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This study investigates advanced control techniques to evaluate the trajectory
tracking control of a two-degrees-of-freedom (2-DOF) helicopter system based on
simulation and hardware implementation experiments. For this, a Quanser Aero 2
platform and its QUARC software, integrated within MATLAB/Simulink, are used to
design and implement multiple controllers, including Proportional Integral Derivative
(PID), Fuzzy PID, and Adaptive Neuro Fuzzy Inference System (ANFIS) controllers.
A two-phase approach was followed to assess and compare these controllers’ ability
to handle parametric uncertainties, unmodeled dynamics, and matched disturbances.
Firstly, simulation experiments were conducted using an uncertain system model, con-
sidering the controller’s responses in scenarios with and without cross-coupling and
matched disturbances. Subsequently, hardware experiments were conducted under the
same conditions to validate the simulation results, providing real-time performance
comparisons. Finally, a rigorous quantitative assessment based on multiple perfor-
mance metrics including Root Mean Square Error (RMSE), peak value, Integral
Square Error (ISE), Integral of Absolute Error (IAE), and Integral of Time-multiplied
Absolute Error (ITAE) demonstrated overperformance achieved using ANFIS for pitch
control and Fuzzy PID for yaw control.

1. Introduction

Over recent years, there has been a significant surge in research focused on
Unmanned Aerial Vehicles (UAVs), particularly concerning their control, stability,
and tracking. From uses in defense and security sectors [1] to urban and remote
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surveillance in cities or inaccessible locations [2], as well as applications in the
agricultural industry involving aerial monitoring and spraying [3]. This surge in
interest has led to advancements in the development and control of UAVs, which
come in diverse configurations, including fixed-wing, multi-rotor, and helicopters.
This latter stands out because it requires the fewest number of motors to achieve a
stable flight, typically just two or three.

The helicopter system represents a complex, nonlinear plant with multiple vari-
ables. It incorporates electric actuators and rotary wings, all governed by a control
system. This integrated setup generates the required thrust to counter aerodynamic
drag during forward motion and the necessary lift force to support the helicopter’s
weight. The control design for such a system faces significant challenges due to
the cross-coupling between inputs and outputs and the uncertainty surrounding
the precise acquisition of the model’s parameters and external disturbances [4, 5].
Consequently, there is a critical need for efficient control strategies to enhance
the performance of the helicopter in achieving control tasks such as tracking and
stabilization [6–8].

Traditional strategies to address the helicopter’s motion control, such as Pro-
portional Integral (PI) or Proportional Integral Derivative (PID) control [9], require
linearization of the system to bring its control to specific operating points. How-
ever, this approach often conflicts with the nonlinear nature of the helicopter and
the aforementioned disturbances and uncertainties. Moreover, tuning and adjust-
ing PID parameters under such conditions can be challenging. Modern control
is embracing new intelligent methods that emulate the essential characteristics of
the human brain. These features include adapting and learning, planning under
high uncertainty, and working with large amounts of data [10]. The well-known
intelligent methods comprise neural networks, fuzzy logic, and hybrid systems
combining more than one of the above techniques or classical control approaches
[11].

Researchers have proposed various intelligent control approaches for two-
degrees-of-freedom (2-DOF) helicopters in the literature, each offering distinct
advantages and drawbacks. Some of these works include fuzzy logic [12], which
provides a more intuitive and human-like approach to decision-making for com-
plex dynamic systems. Fuzzy logic control has proven to be effective for con-
trolling the 2-DOF helicopter [13, 14]. This control method adapts to changes in
operating conditions and uncertainties, leading to better tracking performance,
reduced overshoot, and enhanced stability. This efficacy makes fuzzy logic a
valuable tool for combining with other approaches, such as PID [15], Linear
quadratic regulator (LQR) [16], and sliding mode control [17–20], to exploit
their respective strengths. Fuzzy PID control combines the adaptive and flexi-
ble nature of fuzzy logic with the precision and stability of PID control [21, 22].
Unlike conventional PID controllers that rely on fixed, pre-defined parameters, a
fuzzy PID controller incorporates linguistic rules and membership functions to
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adapt the gains to changing conditions and uncertainties based on real-time system
behavior.

Another intriguing fusion for controlling 2-DOF helicopters involves Neuro-
Fuzzy control [23–25]. This hybrid approach integrates the adaptability of fuzzy
logic with the learning capabilities of neural networks both contributing to im-
proved tracking and overall system performance. A particular type of neuro-fuzzy
control is the Adaptive Network-based Fuzzy Inference System (ANFIS) [26]. The
key feature of ANFIS is its systematic layered architecture. It uses a hybrid learn-
ing algorithm to adjust parameters based on both input-output data and predefined
fuzzy rules. The resulting ANFIS model can adapt to changing conditions and learn
from experience, making it particularly effective for control applications where a
combination of fuzzy logic and neural network capabilities is beneficial. In [27],
an online ANFIS controller is used for a 2-DOF helicopter.

