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Abstract
Production systems are stopped due to malfunctions such as rotting equipment, imbalance
of rotating parts, and high vibration, which leads to loss of customers, reduction of market
share and unemployment of personnel. In this research, using the absorbing Markov process,
a mathematical model is formulated to analyze the maintenance policy of the production
process, through which one of the four states of new, old, or failure due to deterioration or
sudden failure can be allocated to the machine. It is assumed that the machine changes
from one state to another with different probabilities, which are determined using a discrete
Markov chain. The different maintenance policies can be analyzed to minimize the average
production cost. The mathematical model is obtained using discrete Markov chain equations,
and the optimal maintenance and repair policy can be analyzed by considering all types of
costs, including maintenance, production, and failure costs, so that the average cost of the
production process can be minimized.
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Introduction

One of the fundamental problems in the manufac-
turing industry is that machines deteriorate during
production, leading to failure in the production sys-
tem. These failures increase system costs and lead to
financial losses. these losses conclude the costs of stop-
ping the production system, the costs of repairing or
replacing machines, the costs of delay in delivering
the product to the customer, and even the costs of
lost sales. In this regard, one of the most practical
methods used in advanced industrial systems is to
plan a set of systematic instructions, methods, and
processes to prevent the early failure of machines and
to improve the lifetime of equipment, which is known
as maintenance and repair policy (Gopalakrishnan et
al., 2015). In new industries, due to the automation of
equipment and machines, components such as axles,
bearings, and belts deteriorate over time. The fail-

Corresponding author: M.S. Fallah Nezhad – Department
of Industrial Engineering, Yazd University, P.O. BOX 89195-
741, Pejoohesh Street, Safa-ieh, Yazd, Iran, e-mail: fallah-
nezhad@yazd.ac.ir

© 2024 The Author(s). This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/)

ure of each of these components will stop the ma-
chine and the production system. Therefore, imple-
menting an optimal maintenance and repair policy
is mandatory to ensure the reliability of equipment
and reduce the costs of deteriorated machines. Insuf-
ficient maintenance and repair decisions will be ex-
tremely costly not only because of the need to meet
equipment maintenance but also because of missed
opportunities. Maintenance and repairs are essential
because they are a significant part of production costs,
and depending on the type of industry, it covers 15–
60% of total production costs (Wan et al., 2015). Due
to the high impact of random factors, such as sud-
den equipment failure, in production systems, it is es-
sential to determine optimal maintenance and repair
policies (Angius et al., 2016). In this regard, there
are various models, such as operation research mod-
els, stochastic models, and Markov models, to deter-
mine the optimal policy for maintenance and repairs,
Many studies have been conducted in these fields,
such as Yang et al. (2023), which proposed a time-
indexed mixed-integer linear programming formula-
tion to optimize the long-term integrated maintenance
plan and maximize the total throughput. They used
an algorithm that combines Benders decomposition
and Lagrangian relaxation to accelerate the compu-
tational speed. Kumar et al. (2024) proposed a novel
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stochastic model and used the Markovian methodol-
ogy and Chapman–Kolmogorov differential-difference
equations to predict the optimal availability. In this
model, computational intelligence techniques, namely,
gray wolf optimization, whale optimization algorithm,
and the ant lion algorithm, are used to predict the op-
timal availability and profit.

As one of the first research conducted in the field of
maintenance optimization using Markov model rela-
tionships, Tomasevicz and Asgarpoor (2006) proposed
a model to find the optimal time of preventive mainte-
nance and repairs for a machine that consists of eight
states, including three operational states, two failure
states, and three states related to preventive main-
tenance and repairs. In this study, there is the pos-
sibility of 2 actions in each state with specific rates,
and the purpose was to determine the optimal time to
perform preventive maintenance and repairs to max-
imize the availability of the machine. Amari et al.
(2006) considered equipment with deteriorating prop-
erties in six states. Unlike the study by Tomasevicz
et al. (2006), where two actions are possible in each
state, in this study, there is the possibility of 3 ac-
tions in each state at certain rates: performing PM,
performing CM, or continuing operation. Finally, us-
ing the continuous Markov process, the optimal ac-
tion in each state is determined so that equipment
reliability is maximized. In another research, Ander-
sson et al. (2022) proposed a model that determines
the optimal replacement time for a multi-component
system based on time-based maintenance (TBM) and
condition-based maintenance (CBM) using a contin-
uous Markov model and dynamic programing. Jin et
al. (2020) determined the optimal maintenance and
repair policy for a multistate deteriorating system us-
ing a continuous Markov model. Due to the uncer-
tainty of the system change rate among the states of
this model, a transition probability matrix was ob-
tained using reversible linear integral equations, and
the optimal period of preventive maintenance was fi-
nally obtained.

