𝐴 =

[
−4 1
1 −5

]
, 𝐵 =

[
0.5
0.4

]
, 𝐶 =

[
0.2 0.4

]
, (29a)

and

𝐹 =

[
−5 1
1 −4

]
, 𝐺 =

[
0.6
0.5

]
, 𝐻 =

[
0.3 0.2

]
, (29b)

respectively. Find the value of 𝑘 satisfying the condition (14)
for which all transient values in the nonlinear system decrease
faster than 𝑒−𝛾𝑡 for 𝛾 = −2.

Using (27) and (29) we obtain

[
𝐴+ 𝐼2𝛾 𝑘𝐵𝐻

𝐺𝐶 𝐹 + 𝐼2𝛾

]
=


−2 1 0.1𝑘 0.2𝑘
1 −3 0.08𝑘 0.16𝑘

0.12 0.24 −3 1
0.1 0.2 1 −2


. (30)

The sums of entries of the columns of the matrix (30) are: col-
umn 1: = −0.78, column 2: = −1.56, column 3: = 0.18𝑘 − 2,
column 4: = 0.36𝑘 − 1. By Theorem 6 we have for the col-

umn 3:−𝑘 = 2
0.18

= 11.11 and for column 4: −𝑘 = 1
0.36

= 2.777.
Therefore, the transient values in the nonlinear system decrease
faster than 𝑒−2𝑡 for 𝑘 < 2.777.

5. CONCLUDING REMARKS

The exponential decay of transient values in nonlinear contin-
uous-time standard and fractional orders with linear dynami-
cal positive feedback systems and of positive linear parts with
interval matrices is investigated. Sufficient conditions for the
exponential decay of transient values in this class of positive
nonlinear systems are established (Theorem 6). The main re-
sult is extended to different fractional orders nonlinear positive
systems (Theorem 7). Procedures for the computation of gains
characterizing the class of nonlinear elements are given and
illustrated in simple examples.

The considerations can be extended to nonlinear discrete-time
fractional systems with interval matrices of positive linear parts.
An open problem is an extension of the considerations to non-
linear different-order fractional systems with interval matrices
of their positive linear parts.
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