Inspired by the discussion above, each method contributes to advancing con-
trol systems, addressing specific challenges, and offering unique benefits and lim-
itations.This study aims to provide a comprehensive evaluation and comparison
of three controllers, namely PID, Fuzzy PID, and ANFIS, for robust trajectory
tracking of the Quanser Aero 2 2-DOF helicopter system under parametric un-
certainties, unmodeled dynamics, cross-coupling, matched disturbances, and in-
put saturation. The novelty of this work lies in the systematic investigation of
these controllers’ performance through both simulation and real-time hardware
implementation, considering a range of uncertainties and disturbances that are
commonly encountered in practical UAV applications. A rigorous quantitative as-
sessment based on multiple performance metrics including Root Mean Square
Error (RMSE), peak value, Integral Square Error (ISE), Integral of Absolute Er-
ror (IAE), and Integral of Time-multiplied Absolute Error (ITAE) is presented
to evaluate the controller’s efficacy. Moreover, by utilizing the capabilities of the
QUARC software and the Quanser Aero 2 platform [28], integrated with MAT-
LAB/Simulink, this study offers insights into the most effective control strategy
for achieving robust trajectory tracking under challenging conditions. The findings
of this study will contribute to the development of reliable and robust control sys-
tems for UAVs, enabling their safe and efficient operation in challenging real-world
conditions.

The organization of this paper is the following. In section 2 we present the 2-
DOF helicopter system description and modeling. In section 3 we detail the design
procedures for the PID, Fuzzy PID, and ANFIS controllers. Section 4 covers the
numerical simulations, evaluating the controllers’ performance under uncertain-
ties and disturbances. Section 5 presents the real-time hardware implementation
results, where the controllers are tested on the Quanser Aero 2 platform. In section
6, we discuss and analyze the findings from both the simulation and hardware
implementation experiments. Finally, section 7 concludes the paper and suggests
future work directions.
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2. System Description and Modeling

The Quanser Aero 2, depicted in Fig. 1 [29], is a reconfigurable dual-rotor lab-
oratory experiment specifically designed by Quanser to perform aerospace control
experiments. It can be arranged in a 2-DOF helicopter-like setup with the main
thruster horizontally positioned and the tail thruster vertically, both powered by
DC motors. The Quanser Aero 2 consists of a grounded base with a built-in data
acquisition card, a set of encoders to measure angular positions of pitch and yaw
axes, and an Inertial Measurement Unit (IMU).

Fig. 1. Quanser Aero 2 [29]

From a control perspective, the 2-DOF helicopter configuration represents a
higher-order nonlinear MIMO (Multiple Input Multiple Output) system charac-
terized by prominent cross-couplings between pitch and yaw axes. The free body
diagram, illustrated in Fig. 2, allows us to obtain the following equations of motion
about the horizontal axis [30] for the pitch and yaw axes, respectively:

𝐽𝑝 ¥𝜃 + 𝐷 𝑝
¤𝜃 + 𝐾𝑠𝑝𝜃 = 𝜏𝑝,

𝐽𝑦 ¥𝜓 + 𝐷𝑦
¤𝜓 = 𝜏𝑦 ,

(1)

where the forces exerted on the pitch and yaw axes are:

𝜏𝑝 = 𝐾𝑝𝑝𝐷𝑡𝑉𝑝 + 𝐾𝑝𝑦𝐷𝑡𝑉𝑦 ,

𝜏𝑦 = 𝐾𝑦𝑝𝐷𝑡𝑉𝑝 + 𝐾𝑦𝑦𝐷𝑡𝑉𝑦 .
(2)

The physical parameters used in equations (1) and (2) are described in Table. 1.
Some of the model parameters are provided in the Quanser Aero 2 user manual
[30], while the remaining ones are determined through experimental identification.
These latter cannot be precisely accurate, implying the presence of uncertainties
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Fig. 2. Free body diagram of the Quanser Aero 2 [30]

Table 1. Physical parameters of the Quanser Aero 2 helicopter [31]

Symbol Description Value Unit

𝐽𝑝 Pitch axis inertia 0.0232 Kg m2

𝐽𝑦 Yaw axis inertia 0.0238 Kg m2

𝐷 𝑝 Pitch axis damping 0.0020 Nm/V
𝐷𝑦 Yaw axis damping 0.0019 Nm/V
𝐾𝑠𝑝 Pitch axis stiffness 0.0074 Nm/V
𝐾𝑝𝑝 Pitch thrust gain from front rotor 0.0032 N/V
𝐾𝑝𝑦 Pitch thrust gain from rear rotor 0.0014 N/V
𝐾𝑦𝑦 Yaw thrust gain from rear rotor 0.0061 N/V
𝐾𝑦𝑝 Yaw thrust gain from front rotor -0.0032 N/V
𝐷𝑡 Distance between pivot and rotor center 0.1674 m

in the helicopter model. On the other hand, we notice from eq. (2) that a reaction
torque is acting from the pitch axis to the yaw axis and vice-versa, which implies
cross-coupling between axes.