According to the above, most previous studies
assumed a continuous Markov chain for machine-
maintenance problems because the time to failure can
be easily obtained using these models. The state of a
system can be modeled as a discrete Markov chain
that absorbs states in real problems. Also it is seen
that absorbing Markov chain equations and its steady
state has not been used to create a mathematical
model for the analysis of maintenance and repair poli-
cies. Therefore, this research considers a production
process that includes four states, two of which are ab-
sorbing. Using the absorbing Markov process, a math-
ematical model is formulated to analyze the mainte-

nance policy of the production process, where one of
the four states to new, old, or failure due to dete-
rioration and sudden failure can be allocated to the
machine. The optimal maintenance and repair policy
is determined using discrete Markov chain equations
so that the objective cost function is minimized.

Literature review

Many studies have been conducted in recent years
to optimize maintenance and repair policies, and by
reviewing the articles published in recent years, it can
be concluded that various solution methods have been
used to optimize maintenance policies. The most im-
portant methodologies are as follows:
• Operations research models;
• Stochastic models;
• Markov models;
• Analytical models;
• Simulation models;
• Bayesian networks;
• Fuzzy models;
• Multi-objective models.
Mahmud et al. (2024) proposed a model and used

an analytical hierarchy process to select an appropri-
ate maintenance strategy for cement plants. Correc-
tive maintenance (CM), preventive maintenance, and
predictive maintenance (PdM) are considered main-
tenance strategies.

Al-jaburi et al. (2023) proposed a model to opti-
mize the joint selective maintenance and repairperson
assignment problem when the quality of maintenance
actions is uncertain. In this paper, using a robust opti-
mization framework, the maintenance quality uncer-
tainty is captured via non-symmetric budget uncer-
tainty sets that enable the level of decision-maker con-
servatism to be controlled. In addition, the determin-
istic and robust problems are reformulated as mixed
integer exponential conic programs that can be solved
using currently available solvers.

Saini et al. (2023) proposed a model to optimize the
availability of a marine power plant with two genera-
tors, one switch board, and distribution switchboards.
For this purpose, a mathematical model is proposed
that uses the Markov birth death process by consid-
ering the exponentially distributed failure and repair
rates of all subsystems.

Dey et al. (2023) proposed a mixed integer lin-
ear programing-based optimization model to deter-
mine the optimal maintenance schedule and minimize
maintenance costs.

Rasay et al. (2024) determined the optimal main-
tenance and repair policy for a machine that includes
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3 states, good states, partial failure states, and com-
plete failure states. The system states is determined
by inspecting the system condition, and 2 action in-
clude, minor and major repairs, could be performed
for the machine.

Dahia et al. (2021) proposed a quantitative ap-
proach based on a dynamic Bayesian network (DBN)
to model and evaluate the maintenance of multi-state
systems and their functional dependencies. Accord-
ing to the transition relationships between the system
states modeled by the Markov process, a DBN model
is established, and the objective is to evaluate the reli-
ability and availability of the system while taking into
account the impact of maintenance strategies (perfect
repair and imperfect repair).

Liu and Huang (2010) proposed an optimal replace-
ment policy based on combining the Markov model
and the Universal Generating Function (UGF). They
used a quasi-renewal process to evaluate the probabil-
ity of system states and describe the systems behavior
after imperfect maintenance.

Hongsheng et al. (2021) proposed a stochastic
degradation model to simulate changes in the state
of wind turbines. In this study, the average degrada-
tion trend was obtained by analyzing the properties
of the stochastic degradation model, and the average
degradation model was used to describe the predic-
tive degradation model. Then, the changing trend be-
tween the actual and predicted degradation states of
the wind turbine is analyzed, and based on the av-
erage degradation process, the optimal maintenance
period of the wind turbine is obtained.

Alina et al. (2020) determined the optimal time for
preventive maintenance and repair by using the con-
tinuous Markov model for actuators, which are one
of the main parts of industrial valves. Perfect main-
tenance, imperfect maintenance, and machine failure
are considered in the model, and the objective func-
tion of the problem is to optimize the time of preven-
tive maintenance and repair.

Fallah Nezhad et al. (2010) considered a serial pro-
duction system in which items are 100% inspected
at all stages. The item has been reworked, accepted,
or scrapped. As raw materials enter the production
system and finally exit, a state in the Markovian
model represents different conditions for the raw ma-
terials, i.e., reworking, scrapping, and accepting. In
other words, an item can be in one of its three states
modeled by a distinct random variable. The objective
is to determine the optimal process that maximizes
the expected profit per item.

Hamrol (2018) discussed methods that can be use-
ful for more efficiently applying the power of TQM,
Six Sigma, Lean manufacturing, and other strategies

for process maintenance and improvement in the daily
activities of companies.

Based on published articles that use Markov mod-
els for machine maintenance problem, it is concluded
that the absorbing Markov chain has not been applied
to machine-maintenance problems. The system state
of the production process was also considered a con-
tinuous variable in most of the previous models. Also,
the objective function used in most previous studies
has been the maximization of reliability, availability,
safety, etc.

The state of a system can be modeled as a discrete
Markov chain that absorbs states in real problems.
This research considers a production process that in-
cludes four states, two of which are absorbing. The
optimal maintenance and repair policy is determined
using discrete Markov chain equations so that the ob-
jective cost function is minimized. To the best of the
authors’ knowledge, the description of the production
process by absorbing the Markov chain in the main-
tenance problem has not been addressed.

In this study, the optimal policy of maintenance
and repairs is evaluated using the concepts of distinct
Markov chains to minimize the average cost of the pro-
duction process. Most previous studies assumed a con-
tinuous Markov chain for machine maintenance prob-
lems because the time to failure can be easily obtained
using these models. In this study, a new method is de-
veloped based on a discrete Markov chain approach in
which all related costs can be determined by absorb-
ing Markov chain equations.

Notation

The notations used in this paper are as follow:
Pij – the transition probability of the system

from state i to state j,
Ci – expected cost in state i,
F (C) – objective function of average production

cost,
T – time to failure,
πi – limiting probability of state i,
Fij – probability of absorption from transient sta-

te i to absorbing state j,
P – transition probability matrix of the system

states,
MC – cost of maintenance,
Q – transition probability matrix among the

transient states,
R – elements related to the rows of transient

states and columns of absorbing states,
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S – probability of transition between the transient
states of the system when the absorbing states
are removed,

M – the number of transient states of the system,
N – fundamental matrix for P , which denotes the

expected number of times in states before being
absorbed.

Problem statement

The problem considered in this research includes a
working machine with deterioration, for which there
is a possibility of two types of failure: failure due to
deterioration and sudden failure.

This machine includes the following four states:
State 1: ready for perfect operation (initial state).
State 2: Ready to work with lower performance than

the initial state.
State 3: Failure due to the deterioration.
State 4: Sudden failure.

The four-state Markov model is shown in Fig. 1.

Fig. 1. State transition diagram for the system

The objective function of the model is to minimize
the average cost of the production process. Two states
of failure due to deterioration and sudden failure are
absorbing states; thus, if the machine enters one of
these states (breakdown), it is impossible to return to
the other states. If the machine is in state one, in the
next step, there is only the possibility of staying in its
state or moving to states 2 and 4, and it is impossible
to go to state 3. If the machine is in state two, in the
next step, there is only the possibility of staying in its
state or moving to states three and four, and it is not
possible to move to state one. If the machine enters

state three (the failure due to the deterioration), then
it is not possible to return to the other states, and
this state is one of the absorbing states of the system,
in which the machine must be replaced by a new one.
If the machine enters state four (sudden breakdown),
it is not possible to return to other states. This state
is one of the absorbing states of the system in which a
new machine must be replaced with the current ma-
chine.

According to the above problem description,
states 3 and 4 are the absorbing states of the system.
The machine moves between possible states with dif-
ferent probabilities. The costs of the production pro-
cess differ by state.

To describe the problem, the models of Wan et al.
(2015) and Tomasevicz and Asgarpoor (2006) were
used. In these two studies, no absorbing state was
considered. In this research, the average cost of the
production process, which is the objective function of
the problem, is evaluated by considering two absorb-
ing states based on separate Markov chain equations.

Problem formulation

In this problem, matrix P , which is the probability
transition matrix of the system states, is as follows:

P =


P00 P01 0 P03

0 P11 P12 P13

0 0 1 0

0 0 0 1

 . (1)

The transition probability matrix Q among the
transient states of the system is obtained from the
rows and columns of the non-absorbing states of the
system in matrix P as follows:

Q =

[
P00 P01

0 P11

]
. (2)

The matrix N (the fundamental matrix for P ) that
denotes the expected number of times in states before
being absorbed is determined as follows:

N = [I −Q]−1. (3)

Parameter T is the expected number of steps be-
fore the chain is absorbed (time to failure), and it is
obtained as follows (the first element of vector T ′):

T ′ = N ∗ 1. (4)
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Fij denotes the probability of absorption from tran-
sient state i to absorbing state j, and it gives the fol-
lowing equation:

F = N ∗R. (5)

The matrix S, which represents the probability of
transition between the transient states of the system,
is as follows:

S =

[
P00 + P03 P01

P12 + P13 P11

]
. (6)

When the system enters one of the failure states, per-
fect maintenance is implemented on the machine, and
it returns to the new machine (state one).
πi is the limiting probability of state i, which is

obtained as follows:

π ