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Abstract
In this paper, we propose a new confidence interval (CI) for the population mean µ based
on robust estimators, which involves the application of the winsorized modified one-step
M-estimator (WMOM) and winsorized standard deviation (WSD). The proposed method is
modified for the Student’s t confidence interval CI under the non-normal distribution. The
performances of the proposed confidence interval were evaluated via a Monte-Carlo simulation
study by considering the coverage ratio (CR) and the average length (AL) as performance
criteria. The simulation study results show the superior performance of the proposed confidence
interval (CI) over the classical parametric Student’s t for data from a non-normal distribution.
Two real data sets were analyzed, and the results agree to some extent with those of the
simulation study. The results confirm the suitability of the proposed CI estimator for both
normally and non-normally distributed data.
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Introduction

The confidence interval (CI) is a crucial statistical
method used to estimate population location and dis-
persion parameters, aiming to capture the true param-
eter value across repeated samples. CI defines a range
of values that indicates the precision of parameter esti-
mates. On the other hand, data handling is a very sensi-
tive subject. While most data handling techniques pro-
duce optimized results, they typically only work with
data that is normally distributed. Through the growth
and development of technology, enormous amounts of
data have been gathered (Brooks, 1985). However, nor-
mally distributed data is becoming increasingly rare
today, and many statisticians have tried to develop
models to describe their data and produce the desired
results (Johnson, 1978; Sinsomboonthong et al., 2020).
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Data are often positively skewed in the biological
sciences (Ghosh and Polansky, 2016), psychology
(McDonald, 2014), environmental sciences Mudelsee
and Alkio, 2007), and health sciences (Cain, et al.,
2016). CI is an interval estimator that calculates
the true parameter value from repeated samples. It
provides a range of values indicating the accuracy of
estimations for a specific parameter (Abu-Shawiesh
and Saghir, 2019). The normal theory is typically
used to form CI for (the mean (µ)) when concluding
a specific population. However, when samples are
drawn from non-normal populations, it is improper
to build a CI using the normal theory.

The central limit theorem asserts that for large sam-
ple sizes (n), the distribution of sample means (XŻ)
tends to become normal, even for non-normal or un-
known distributions, as noted by Pek et al. (2017).
As a result, a population mean (µ) should have CI
that is unrestricted by the population’s normality as-
sumption (Miller and Penfield, 2005). There are thus
many comparable mechanisms in the methodologies
that can be used to obtain a satisfying coverage ratio
or coverage probability (CR) and short interval aver-
age length (AL) in the presence of a skewed distribu-
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tion and a small sample size, with transformation and
bootstrap being two of the recommended approaches
(Ghosh and Polansky, 2016).

As the literature shows, CI can usually be achieved
for (µ). In practice, it is usually possible to work with
smaller sample sizes, and in this case, Student’s t CI
can be used as a reference instead of the standard CI,
provided that the data are normal. Furthermore, after
extreme skewness or kurtosis in the data, the shape of
the distribution is changed. It was done to verify the
efficiency of the proposed CI in the presence of robust
estimators that are free from distributional assump-
tions. According to Luh, and Guo (2001), the violation
of the normality assumption can be quite common in
applied research, especially with small sample sizes. In
this regard, a robust and efficient alternative method
would be useful to solve the problem. Robust esti-
mators are therefore necessary because they are less
affected by small or outlier deviations from the assump-
tions of the classical model Sindhumol et al., (2016).
Johnson (1978) modified Student’s t-CI for population
mean µ using a new procedure to reduce the effects
of a skewed distribution. Since then, many researchers
have determined the Student’s t confidence interval
for µ in skewed distributions (see, for example, Sin-
somboonthong et al., 2020; Akyuz and Abu-Shawiesh,
2020; Abu-Shawiesh and Saghir, 2019; Ialongo, 2019;
Abu-Shawiesh, 2018; Pek et al., 2017; Visalakshi and
Jeyaseelan, 2013; Abu-Shawiesh, 2022).

The modified one-step M-estimator (MOM), which
is a highly robust estimator, is a superior substitute for
the usage of the sample mean. Depending on the type
of data distribution, the MOM estimator only trims
the extreme data set. The amount of trimming at the
two tails of a distribution with skewed data should
not be equal. For instance, more of the distribution’s
right tail would be trimmed when the distribution was
skewed to the right (Ochuko, 2015; Rousseeuw, and
Croux, 1993). Accordingly, in this work, the CI was
proposed using the robust location estimator (WMOM)
as a substitute for the sample mean (X) and the
robust scale estimator winsorized standard deviation
(WSD) as a substitute for sensitive sample standard
deviation (S). Two types of data were used, those under
normal distribution but with different values for the
population standard deviation σ = 5, 10, 15 and those
under the non-normal distributions generated from
g–h distributions in different shapes (g = 0, h = 0
(normal), g = 0, h = 0.5 (symmetry with heavy tail),
g = 0.5, h = 0 (skewed with normal tail), and g = 0.5,
h = 0.5 (skewed with strong tail).
As a result, the study assesses the differences be-

tween the results obtained from the proposed confi-
dence interval (CI) and the traditional/classical CI.

The proposed CI demonstrated superior performance
for non-normally distributed data, whereas the tradi-
tional CI performed well with normal data but inade-
quately with non-normal data.

The rest of this study is organized as follows: In Sec-
tion 2, the winsorized modified one-step M-estimator
(WMOM) is explained. The statistical methodology of
deriving the proposed confidence interval for the pop-
ulation mean µ is given in Section 3. That section also
includes a review of the classical Student’s t-confidence
interval. In Section 4, simulations are used to evaluate
the performance of the proposed confidence interval in
terms of coverage ratio (CR) and average length (AL).
In Section 5, the results of the simulation study were
discussed. In Section 6, we illustrate the use of the pro-
posed confidence interval using two real-life datasets.
Also to verify the strong performance of the new pro-
posed CI, a comparison between the performance of
several proposed methods in literature and the new
proposed method WMOMSDWMOM-t was performed.
Section 7 limitation of the study. Finally, Section 8
reports our conclusions.

The Winsorized Modified One Step
M-estimator (WMOM)

The winsorized modified one-step M-estimator is
used to construct robust confidence intervals when
computational efficiency is important, especially for
large datasets. It provides a flexible approach for deal-
ing with data that does not follow a normal distri-
bution and is very affected by outliers. By choosing
the percentile at which we want to winsorize our data,
we can control the level of robustness. This allows us
to strike a balance between robustness and efficiency,
depending on the specific characteristics of the data.
From the distribution iid random sample x1, . . . , xn of
size n is taken. Here are the specifics (Haddad, 2018).
Meanwhile, the MOM estimator is written as follows:

θ̂ =

n−i2∑
i=i1+1

X(i)

n− i1 − i2
(1)

where X(i): i-th order statistics of the random sample.
i1: The number of xis which satisfies the criterion.(
xi − M̂

)
< −2.24 ·Qn

(
xi − M̂

)
< −2.24 ·Qn (2)

i2: The number of xis which satisfies the criterion(
xi − M̂

)
> 2.24 ·Qn (3)

n: Sample size. M̂ = med{X1, . . . , Xn} and

Qn = 2.2219 · {|xi, xj |; i < j}(k) (4)

2 Volume 15 • Number 3 • September 2024



Management and Production Engineering Review

where k =

(
h

2

)
; h =

[n
2

]
+ 1.

The estimator Qn is unbiased for σ in a normal
distribution. Its influence function is smooth and effi-
cient with a Gaussian distribution, making it suitable
for both 82 percent breakdown point and asymmetric
distributions. It is commonly used for its breakdown
point and bounded influence function as referenced in
(Rousseeuw, and Croux, 1993; Croux and Rousseeuw,
1992). It is considered as the most appropriate estima-
tor for the study context (Huber,1981), accordingly
Qn is the most suitable assistant robust scale estimator
with high breakdown properties.

Following the stipulations in equations (2) and (3),
outliers found in samples are all removed, and then,
data winsorization is performed. Hence, for each iid
random sample x1, . . . , xn, the winsorized sample is
as expressed below:

Wi =


x(i1+1), if xi ≤ x(i1+1)

xi, if x(i1+1) ≤ xi ≤ x(n−i2)

x(n−i2), if xi ≥ x(n−i2)

 (5)

where:
i1: The number of the smallest outliers in the data
which satisfies the trimming criteria in equation (2).
i2: The number of the largest outliers in the data
which satisfies the trimming criteria in equation (3).

According to the above provisions, the winsorized
standard deviation of W observations of the random
variable and the winsorized MOM for the individual ob-
servations of the random variable are shown as follows:

XWMOM =

n∑
i=1

Wi

n
(6)

SDWMOM =

√√√√ 1

n− 1

[
n∑

i=1

W2
i − n ·W

2

]
(7)

The standard error:

SEWMOM =
SDWMOM√

n
(8)

where: n: The sample size after removing the outliers
(i1 + i2) from the two sides of the data the smallest
i1 and the largest i2 and replacing them all with the
following observations, the observation x(i1+1) from
the left side and x(n−i2) from the right side.
A winsorized MOM is used in place of the sam-

ple mean. Syed-Yahaya, (2006) suggests that using
different trimming criteria for MOM leads to the
development of accurate scale estimators that can

reduce the influence of contaminated observations.
A typical robust scale estimate for the trimming cri-
terion is the median absolute deviation MADn =
1.4826med {|Xi −medjXj |}, which is utilized in MOM.
The bounded effect function and 50% breakdown
threshold show that MAD has a simple explicit for-
mula, is highly fast to calculate and is exceedingly ro-
bust. In this paper, we propose to develop explicit and
82% breakdown scale estimators that are more efficient.
The distances 0.25 quantile served as the basis for the
estimate Qn = 2.2219 · {|xi, xj |; i < j} (Rousseeuw,
and Croux, 1993; Croux and Rousseeuw, 1992).

Methodology and Notations

The methodology explains the strategies employed
as well as the proposed robust techniques for calcu-
lating the confidence interval (µ) for normal and non-
normal distributions. Accordingly, iid random sample
x1, x2, . . . , xn are of size n from a population with
mean (µ) and standard deviation (σ). In this study,
we attempt to calculate the interval estimate for (µ)
with a given level of confidence. Consequently, sev-
eral techniques have been presented in the literature
that can be used to estimate CI for µ. Available tech-
niques include the modified classical confidence inter-
val t-Student and the nonparametric approach. The
(1 − α)100% confidence intervals for the population
mean µ are as follows:

The Classical Student’s-t Confidence Interval

The classical method for finding the (1 − α)100%
CI for the population mean µ is the most popular
method among scholars because of its ease of use
and simplicity. Suppose that x1, x2, . . . , xn are random
sample of size n from a normal distribution with mean
µ and variance σ2. The formation of the (1− α)100%
CI for (µ) is provided by Student’s t-distribution CI
(Student, 1908), when a small size n, (n < 30) and (σ)
the population standard deviation is unknown, this
formula is set as follows:

X ± t(1−α
2 ,n−1)

S√
n

(9)

From the above formula:X and S represent the sample
mean and sample standard deviation, respectively, and
t(1−α

2 ,n−1) represents the critical value of the Student’s
t-distribution. As a perfect assumption, Student’s t-
distribution CI presupposes normality. As a result,
when dealing with non-normal distributions, the Stu-
dent’s t CI may underperform, and its use may be
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inappropriate. Boos, and Hughes-Oliver, (2000) have
pointed out the incompatibility and fragility of Stu-
dents’ t-CI when dealing with non-normal data.

The Proposed Confidence Interval for the
Population Mean

Construction of the proposed (1 − α)100% CI for
the population mean µ involves the following steps:

Step 1: Compute XWMOM based on equation (6).
Step 2: Compute SDWMOM based on equation (7).
Step 3: Compute SEWMOM based on equation (8).
Step 4: Construction of the modified (1− α) 100%

CI for (µ)WMOMSDWMOMt-distribution using the
Winsorized modified one-step M-estimator (XWMOM)
with winsorized standard deviation SDWMOM as fol-
lows:

CI = Xwmom ± t(1−α
2 ,n−1)

SDWMOM√
n

(10)

where t(1−α
2 ,n−1) represents the tabulated value of the

Student’s t-distribution.
The robust location MOM and the robust scale

estimator Qn possess advantageous statistical proper-
ties that affect WMOM and WSD estimators. These
properties include reduced bias, increased efficiency,
robustness, resistance to outliers, and consistency in
non-normal data. These attributes position them as
valuable alternatives to conventional estimators, es-
pecially when working with real-world datasets that
show non-normality or include outliers.

Simulation Study

Considering the impossibility of a theoretical com-
parison between the traditional interval and the new
proposed CI, a simulation study was performed in this
study. MATLAB 2015 program was used to perform
the simulation and generate the results.

The Design of the Simulation Study

For an iid random sample of size n, say
x1, x2, . . . , xn, which comes from a non-normal dis-
tribution, the Student’s-statistic distribution is not
Student’s t-distribution. In particular, the skewness
of non-normally distributed data greatly affects the
validity of Student’s t-distribution, as can be seen in
(Yanagihara and Yuan, 2005). The effect of skewness
should be eliminated, and this can be achieved by
modifying the t-statistic. Accordingly, several methods
have been proposed to form the (1− α)100% CI for µ
to eliminate the skewness effect.

In this study, a novel (1 − α)100% robust
WMOMSDWMOM-t CI for µ was proposed, and un-
der different conditions, the proposed method was
investigated and compared in terms of its (CR) and
(AL). The confidence interval was also examined for its
strengths and weaknesses using different sample sizes
(n = 10, 20, 30, 40, 50, 100, and 150) with individual
observations. Both the traditional and proposed CI
were evaluated for their performance. For this purpose,
a simulation procedure was developed. This was to test
the effect of using robust scale and location estimators
in approximating µ, and the procedure is as follows:

First Part Steps:
1. Generate 10,000 samples from the normal distri-

bution with µ = 10 and different values of the
standard deviation such asσ = 5, 10, 15.

2. Calculate the (XWMOM) and the traditional sam-
ple mean (X) for the 10,000 samples.

3. Calculate the (SDWMOM) and (SEWMOM) for the
10,000 samples.

4. Create the two CIs, namely traditional CI, and
proposed CI.

5. Calculate the (CR) and the (AL) for the 10,000
CIs.

Second Part Steps:
1. Generate (generate) 10,000 data samples from the

standard normal distribution Z.
2. Transform the standard normal data into ran-

dom variables using the following equation (Mills,
(1995), Badrinath and Chatterjee, (1988), Badri-
nath and Chatterjee, (1991); Hoaglin, (1985)):

X =


exp(gZ)− 1

g
exp(hZ2/2), g 6= 0

Z exp(hZ2/2), g = 0
(11)

Based on the above equation, the amount of skew-
ness is regulated by the proportion of parameter
g, while the amount of kurtosis is regulated by the
proportion of parameter h. The combination of pa-
rameters used in the treatment of distributions of
different shapes includes g = 0 and h = 0 (normal),
g = 0 and h = 0.5 (symmetry with heavy tail),
g = 0.5 and h = 0 (skewed with normal tail), and
g = 0.5 and h = 0.5 (skewed with strong tail).

3. Calculate the values of (XWMOM) and (X) for
10,000 samples.

4. Generate new 10,000 data samples with different
distribution shapes from the g–h distribution.

5. Generate the two CIs consisting of the traditional
and proposed CIs for the 10,000 data samples.

6. To obtain the estimated WMOM and (X) values,
calculate the (CR) and the (AL) for step (5).
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Performance Evaluation

In this section, the performance of the two CIs (the
traditional and the proposed) for g–h distributions is
compared by using a Monte Carlo simulation study.
A parametric confidence interval was used and com-
pared with the proposed robust method. The com-
parison was used to determine the suitability of the
proposed method for estimating the population mean
(µ) for data from a non-normal distribution. Two CIs
were compared in terms of their (CR) and (AL). Specif-
ically, with unchanged (CR) length, a smaller average
length (AL) means better CI. With an unchanged aver-
age length, a higher (CR) means a better CI. Different
sample sizes (n = 10, 20, 30, 40, 50, 100, and 150) were
randomly generated 10,000 times, and 95% CIs for
µ were obtained for each sample set. Moreover, two
formulas were applied to determine the (CR) and the
(AL) of CI. The formulas are as follows:

CR =
#(Lower ≤ θ ≤ Uper)

10, 000
(12)

AL =

10,000∑
i=1

(Ui − Li)

10, 000
(13)

Results and Discussion

The results of the simulations for all cases studied
are shown in Tables 1 to 11. For both methods, the
performance of 95% CI for µ is as follows: Tables 1–
3 illustrate that the traditional confidence interval
CI outperforms the suggested WMOMSDWMOM-t CI
in terms of (CR). The values in the traditional CI
tables are closer to 95% when compared to the pro-
posed WMOMSDWMOM-t CI. Nevertheless, proposed
WMOMSDWMOM-t CI exhibits shorter (AL) than the
traditional CI, indicating a more precise estimation of
the population mean µ. A notable trend observed in
the tables is that larger sample sizes necessitate shorter
interval lengths for enhanced accuracy in parameter es-
timation. Additionally, broader (AL) is required as the
standard deviation σ increases. The narrower width
of proposed WMOMSDWMOM-t CI leads to greater
accuracy for larger standard deviations.
To illustrate this superiority of the confidence in-

terval of the new proposal in terms of (AL), graphs
(Fig. 1 to Fig. 3) have been drawn representing all
previous cases, all showing a clear superiority in terms
of performance.
For non-normally distributed data are obtained

from the g–h distribution with different distribution

Fig. 1. (AL) of 95% CI for µ for the normal distribution
with µ = 10 and σ = 5

Fig. 2. (AL) of 95% CI for µ for the normal distribution
with µ = 10 and σ = 10

Fig. 3. (AL) of 95% CI for µ for the normal distribution
with µ = 10 and σ = 15

shapes. Accordingly, the traditional and proposed
CI WMOMSDWMOM-t were compared for the non-
normally distributed data, and the details can be seen
in Tables 4 to 7 as follows:
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Table 1
(CR) and (AL) of 95% CI for µ for the normal distribution with µ = 10 and σ = 5.

CI Methods Performance Measure
N

10 20 30 40 50 100 150

Student-t
CR 0.9532 0.9502 0.9533 0.9499 0.9470 0.9425 0.9442
AL 20.956 4.6220 3.7059 3.1742 2.8113 1.9544 1.5972

WMOMSDWMOM-t
CR 0.9007 0.9012 0.9045 0.9053 0.9050 0.8976 0.9008
AL 18.9360 4.0900 3.267 2.7946 2.4752 1.7178 1.4051

Table 2
(CR) and (AL) of 95% CI for µ for the normal distribution with µ = 10 and σ = 10.

CI Methods Performance Measure
N

10 20 30 40 50 100 150

Student-t
CR 0.9477 0.9527 0.9481 0.9491 0.9473 0.9478 0.9484
AL 13.9423 9.2618 7.4091 6.3489 5.6272 3.9111 3.1936

WMOMSDWMOM-t
CR 0.8958 0.9054 0.9046 0.9041 0.9008 0.9023 0.9021
AL 12.593 8.1978 6.5369 5.5836 4.9454 3.4405 2.8093

Table 3
(CR) and (AL) of 95% CI for µ for the normal distribution with µ = 10 and σ = 15.

CI Methods Performance Measure
n

10 20 30 40 50 100 150

Student-t
CR 0.9454 0.9466 0.9481 0.9508 0.9490 0.9480 0.9466
AL 20.9039 13.820 11.109 9.5052 8.4461 5.8580 4.7879

WMOMSDWMOM-t
CR 0.8902 0,8969 0.897 0.9082 0.9050 0.9029 0.8993
AL 18.884 12.2253 9.7977 8.3781 7.4314 5.1505 4.2116

Table 4
(CR) and (AL) of 95% CI for the population mean of g–h distribution with g = 0, h = 0

CI Methods Performance Measure
n

10 20 30 40 50 100 150

Student-t
CR 0.9488 0.9493 0.9503 0.9514 0.9520 0.9504 0.9482
AL 1.3908 0.9231 0.7402 0.6351 0.5628 0.3908 0.3195

WMOMSDWMOM-t
CR 0.8998 0.9022 0.9056 0.9059 0.9049 0.9063 0.9056
AL 1.2577 0.8181 0.6528 0.5593 0.4953 0.3440 0.2812

Table 5
(CR) and (AL) of 95% CI for population mean of g–h distribution with g = 0.5, h = 0

CI Methods Performance Measure
n

10 20 30 40 50 100 150

Student-t
CR 0.9213 0.9262 0.9354 0.9398 0.9394 0.9442 0.9434
AL 1.6109 1.0864 0.8787 0.7569 0.6722 0.4692 0.3845

WMOMSDWMOM-t
CR 0.8481 0.8517 0.8555 0.8559 0.8536 0.8523 0.8506
AL 1.209 0.7773 0.6203 0.5309 0.4700 0.3262 0.2667
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Table 6
(CR) and (AL) of 95% CI for population mean of g–h distribution with g = 0, h = 0.5

CI Methods Performance Measure
n

10 20 30 40 50 100 150

Student-t
CR 0.9710 0.9671 0.9665 0.9656 0.9657 0.9622 0.9615
AL 3.7726 2.7948 2.3820 2.1216 1.9410 1.4435 1.2431

WMOMSDWMOM-t
CR 0.902 0.8933 0.8956 0.89838 0.8942 0.8943 0.8968
AL 1.6958 1.0661 0.8478 0.7259 0.6434 0.4482 0.3669

Table 7
(CR) and (AL) of 95% CI for population mean of g–h distribution with g = 0.5, h = 0.5

CI Methods Performance Measure
n

10 20 30 40 50 100 150

Student-t
CR 0.7185 0.7259 0.7489 0.7454 0.7548 0.7737 0.7903
AL 4.8407 3.8535 3.4756 3.1035 2.8736 2.2282 1.9611

WMOMSDWMOM-t
CR 0.8717 0.8670 0.8686 0.8704 0.8687 0.8729 0.8740
AL 1.6703 1.0443 0.8291 0.7103 0.6291 0.4383 0.3590

Table 8
(CR) of 95% CI for the population mean of g–h distribution with g = 0, h = 0

CI Methods Performance Measure
n

10 20 30 40 50 100 150
Student-t CR 0.9488 0.9493 0.9503 0.9514 0.9520 0.9504 0.9482

WMOMSDWMOM-t CR 0.9487 0.9492 0.9503 0,9514 0.9520 0.9504 0.9482

Table 9
(CR) of 95% CI for the population mean of g–h distribution with g = 0.5, h = 0

CI Methods Performance Measure
n

10 20 30 40 50 100 150
Student-t CR 0.8821 0.7991 0.7125 0.6185 0.5394 0.2380 0.0940

WMOMSDWMOM-t CR 0.9321 0.9192 0.9135 0.8959 0.8815 0.7990 0.7331

Table 10
(CR) of 95% CI for the population mean of g–h distribution with g = 0, h = 0.5

CI Methods Performance Measure
n

10 20 30 40 50 100 150
Student-t CR 0.9476 0.9474 0.9489 0.9498 0.9529 0.9495 0.9490

WMOMSDWMOM-t CR 0.9488 0.9492 0.9506 0.9517 0.9521 0.9503 0.9484

Table 11
(CR) of 95% CI for the population mean of g–h distribution with g = 0.5, h = 0.5

CI Methods Performance Measure
n

10 20 30 40 50 100 150
Student-t CR 0.2138 0.0251 0.0034 0.0002 0 0 0

WMOMSDWMOM-t CR 0.9318 0.9190 0.9131 0.8953 0.8809 0.7993 0.7335
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Fig. 4. (AL) of 95% CI for the population mean of g–h
distribution with g = 0, h = 0 No citation in text

For g = 0 and h = 0 in the case of normal distribu-
tion, the (CR) of WMOMSDWMOM-t CI seems to be
slightly lower than that of traditional CI. The values
(AL) for the proposed CI are smaller than the values
(AL) of the traditional CI for all sample sizes. On the
other hand, the (CR) of WMOMSDWMOM-t seems to
be slightly lower than 0.95 for a distribution of g = 0.5
and h = 0. Moreover, the value (CR) seems to remain
unchanged at any sample size n. Moreover, the values
of proposed CIs (AL) are smaller than those of tradi-
tional CIs. This indicates the superiority of proposed
CIs in estimating the population mean.

With a distribution of g = 0 and h = 0.5, the (CR)
of WMOMSDWMOM-t seems to be much smaller than
95%. On the other hand, the (CR) of the traditional
CI is significantly close to 95%. Moreover, the pro-
posed CI shows better performance as evidenced by its
achieved (AL) value for all sample sizes. Concerning
the distributions g = 0.5 and h = 0.5, the performance
of the proposed CI seems to be more robust, as evi-
denced by the obtained values of (CR) and (AL) for
all sizes n. On the other hand, the performance of
traditional parametric CI was poor in the case of the
distributions g = 0.5 and h = 0.5.

In addition, the performance of the confidence inter-
val of the new proposal in terms of (AL), graphs have
been drawn, in all previous cases, all showing a clear
superiority in performance.
The arithmetic mean is calculated in the perfor-

mance test using robust statistics, and the estimation
is done in two ways: with and without the use of ro-
bust statistics. A CIs for the population mean were
then calculated using normal data. The arithmetic
means and standard deviation statistics were then
computed. According to the data, both CIs appear
to have equivalent values (AL). Surprisingly, (CR)
in both CIs appears to differ. This shows that the

Fig. 5. (AL) of 95% CI for the population mean of g–h
distribution with g = 0.5, h = 0

Fig. 6. (AL) of 95% CI for the population mean of g–h
distribution with g = 0, h = 0.5

Fig. 7. (AL) of 95% CI for the population mean of g–h
distribution with g = 0.5, h = 0.5

suggested CI is far stronger than its traditional CI,
particularly when dealing with skewed distributions.
Tables 8 through 11 contain more information.
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Applications using Real Data

In this section, two real-life data sets will be analyzed
to illustrate the application of all considered confidence
intervals CIs for the population mean (µ). These two
data sets are from normal and skewed distributions.

Melting Points of Beeswax Data

In this study, data from previous studies were
used from (Jonathan et al., (1960); Panichkitkosolkul
(2015); Sinsomboonthong et al, (2020). Accordingly,
Table 12 shows the data on the melting points of
beeswax from 59 sources. Following the data analysis
in (Sinsomboonthong et al, (2020), it was assumed
that the data are normally distributed.

For (µ), 95% CI for the breaking load data was
examined, and CI and resulting length can be seen
in Table 13. As shown, (µ) of the melting points
of beeswax data formed using the traditional and
WMOMSDWMOM-t CI results in slightly different
length values for the estimated 95% confidence
interval. Therefore, the results of this example of
actual normal data shown in Table 13 are consistent
with those of the simulation study.

Urinary Tract Infections (UTI) Data

Table 14 shows the data on urinary tract infections
in male patients (UTIS) in days. Various researchers
(e.g., Santiago and Smith, 2013; Aslam et al., 2014;
Azam et al., 2017; Sinsomboonthong et al., 2020)
have analyzed these data. In examining the data,
(Sinsomboonthong et al. (2020) found that the data
were not normally distributed; rather, the data
were exponentially distributed, with their recovery
positively skewed.
The estimated 95% CIs for the average use of uri-

nary tract infection data (UTI) can be seen in Table 15.
The WMOMSDWMOM-t method was used, which re-
sulted in smaller values of length, as opposed to using
traditional parametric CI, which resulted in larger
values. The dataset used was positively skewed, and
therefore the results shown in Table 15 are consistent
with those of the simulation results for the positively
skewed distribution.

Evaluation Results

To verify the strong performance of the new pro-
posal CI WMOMSDWMOM-t, a comparison between
the performance of proposals in (Abu-Shawiesh, et al.,
2022) and the new proposal WMOMSDWMOM-t was
performed. According to Abu-Shawiesh, et al., (2022),

Table 12
Melting points of beeswax data

No. X No. X No. X No. X No. X No. X No. X

1 63.39, 10 63.3 19 63.68 28 63.6 37 64.12 46 63.1 55 63.27

2 63.36 11 63.83 20 63.78 29 63.51 38 63.83 47 63.53 56 63.43

3 63.69 12 63.61 21 63.08 30 63.31 39 63.86 48 63.92 57 63.86

4 64.27 13 63.92 22 64.21 31 63.30 40 63.50 49 63.40 58 63.13

5 63.60 14 63.58 23 63.34 32 64.40 41 63.03 50 64.24 59 63.12

6 63.41 15 63.43 24 63.88 33 63.34 42 63.45 51 63.50

7 63.51 16 63.63 25 63.13 34 63.78 43 63.56 52 63.36

8 62.85 17 63.93 26 63.84 35 63.92 44 63.27 53 63.05

9 63.56 18 63.36 27 63.66 36 64.42 45 63.92, 54 63.50

Table 13
Lower Limit (LL) and Upper Limits (UL) for the 95% CI for the population mean (load at failure data)

Confidence Interval
Estimated (C I) Limits

Length
LL UL

Student-t 63.4925 63.6723 0.1798

WMOMSDWMOM-t 63.4777 63.6226 0.1449
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Table 14
Urinary tract infection (UTI) data

No. X No. X No. X No. X No. X No. X
1 0.14583 10 0.03333 19 0.15139 28 0.70833 37 0.15625 46 0.11944
2 0.12014 11 0.32639 20 0.03472 29 0.07431 38 0.03819 47 0.22222
3 0.08681 12 0.18403 21 0.40069 30 0.11458 39 0.01389 48 1.08889
4 0.13889 13 0.08681 22 0.52569 31 0.04514 40 0.24653 49 0.05208
5 0.04861 14 0.64931 23 0.23611 32 0.15278 41 0.57014 50 0.29514
6 0.40347 15 0.12500 24 0.02500 33 0.00347 42 0.12014 51 0.05208
7 0.14931 16 0.53472 25 0.07986 34 0.13542 43 0.29514 52 0.24653
8 0.02778 17 0.02778 26 0.35972 35 0.33681 44 0.46806 53 0.03819
9 0.12639 18 0.25000 27 0.27083 36 0.14931 45 0.01736 54 0.04514

Table 15
Lower and Upper Limits for the 95% CI for the mean (use of psychotropic drugs)

Confidence Interval
Estimated (C I) Limits

Length
LL UL

Student-t 0.1526 0.2668 0.1130
WMOMSDWMOM-t 0.1396 0.2042 0.0660

several methods have been proposed to construct the
(1 − α)100% CI for the population mean (µ) to re-
move the effect of skewness and non-normal data by
modifying the t-statistic. For example, the Johnson
t-approach proposes new modified CI based on the es-
timator of the third central moment of the population
(µ3). The Chen-t approach in its new modified CI for
the population mean µ depends on the estimate of the

skewness coefficient γ̂ =
µ̂3

S3
. The Mad-t approach of

Shi and Kibria improved traditional CI using the sam-
ple mean absolute deviation (MAD). Abu-Shawiesh
et al., (2018) proposed modified CI based on the mean
absolute deviation from the sample median with their
AADM t approach. The confidence interval is based on
the resampling approach using the bootstrap method.

The last approach is the proposed robust DMSDDM
t-approach where the authors use the mean standard
deviation of deciles SDDM and standard error of the
mean standard deviation of deciles (SEDM). Further ex-
planation can be found in Abu-Shawiesh et al., (2022).

Real data representing the results of the final scores
of 40 players in the long jump in meters (Interna-
tional Olympic Committee, 2019) were taken and
applied to the proposals in Abu-Shawiesh et al.,
(2022) and simultaneously applied to the new proposal
WMOMSDWMOM-t, with the results in (Abu-Shawiesh
et al., 2022) as shown in Table 16 and the results for
the new proposal WMOMSDWMOM-t, as shown in Ta-
ble 17. Looking at the results in the two tables, it
can be seen that the new proposal WMOMSDWMOM-t

Table 16
The 95% confidence intervals for the population mean of final scores for long jump distance in meters.

Method
Estimated CI Limits

Width
Lower Limit Upper Limit

Student-t 7.5528 7.7962 0.2434
Johnson-t 7.5512 7.7945 0.2434
Chen-t 7.5668 7.7822 0.2154
Mad-t 7.5793 7.7697 0.1903

AADM-t 7.5587 7.7903 0.2316
DMSDDM-t 7.6242 7.8029 0.1787

Bootstrap-pct 7.5553 7.7798 0.2245
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Table 17
The 95% confidence intervals for the population mean of the final scores for long jump distance in meters.

Method
Estimated CI Limits

Width
Lower Limit Upper Limit

WMOMSDWMOM-t 7.6253 7.8022 0.1768

Table 18
The mercury contamination in largemouth bass. No citation in text

1.23 0.98 0.04 1.08 0.59 0.84 0.75 0.19 0.43 0.50 0.27 0.21 0.34 0.68

1.16 1.33 0.34 0.94 1.20 0.25 0.49 0.65 0.18 0.81 0.16 0.50 0.49

0.05 0.56 0.19 0.044 1.10 0.27 0.34 0.49 0.83 0.04 0.71 0.40 0.27

0.15 0.73 0.77 0.63 0.41 0.34 0.87 0.17 0.56 0.10 0.28 0.52 0.19

Table 19
The summary statistics from Excel are displayed below. No citation in text

Descriptive Measurements n Mean Median Wmom Stdev Wstdev Minimum Maximum Q1 Q3

Values 53 0.525 0.49 0.502 0.3486 0.3067 0.04 1.33 0.24 0.78

is superior to all the new proposals in Abu-Shawiesh
et al., (2022), with the length of the confidence inter-
vals being less than all the lengths in Table 16. This
comparison shows the strength of the new proposal
in terms of performance, as well as the effectiveness
of the WMOM and WSD estimators used in the new
proposal when the distributions are non-normal.

Example Using Real Data

The findings of a study to investigate the mercury
poisoning of the large-mouth bass were published in
Large, et al, (1993). Fish from 53 Florida lakes were
chosen for the sample, and the amount of mercury in
the muscle tissue was calculated (ppm). The following
are the mercury concentration values:

Figure 8 displays the histogram representing the
data on mercury concentration. The graph illustrates
a positively skewed distribution, which is not normal.
Our objective is to determine an estimated 95% confi-
dence interval (CI) for the population mean µ.

The advantage of Formula (9) is that it does not
require the assumption of normality due to the large
sample size (n = 53). However, according to Table 20,
the new proposed CI based on Formula 10 outperforms
the recommended confidence interval.

The Assumptions and Limitations

Winsorization could unintentionally alter the actual
data distribution, particularly when outliers are not in-
correct but instead reflect genuine variation within the
population. The decision on what level of winsorization
to use (i.e., how much to trim or replace) is subjec-
tive and has the potential to affect outcomes. Various

Fig. 8. Mercury concentration in largemouth bass

Table 20
The 95% confidence intervals for the population mean of

mercury contamination in largemouth bass.

Method
Estimated CI Limits

Width
Lower Limit Upper Limit

Student-t 0.4311 0.6188 0.1877

WMOMSDWMOM-t 0.4194 0.5845 0.1651
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degrees of trimming can result in varying outcomes,
causing the results to be dependent on this parameter.
Winsorization is based on the assumption of data hav-
ing a symmetric distribution, which may not be true
in all practical situations. One side of the distribution
may have a higher concentration of extreme values,
which could affect the results by causing skewness.

Using winsorized mean and winsorized standard
deviation can change statistical inference, impacting
hypothesis testing and confidence intervals. Confidence
intervals calculated using winsorized statistics may not
accurately represent the actual variability present in
the data. Winsorization has the potential to hide the
true patterns or trends in the data, which could result
in misinterpretation or missing out on key insights
in certain situations. The decision to winsorize could
impact the reproducibility of outcomes, particularly if
the reasoning for winsorization is not clearly explained
or comprehended by those trying to duplicate the
study (Yuen, 1971; Chambers et al, 2000).
In conclusion, while winsorized mean and win-

sorized standard deviation, along with their confidence
intervals, can be useful tools for handling outliers
and non-normal data, researchers should carefully
consider the underlying assumptions, limitations, and
potential impacts on findings before applying these
methods in their analyses. It’s essential to assess the
robustness of results to different level selections and to
interpret findings in light of the inherent uncertainties
introduced by winsorization.

Concluding Remarks

This study proposed a CI method, namely
WMOMSDWMOM-t, and this method is essentially
a modified Student’s t CI that adopts (WMOM) in
place of the traditional sample mean and (SDWMOM )
as a substitute for the sensitive sample standard de-
viation. In many cases, simulation results prove the
superiority of new CI over available estimators for ob-
servations from non-normal distributions. In particular,
for observations coming from a normal distribution,
a CI of WMOMSDWMOM-t produces a smaller average
length. However, for nominal values, the (CR) of the
new robust CI is usually larger than that of the pro-
posed CI. This shows the superiority of the new robust
CI method over the traditional CI in terms of (CR) and
(AL). This is because the (CR) of WMOMSDWMOM-t
CI is usually slightly lower than the nominal level. In
addition, the (CR) of the new robust confidence inter-
val is slightly lower compared to that of Student’s t.
However, the (AL) values of the proposed CI are lower

than those of traditional CI. Therefore, the proposed
CI has a better performance. Two real data sets were
analyzed to illustrate the findings of the study and the
simulation results were verified. Furthermore, the pro-
posed confidence interval is easy to compute and can
be recommended for practitioners in several fields of
industry, engineering, medical, and physical sciences.
Expanding the confidence interval of the proposed

WMOMSDWMOM-t CI using winsorized mean and win-
sorized standard deviation is a great method to in-
crease the robustness of a statistical estimate. Combin-
ing this approach with other statistical measures such
as the median and mode can provide a more compre-
hensive view of the data distribution, especially when
the data may not have a normal distribution. Since the
mean, median, and mode of data are all equal when
it is normal. It is a good idea to assess the newly sug-
gested CI’s effectiveness in estimating the populations
of median and mode. For example, winsorizing the
dataset before calculating the median might modify
the winsorization approach for estimating the median.
Reducing their impact on the median estimate involves
substituting fewer extreme numbers for the extreme
ones. Winsorizing may also be used to the mode to
reduce the effect of outliers on the mode computation
and provide a more representative estimate of central
tendency. We will take this suggestion into account to
enhance the flexibility and effectiveness of our method
in the future work of this research.

Acknowledgments

Author Contributions: All authors contributed
equally and significantly to the writing of this article.
All authors have read and agreed on the last version
of the paper.

Declaration of Competing Interest: The authors de-
clare that they have no known competing financial
interests or personal relationships that could have ap-
peared to influence the work reported in this paper.
Data Availability Statement: The information that

assists the conclusions of the present research is in-
cluded in the paper’s application section.

Funding: The authors were unsupported financially
by this research.
Conflict of interest: All authors declare that they

have no conflicts of interest.
Acknowledgments: Authors are grateful to anony-

mous referees and editor in chief for their invaluable
constructive comments and suggestions, which cer-
tainly improved the quality and presentation of the
paper greatly.

12 Volume 15 • Number 3 • September 2024



Management and Production Engineering Review

References

Abu-Shawiesh, M.O.A., Banik, B. and Kibria, B.M.G.
(2018). Confidence Intervals are based on absolute de-
viation for the population mean of a positively skewed
distribution. International Journal of Computational
and Theoretical Statistics, 5(1), 1–13.

Abu-Shawiesh, M.O.A. and Saghir, A. (2019). Robust
Confidence Intervals for the population mean alter-
natives to Student-t CI. Journal of Modern Applied
Statistical Methods, 18(1), 1–21.

Abu-Shawiesh M., Sinsomboonthong J., Kibria B. (2022).
A Modified Robust Confidence Interval for the Popula-
tion Mean of Distribution based on Deciles. Statistic in
Transition, 23(1), 109–128. DOI: 10.21307/stattrans-
2022-007.

Akyuz, H.E., and Abu-Shawiesh, M.O.A. (2020). A ro-
bust Confidence Interval based on modified trimmed
standard deviation for the mean of positively skewed
populations. Electronic Journal of Applied Statistical
Analysis, 13(1), 164–182.

Aslam M., Khan N., Azam M., Jun C.H., (2014). “De-
signing of a new monitoring t-chart using repeti-
tive sampling.” Inf. Sci, 269, 210–216. DOI: 10.1016/
j.ins.2014.01.022.

Azam M., Aslam M., Jun C.H., (2017). AEWMA Control
chart for the exponential distribution using repetitive
sampling plan.” Operations Research and Decisions,
27(2), 5–19. DOI: 10.5277/ord170201.

Badrinath, S.G. & Chatterjee, S. (1988), “On Measuring
Skewness and Elongation in Common Stock Return
Distributions: The Case of the Market Index.” Busi-
ness, 61(4), 451–472.

Badrinath, S.G. & Chatterjee, S. (1991). “A Data-Analytic
Look at Skewness and Elongation in Common-Stock-
Return Distributions.” Business and Economic Statis-
tics, 9(6), 223–233.

Boos, D., and Hughes-Oliver, J. (2000). How large does
n have to be for Z and t intervals. The American
Statistician, 54(2), 121–128.

Brooks, A. (1985). Heat treating shows why SPC is no
curve-all for manufacturer’s production Engineering.
32(6), 66–77.

Cain, M.K., Zhang, Z., and Yuan, K.H. (2016). Univariate
and multivariate skewness and kurtosis for measuring
nonnormality: Prevalence, influence and estimation.
Behavior Research Methods, 49(2), 1716–1735.

Chambers R., Philip K. and Marie C. (2000). Winsoriza-
tion for Identifying and Treating Outliers in Business
Survey. https://www.researchgate.net/publication/
307632859_Winsorization_for_Identifying_and_
Treating_Outliers_in_Business_Surveys.

Croux C. and Rousseeuw P.J. (1992). Time-efficient algo-
rithms for two highly robust estimators of scale. Vol. 1:
Proceedings of the 10th Symposium on Computational
Statistics, 411–428.

Ghosh, S., and Polansky, A.M. (2016). New bootstrap CI
for means of positively skewed distributions. Commu-
nications in Statistics-Theory and Methods, 45(23),
6915–6927.

Haddad F. (2018). Improvement of the Hotelling’s T 2
Charts Using Robust Location Winsorized Modified
One Step M-Estimator (WMOM). Journal of Mathe-
matics (ISSN 1016-2526), 50(1), 97–112.

Hoaglin, D.C. (1985). “Summarizing Shape Numerically:
The g-and-h Distributions.” Chapter 11 in Explor-
ing Data Tables Trends, and Shapes. Eds. Hoaglin,
Mosteller, and Tukey. New York, NY: John Willey.

Huber, P.J. (1981). Robust statistics, John Wiley, New
York.

Ialongo C. (2019). Confidence Interval of percentiles in
skewed distribution: The importance of the actual
coverage probability in practical quality applications
for laboratory medicine. Electronic supplementary
material. 29(3).

Johnson, N. J. (1978). Modified t-tests and Confidence
Intervals for asymmetrical population. Journal of
the American Statistical Association, 73(363), 536–
544.

Jonathan W., White J., Riethof M., Kushnir I. (1960). Es-
timation of microcrystalline wax in beeswax. J. Assoc.
Off. Anal. Chem., 43(4), 781–790.

Large T.R., Royals H.E Connor L.L. (1993). Influence
of Water Chemistry on Mercury Concentration in
Largemouth Bass from Florida Lakes. Transactions
of the American Fishers Society. 122, 74–84.

Luh, W., and Guo, J. (2001). Transformation works
for non-normality. On one-sample transformation
trimmed t methods. British Journal of Mathemat-
ical and Statistical Psychology, 54(2), 227–236.

Mcdonald, J.H. (2014). Handbook of Biological Statistics.
3rd ed., Sparky House Publishing, Baltimore, Mary-
land.

Miller, J.M. and Penfield, R.D. (2005). Using the score
method to construct asymmetric Confidence Intervals:
An SAS program for content validation in scale devel-
opment. Behavior Research Methods, 37(3), 450–452.

Volume 15 • Number 3 • September 2024 13

https://www.researchgate.net/publication/364818386_A_modified_robust_confidence_interval_for_the_population_mean_of_distribution_based_on_deciles
https://www.researchgate.net/publication/364818386_A_modified_robust_confidence_interval_for_the_population_mean_of_distribution_based_on_deciles
https://doi.org/10.1016/j.ins.2014.01.022
https://doi.org/10.1016/j.ins.2014.01.022
https://doi.org/10.5277/ord170201
https://www.researchgate.net/publication/307632859_Winsorization_for_Identifying_and_Treating_Outliers_in_Business_Surveys
https://www.researchgate.net/publication/307632859_Winsorization_for_Identifying_and_Treating_Outliers_in_Business_Surveys
https://www.researchgate.net/publication/307632859_Winsorization_for_Identifying_and_Treating_Outliers_in_Business_Surveys


F. Haddad, M. Abu-Shawiesh: A New Robust Confidence Interval for the Population Mean µ based on Winsorized . . .

Mills, T.C. (1995). Modeling Skewness and Kurtosis in
the London Stock Exchange FT-SE Index Return
Distributions. Statistician, 44(3), 323–332.

Mudelsee, M., and Alkio, M. (2007). Quantifying effects
in two-sample environmental experiments using boot-
strap Confidence Intervals. Environmental Modelling
and Software, 22(1), 84–96.

Ochuko T.K., Abdullah S., Zain Z., Yahaya S.S.S. (2016).
Winsorized Modified One Step M-Estimator as a Mea-
sure of the Central Tendency in the Alexander-Govern
Test. ComTech, 7(3), 233–244.

Panichkitkosolkul W. (2015). Confidence interval for the
coefficient of variation in a normal distribution with
a known population mean after a preliminary t- test.
KMITL Sci. Tech. J., 15(1), 34–46.

Pek, J., Wong, A. and Wong, O. (2017) Confidence In-
tervals for the Mean of Non-Normal Distribution:
Transform or Not to Transform. Open. Journal of
Statistics, 7, 405–421.

Rousseeuw, P.J., & Croux, C. (1993). Alternatives to the
Median Absolute Deviation. [Theory and Methods].
American Statistical Association, 88(424).

Santiago E. and Smith J., (2013). Control charts based
on the exponential distribution: adapting runs rules
for the t chart. Qual. Eng., 25(2), 85–96.

Sindhumol, M.R., Sindhumol, M.M., and Gallo, M. (2016).
Robust control charts based on modified trimmed stan-
dard deviation and Gini’s mean difference. Journal
of Applied Quantitative Methods, 11(3), 18–30.

Sinsomboonthong, J., Abu-Shawiesh, M.O.A., and Kibria,
B.M.G. (2020). Performance of robust CIs for estimat-
ing population mean under both non-normality and
in the presence of outliers. Advances in Science, Tech-
nology and Engineering Systems Journal, Vol. 5(3),
442–449.

Student (1908). The probable error of a mean. Biometrika,
6(1), 1–25.

Syed-Yahaya S.S., Othman A.R., Keselman H.J. (2006).
Comparing the typical score across independent
groups based on different criteria for trimming.
Metodoloski zvezki, 3(1), 49–62.

Visalakshi J. and Jeyaseelan A.L. (2013). Confidence
Interval for skewed distribution in the outcome of
change or difference between methods. Journal of
clinical of epidemiology and global health. 117–120.

Yanagihara, H., and Yuan, K.H. (2005). Four improved
statistics for contrasting means by correcting skewness
and kurtosis. British Journal of Mathematical and
Statistical Psychology, 58(2), 209–237.

Yuen K.K. (1971). A Note on Winsorized t. Journal of the
Royal Statistical Society. Series C (Applied Statistics),
20(3), pp. 297–304.

14 Volume 15 • Number 3 • September 2024