Considering initial conditions to be null and using the Laplace transform,
the following transfer functions (3) are derived to describe the system motions to
voltage inputs for the pitch and yaw axes, respectively.

Θ(𝑠) = 𝐺11(𝑠)𝑉𝑝 (𝑠) + 𝐺12(𝑠)𝑉𝑦 (𝑠),

Ψ(𝑠) = 𝐺21(𝑠)𝑉𝑝 (𝑠) + 𝐺22(𝑠)𝑉𝑦 (𝑠),
(3)

with the transfer function𝐺11(𝑠),𝐺12(𝑠),𝐺21(𝑠) and𝐺22(𝑠) which are defined as:
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𝐺11(𝑠) =
𝐾𝑝𝑝𝐷𝑡

𝐽𝑝𝑠
2 + 𝐷 𝑝𝑠 + 𝐾𝑠𝑝

,

𝐺12(𝑠) =
𝐾𝑝𝑦𝐷𝑡

𝐽𝑦𝑠
2 + 𝐷𝑦𝑠

,

𝐺21(𝑠) =
𝐾𝑦𝑝𝐷𝑡

𝐽𝑝𝑠
2 + 𝐷 𝑝𝑠 + 𝐾𝑠𝑝

,

𝐺22(𝑠) =
𝐾𝑦𝑦𝐷𝑡

𝐽𝑦𝑠
2 + 𝐷𝑦𝑠

.

(4)

3. Controllers Design

In this section, the basic concepts behind the design of the PID, Fuzzy PID and
ANFIS controllers will be introduced for the specific application of the trajectory
tracking of Quanser Aero 2.

3.1. PID controller

The PID controller stands as a widely adopted and favored control method
across various industries. The fundamental concept behind the PID controller lies
in computing the difference between the desired value, denoted as 𝑟 (𝑡), and the
real-time measured output, denoted as 𝑦(𝑡), then continuously monitoring this
difference to steer systems’ output towards the desired setpoint:

𝑒𝑟 (𝑡) = 𝑟 (𝑡) − 𝑦(𝑡). (5)

The typical control law for a PID controller using eq. (5) is:

𝑢 = 𝑘 𝑝 (𝑒𝑟 (𝑡)) + 𝑘𝑑
(

d
d𝑡
𝑒𝑟 (𝑡)

)
+ 𝑘𝑖

(∫
𝑒𝑟 (𝑡)d𝑡

)
, (6)

where 𝑘 𝑝 is the proportional gain, 𝑘𝑑 is the derivative gain, and 𝑘𝑖 is the integral
gain.

In this work, two PID controllers are designed to regulate the motion of the pitch
and yaw axes of the Quanser Aero 2 helicopter to desired positions, respectively,
using eqs. (3) and (4). Hence, for the pitch axis, 𝑟 (𝑡) = 𝜃𝑑 (𝑡) is the reference pitch
angle, and 𝑦 (𝑡) = 𝜃 (𝑡) is the measured pitch angle, and 𝑢 = 𝑉𝑝 the control input,
which represents the applied motor voltage to the front pitch rotor. For the case of
yaw axis control, 𝑟 (𝑡) = 𝜓𝑑 (𝑡) is the desired yaw angle, 𝑦 (𝑡) = 𝜓(𝑡) the measured
yaw angle and the control input of the rear yaw rotor motor is the voltage 𝑢 = 𝑉𝑦 .

The PID controller’s gains were adjusted manually during simulations using
the Ziegler-Nichols tuning method to determine the most suitable values for the
three PID parameters corresponding to the best regulation outcome of the pitch
and yaw angles.
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3.2. Fuzzy PID controller

Unlike conventional logic, fuzzy logic, introduced by Zadeh in 1965 [12], uses
linguistic variables to emulate the human mind. This type of processing, although
simple, is remarkably powerful and closely aligns with human expert reasoning.
Mathematically, a fuzzy controller employs control laws that incorporate IF · · ·
THEN logical rules, combined with fuzzy membership functions to effectively
regulate the process and minimize errors.

This work presents a methodology for integrating the error between desired
and actual output trajectories, as well as its time derivative from the input PID
regulator into a fuzzy controller. To achieve this, the parameters 𝑘 𝑝, 𝑘𝑖, and 𝑘𝑑
are written as nonlinear fuzzy functions and independently adjusted using three
distinct fuzzy controllers, as illustrated in Fig. 3.

Fig. 3. Fuzzy PID controller

The fuzzy logic systems were created utilizing the Mamdani inference method
and integrated into the PID regulator for real-time turning of its gains. The cor-
responding fuzzy rules, enumerated in Table. 2, Table. 3 and Table. 4 show the
mapping of input and the output linguistic variables for the (𝑘 𝑝), (𝑘 𝑖) and (𝑘𝑑)
gains, respectively. Five fuzzy sets, represented by triangular membership func-
tions, are used to represent the input variables (error and its rate of change). These
fuzzy sets are labeled as NB (Negative Big), N (Negative), ZE (Zero), P (Positive),
and PB (Positive Big). Similarly, triangular membership functions are employed
to represent the output variables, namely the PID controller’s gains 𝑘 𝑝, 𝑘𝑖, and
𝑘𝑑 . These fuzzy sets are labeled as S (Small), MS (Medium Small), MB (Medium
Big), and B (Big). The center of gravity method is employed for defuzzification
to determine the final output value of the fuzzy system. This method is chosen
due to its ability to achieve high control sensitivity to changes in the input signals
while maintaining computational efficiency, making it suitable for real-time control
applications.
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Finally, two Fuzzy PID controllers are implemented within MATLAB/Simulink
to control the motion of the pitch and yaw axes of the 2-DOF helicopter: Quanser
Aero 2.

Table 2. Fuzzy rule base for 𝑘 𝑝

e
de

NB N ZE P PB

NB B B MB S MS
N B MB MS S S

ZE MB MS S MS MB
P S S MS MB B

PB MS S MB B B

Table 3. Fuzzy rule base for 𝑘𝑖

e
de

NB N ZE P PB

NB MB MS S MS MB
N B MB MS MB B

ZE B MB S MB B
P B MB MS MB B

PB MB MS S MS MB

Table 4. Fuzzy rule base for 𝑘𝑑

e
de

NB N ZE P PB

NB S S MS S S
N MB MS MS MS MB

ZE B MS S MS B
P MB MS MS MS MB

PB S S MS S S

3.3. ANFIS controller

The ANFIS (Adaptive Neuro Fuzzy Inference System) controller represents
an advanced fusion of Fuzzy Logic with an Artificial Neural Network (ANN),
employing neuro-adaptive learning methods to dynamically construct member-
ship functions (MF) and control rules [26]. The ANFIS consists of a five-layer
architecture utilized for model development [32, 33], as illustrated in Fig. 4.

ANFIS is based on the Takagi–Sugeno fuzzy inference system and is consid-
ered a universal estimator. The training and validation data are derived from the
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closed-loop output results obtained using the conventional PID controller. Sub-
sequently, the model is trained using the hybrid optimization training algorithm
proposed by MATLAB [34], and its performance is evaluated by comparing it to
the experimental data obtained from the output results of the PID controller. The
ANFIS model is generated using the MATLAB toolbox "Neuro-Fuzzy Designer,"
offering a robust framework for various tasks, as depicted in Fig. 5.

Designing an ANFIS controller for the 2-DOF helicopter system involves
employing the error and its derivative as inputs. Fig. 4 and Fig. 5 illustrate the
various layers of the controller, which are described further below.

Fig. 4. 5-Layer ANFIS structure

Fig. 5. Structure of ANFIS within MATLAB/Simulink [34]

3.3.1. First layer: Fuzzification layer

In this layer, the fuzzification takes place. This means that each non-fuzzy
entry is assigned a membership value for each fuzzy subset. Gaussian membership
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functions represented in (7) have been selected for each entry [33]. This layer
consists of nodes, and each node is an adaptive node.

𝜇𝐴𝑖
(𝑥) = exp

−
((
𝑥 − 𝑐𝑖
𝑎𝑖

)2
)𝑏𝑖  , for 𝑖 = 1, 2, (7)

where 𝑐𝑖 is the center (mean) of the Gaussian curve, 𝑎𝑖 is the curve’s width, and 𝑏𝑖
is the premise parameter.

3.3.2. Second layer: Rules layer

The output of each fixed node in this layer, shown by the symbol 𝑃𝑖, is the sum
of all incoming signals:

𝑂2,𝑖 = 𝜔𝑖 = 𝜇𝐴𝑖
(𝑥) × 𝜇𝐵𝑖

(𝑥), for 𝑖 = 1, 2. (8)

The output of each node𝑂2,𝑖 represents the trigger intensity of a rule [32], and
𝜔𝑖 is the firing strength of the 𝑖𝑡ℎ-rule.

3.3.3. Third layer: Normalization layer

Each fixed node in this layer is labeled as 𝑁 . The 𝑖𝑡ℎ-estimate node is in charge
of calculating the relationship between the trigger intensity of the 𝑖𝑡ℎ-estimate and
the fuzzy rule with respect to the sum of their trigger intensities.

𝑂3,𝑖 = �̄�𝑖 =
𝜔𝑖

𝜔1 + 𝜔2
, for 𝑖 = 1, 2. (9)

For convenience, each output of this layer is referred to as the normalized
trigger intensity [32].

3.3.4. Fourth layer: Defuzzification layer

Each node 𝑖 belonging to this layer is called an adaptive node and is determined
as follows:

𝑂4,𝑖 = �̄�𝑖 𝑓𝑖 = �̄�𝑖 (𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖) , for 𝑖 = 1, 2. (10)

where �̄�𝑖 is the normalized trigger intensity from the third layer and 𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖
are the set of parameters known as consequent parameters [32] of the ANFIS
algorithm and are adjusted using recursive least squares algorithm.
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3.3.5. Fifth layer: Output Layer

The node in this layer is called Σ, because it summates all the incoming signals
as 𝑂5,𝑖 to obtain an adaptive network that is functionally similar to a Sugeno fuzzy
model.

𝑂5,𝑖 =
∑︁
𝑖

�̄�𝑖 𝑓𝑖 =

∑
𝑖 𝜔𝑖 𝑓𝑖∑
𝑖 𝜔𝑖

, for 𝑖 = 1, 2. (11)

4. Simulation Results

Before implementing the controllers on the Quanser Aero 2 platform, we
proceed first at simulating the PID, fuzzy PID, and ANFIS controllers using the
developed uncertain model expressed by eq. (3) within MATLAB/Simulink. The
simulation experiments involve two cases, first by considering a decoupled undis-
turbed model, then by introducing cross-coupling and reaction torques along with
non-vanishing matched disturbances provided by a band-limited white noise to
assess the robustness of the controllers.

The desired trajectory for the pitch angle is selected as a square wave with an
amplitude of 15◦ and a frequency of 0.05 𝐻𝑧, while for the yaw angle, the input
signal is a square wave with an amplitude of 30◦ and a frequency of 0.04 𝐻𝑧. It
should be noted that the input voltage of the 2-DOF Quanser Aero 2 helicopter
platform is saturated by 𝑉𝑝,𝑉𝑦 ∈ [−24, 24] 𝑉 . Initial conditions are considered
null for both pitch and yaw angles. It should be mentioned that this saturation also
affects the control input signals.

The values of 𝑘 𝑝 = 116.3, 𝑘𝑖 = 12.7, and 𝑘𝑑 = 99.6 are selected for the PID
controller of the pitch motion. Whereas for the yaw motion, the values of PID gains
are 𝑘 𝑝 = 38.1, 𝑘𝑖 = 5.3 and 𝑘𝑑 = 34.5, respectively. This choice is determined
from the observation of the numerical simulations.

The following figures compare the desired trajectories (solid lines) to the mea-
sured trajectories using PID (dotted lines), Fuzzy PID (dashed lines) and ANFIS
(Dash-dotted lines) for both axes (subfigures (a)). Additionally, the tracking errors
between the desired and actual signals are displayed in subfigures (b).

4.1. Case 1: Decoupled undisturbed model

In this case, the dynamic model of the Quanser Aero 2 helicopter is simpli-
fied by assuming null transfer functions 𝐺12(𝑠) and 𝐺21(𝑠). While this model is
acknowledged to be uncertain due to experimentally identified parameters, it does
not include cross-coupling between axes.

In Fig. 6, we observe that all three controllers effectively track the desired pitch
angle trajectory. However, the Fuzzy PID controller exhibits a smaller overshoot
and a slightly slower convergence to the desired trajectory compared to the ANFIS
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Fig. 6. Simulation of trajectory tracking of pitch angle: undisturbed system

and PID controllers. This observation suggests that the Fuzzy PID controller may
be more conservative in its control actions. The ANFIS controller, on the other
hand, demonstrates a rapid and accurate response to the pitch angle trajectory. This
is due to the ANFIS controller’s ability to learn complex nonlinear relationships be-
tween the input and output signals. Overall, the ANFIS controller exhibits superior
tracking performance for the pitch axis.

As illustrated in Fig. 7, all three controllers exhibit similar tracking perfor-
mance for the yaw axis. While a slight overshoot is observed for the Fuzzy PID
controller, the overall tracking accuracy is comparable to the ANFIS and PID con-
trollers. This implies that the yaw motion appears to be less sensitive to controller
differences compared to the pitch motion.

Fig. 8 and Fig. 9 depict the control inputs applied to the pitch and yaw pro-
pellers, respectively, by the ANFIS, Fuzzy PID, and PID controllers. In Fig. 8, it
is observed that the ANFIS and PID controllers exhibit similar control input mag-
nitudes for pitch motion. However, the Fuzzy PID controller consistently employs
smaller control inputs.

In contrast to pitch motion, Fig. 9 demonstrates that the Fuzzy PID controller
requires the largest control inputs for the yaw motion. The ANFIS and PID con-
trollers, on the other hand, exhibit similar control input magnitudes.
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Fig. 9. Control performance in simulation: yaw angle without disturbance
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It is noticed that the control signals of all three controllers reach the saturation
level; however, each controller effectively accomplishes the trajectory tracking
task.

4.2. Case 2: Coupled model with matched disturbances

To evaluate the controllers’ robustness against cross-coupling and matched
disturbances, we employ the comprehensive uncertain dynamic model outlined in
equations (3) and (4). We introduce a non-vanishing band-limited white noise using
a block that generates normally distributed random numbers, suitable for integration
into continuous or hybrid systems. The generated noise signals are added to the
input controls as matched disturbances. The initial conditions, desired trajectories,
and controller parameters remain the same as in the previous simulation setup. The
simulation results for both the pitch and yaw axes are illustrated in Figs. 10, 11,
12, and 13, respectively.

Fig. 10 and Fig. 11 show the effect of matched disturbances on the tracking
responses. These figures demonstrate that all three controllers maintain effective
tracking of the desired pitch and yaw trajectories despite the introduced noise
disturbances and cross-coupling but with more overshoot. The ANFIS controller
exhibits the most precise tracking for the pitch angle, followed by the Fuzzy PID
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(a) Pitch trajectory tracking result
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Fig. 10. Simulation of pitch trajectory tracking with matched disturbance
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(b) Yaw tracking error result.

Fig. 11. Simulation of yaw trajectory tracking with matched disturbance
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Fig. 12. Control performance of pitch angle in simulation under matched disturbance
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Fig. 13. Control performance of yaw angle in simulation yaw under matched disturbance
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and PID controllers. In contrast, the Fuzzy PID is more accurate for the yaw angle
tracking.

Regarding input control signals, Fig. 12 and Fig. 13 show that the control
inputs for the pitch and yaw axes exhibit significant noise attributed to the non-
vanishing band-limited white noise. Nevertheless, the obtained tracking responses
show the robustness of the controllers to reject matched disturbances and to handle
cross-coupling between pitch and yaw axes.

4.3. Comparison of simulation results

To quantitatively assess the performance of the PID, Fuzzy PID, and ANFIS
controllers from the simulation viewpoint, we investigate five performance metrics:
RMSE, peak value, ISE, IAE, and ITAE. RMSE is a common performance metric
used in trajectory tracking tasks to measure the accuracy of a model or system
in predicting or following a desired trajectory. It essentially measures the average
distance between the desired and the actual trajectories. Smaller RMSE values
indicate better tracking performance. Peak value, on the other hand, measures the
maximum deviation by which the system’s response exceeds the desired trajectory.
A higher peak value indicates a more pronounced overshoot, while a lower peak
value implies a smoother transition towards the desired trajectory. Finally, ISE, IAE
and ITAE are commonly used performance metrics in trajectory tracking tasks.
They measure the cumulative error between the desired and actual trajectories over
time. Smaller metrics values indicate better tracking performance, implying that
the system consistently follows the desired trajectory with minimal deviations.

Table 5 and Table 6 indicate calculated performance metrics from the simu-
lation results of applying PID, Fuzzy PID, and ANFIS to track pitch and yaw tra-
jectories of the Quanser Aero 2 helicopter system for both cases with and without
disturbances. Analyzing the pitch motion, the three controllers achieve satisfactory
tracking performance without disturbances. However, when disturbances are intro-
duced, the ANFIS controller demonstrates the lowest RMSE, ISE, IAE, and ITAE
values, indicating better tracking accuracy and minimizing overall error accumu-
lation. In terms of peak value, the PID controller shows the lowest values in both
cases. Despite disturbances, all three controllers can effectively limit overshoot and
maintain smooth transitions toward the desired trajectory.

Table 5. Simulation comparison for pitch axis
Without disturbance Disturbed model

Metric PID Fuzzy PID ANFIS PID Fuzzy PID ANFIS
RMSE 8.210 7.643 7.577 7.641 8.226 7.561
Peak Value (◦) 15.19 15.73 15.80 16.10 17.85 17.31
ISE (×104) 0.354 0.404 0.350 0.362 0.406 0.351
IAE (×104) 195.1 224.3 180.9 189.1 240.3 185.2
ITAE (×104) 0.560 0.640 0.513 0.626 0.662 0.546
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Table 6. Simulation comparison for yaw axis
Without disturbance Disturbed model

Metric PID Fuzzy PID ANFIS PID Fuzzy PID ANFIS
RMSE 15.70 14.41 15.09 17.85 16.17 17.31
Peak Value (◦) 31.89 31.30 32.53 35.84 33.44 36.87
ISE (×104) 1.479 1.246 1.366 1.568 1.364 1.408
IAE (×104) 400.8 311.6 357.7 499.6 376.5 446.6
ITAE (×104) 1.162 0.906 1.034 1.461 1.094 1.293

In contrast, the Fuzzy PID controller presents the lowest RMSE, RMSE, ISE,
IAE, and ITAE values for the yaw motion under both conditions, indicating better
tracking accuracy and minimizing overall error accumulation. It also shows the
smallest peak value among the three controllers. This indicates that the Fuzzy PID
controller can effectively limit overshoots. In this context, the Fuzzy PID emerges
as the most effective controller for the yaw axis. These results support and affirm
the observations made from trajectory tracking graphs presented earlier.

5. Real-time implementation results

A real-time control system has been implemented on the Quanser Aero 2
platform using the QUARC Real-Time Control Software [28] that is licensed by
Quanser and integrated within Simulink (MathWorks Inc.). The QUARC version
used is the 4.2.3781 (2022) QUARC creates real-time code directly from Simulink-
designed controllers and executes it in real-time on the Windows target, enabling
closed-loop control. The hardware mainly consists of a desktop computer with
processor Intel® Core(TM) i3-4160 CPU @3.60GHz and the real-time target, the
Quanser Aero 2, as illustrated in Fig. 14. A USB communication is used.

Fig. 14. Hardware laboratory setup

This section presents the experimental results of implementing PID, Fuzzy
PID, and ANFIS controllers on the Quanser Aero 2 helicopter. We follow the
same simulation procedure to evaluate the three controllers’ control performance
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and robustness in achieving real-time trajectory tracking. Gains of the conventional
PID are kept the same as those used during numerical simulations. Initial conditions
are 𝜃0 = 0 and 𝜓0 = 0. The desired trajectories for pitch and yaw are chosen as
square waves, similar to simulation experiments.

5.1. Case 1: Implementation results without disturbance

At first, we implemented the PID, Fuzzy PID, and ANFIS controllers on the
Quanser Aero 2 helicopter without introducing disturbances. Both pitch and yaw
motions are recorded and subsequently displayed. Fig. 15 and Fig. 16 illustrate
trajectory tracking and tracking errors between desired and measured signals. The
initial evaluation without disturbances indicates that all three controllers can effec-
tively track the desired trajectories. The PID controller exhibits the closest tracking
for pitch motion, while the Fuzzy PID controller demonstrates superior perfor-
mance for yaw motion. The ANFIS controller, while still achieving satisfactory
tracking, shows slight oscillations around the desired trajectory in both pitch and
yaw motions.
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(a) Pitch trajectory tracking hardware result
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Fig. 15. Hardware response of pitch trajectory tracking: undisturbed Aero 2 system

Fig. 17 and Fig. 18 present the input voltages applied to the pitch and yaw
axes to achieve the desired trajectory tracking. These figures reveal that the three
controller’s input signals remain within the saturation limits for both axes. The
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(a) Yaw trajectory tracking hardware result
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(b) Yaw tracking error hardware

Fig. 16. Hardware response of yaw trajectory tracking: undisturbed Aero 2 system
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Fig. 17. Hardware control performance for the pitch without disturbance
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Fig. 18. Hardware control performance for the yaw without disturbance

PID controller’s input signal is less likely to reach saturation as compared to
the other controllers. In contrast, the ANFIS controller exhibits input signals that
consistently reach saturation levels, suggesting a more aggressive control approach.
This observation aligns with the slightly oscillatory nature of the ANFIS controller’s
response seen in the trajectory tracking figures.

5.2. Case 2: Implementation results with matched disturbance

To experimentally assess the robustness of the PID, Fuzzy PID, and AN-
FIS controllers in the presence of cross-coupling, uncertainties, and matched dis-
turbances, we introduced a non-vanishing band-limited white noise signal as a
matched disturbance to the torque input channels of the pitch and yaw motors, re-
spectively. This disturbance is introduced to mimic known disturbances that might
affect aerospace applications such as wind gusts or changes in the aircraft’s mass
distribution during flight.

The obtained hardware responses are recorded and displayed in Fig. 19 and
Fig. 20. It is observed that despite the presence of uncertainties, cross-coupling,
and matched disturbance, all three controllers reach and track effective trajectory
tracking. The PID controller exhibits a smoother response for the pitch motion with
less overshoot compared to the Fuzzy PID and ANFIS controllers. However, for the
yaw motion, the Fuzzy PID controller outperforms the PID and ANFIS controllers
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(a) Pitch trajectory tracking hardware result
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(b) Pitch tracking error hardware

Fig. 19. Hardware response of pitch trajectory tracking with matched disturbances
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Fig. 20. Hardware response of yaw trajectory tracking with matched disturbances
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in terms of tracking accuracy and overshoot minimization. The ANFIS controller,
while still achieving satisfactory tracking, presents slight oscillations around the
desired trajectories for both axes.

Fig. 21 and Fig. 22 present the input voltages applied to the pitch and yaw
motors to achieve trajectory tracking in the presence of cross-coupling, uncer-
tainties, and matched disturbances. These figures reveal that the control signals
become significantly more noisy compared to the disturbance-free case. Yet, the
three controllers successfully achieve trajectory tracking. It is observed that the
ANFIS controller’s input signal exhibits a higher degree of saturation compared to
the PID and Fuzzy PID controllers. The increased noise levels and control effort
highlight the challenges of maintaining precise tracking in the presence of external
perturbations. The controllers need to balance tracking accuracy with robustness
to disturbances and cross-coupling, while also considering the limitations of the
actuators.
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Fig. 21. Hardware control performance for the pitch under matched disturbance

5.3. Comparison of hardware implementation results

Following a similar quantitative evaluation procedure to compare the con-
trollers’ response from a real-time hardware implementation viewpoint on the
Quanser Aero 2 helicopter, we analyze the obtained results in terms of RMSE,
peak value, ISE, IAE, and ITAE as presented in Table. 7 and Table. 8.
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Fig. 22. Hardware control performance for the yaw under matched disturbance

Analyzing the pitch motion, the PID controller demonstrates the lowest RMSE,
ISE, IAE, and ITAE values for both undisturbed and disturbed systems, followed
by the ANFIS controller and then the Fuzzy PID controller, indicating better
tracking accuracy and minimizing overall error accumulation. In terms of peak
value, the ANFIS controller shows the smallest peak value which represents a
minimal overshoot.

For the yaw motion, the Fuzzy PID controller comes out as the most effective
controller, achieving the lowest peak value, RMSE, ISE, IAE, and ITAE values
for both undisturbed and disturbed systems. The ANFIS controller follows closely
behind, then the PID controller. These results follow the observations made from
the trajectory tracking graphs.

Table 7. Hardware response comparison for pitch axis

Without disturbance Disturbed model
Metric PID Fuzzy PID ANFIS PID Fuzzy PID ANFIS

RMSE 6.910 7.472 7.115 6.769 7.401 6.839

Peak Value (◦) 22.37 22.75 21.25 23.38 22.12 21.50
ISE (×104) 0.286 0.334 0.303 0.275 0.328 0.280

IAE (×104) 188.1 226.7 215.9 184.3 227.8 214.7

ITAE (×104) 0.572 0.656 0.619 0.546 0.662 0.625
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Table 8. Hardware response comparison for yaw axis

Without disturbance Disturbed model
Metric PID Fuzzy PID ANFIS PID Fuzzy PID ANFIS

RMSE 15.28 13.26 15.92 16.46 13.50 15.78

Peak Value (◦) 33.84 32.17 35.33 36.47 32.96 35.51

ISE (×104) 1.401 1.056 1.521 1.626 1.093 1.494

IAE (×104) 503.3 365.4 547.6 594.6 380.7 536.0

ITAE (×104) 1.383 1.050 1.566 1.781 1.113 1.544

6. Discussion

The analysis of the obtained results of this study revealed significant differ-
ences in control performance between simulated and hardware implementations of
trajectory tracking tasks for Quanser Aero 2 helicopter. In simulations, the ANFIS
controller exhibited superior pitch control under both disturbed and undisturbed
conditions, as demonstrated by the smallest RMSE, ISE, IAE and ITAE values.
However, during hardware validation, the ANFIS control yielded inferior pitch
control results compared to the simulations with small oscillations around desired
trajectories. In contrast, the Fuzzy PID controller maintained its enhanced yaw
control capabilities across both simulated and hardware environments, suggesting
robustness to unmodeled dynamics and uncertainties inherent to real-world testing.
These differences emphasize the importance of validating control systems using
hardware, as simulations alone may not adequately capture factors influencing
closed-loop performance. Hardware constraints or unmodeled dynamics may be
responsible for ANFIS control’s unexpected decline in performance. Additionally,
PID’s simpler structure may have granted it an advantage in adapting to real-world
complexities. Further investigation into specific factors influencing these perfor-
mances in achieving accurate trajectory tracking is essential for refining simulations
and ensuring effective controller design for real-world deployment.

7. Conclusion

This study provided a comprehensive evaluation of PID, Fuzzy PID, and
ANFIS controllers for robust trajectory tracking of the Quanser Aero 2 2-DOF
helicopter system under parametric uncertainties, unmodeled dynamics, cross-
coupling, and matched disturbances. The controllers’ performance was rigorously
assessed through simulations and real-time hardware experiments. Simulation re-
sults highlighted the controllers’ robustness and adaptability under different distur-
bance scenarios. Hardware experiments validated these results, revealing factors
influencing real-world closed-loop performance. Quantitative metrics, including
RMSE, ISE, IAE, ITAE, and peak values, allowed rigorous analysis, underscoring
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the trade-off between tracking accuracy and control effort. Throughout this anal-
ysis, we conclude that the Fuzzy PID controller excels in handling non-linearities
and uncertainties, particularly for yaw control, but faces challenges in rule base de-
sign and computational efficiency. On the other hand, the ANFIS controller offers
superior adaptation to changing dynamics and improved trajectory tracking, yet is
limited by its dependence on quality training data and potential overfitting. This
suggests the development of a hybrid controller combining PID, Fuzzy PID, and
ANFIS techniques in future work, as well as an adaptive tuning method for Fuzzy
PID and ANFIS controllers to optimize performance in real-time under varying
conditions.
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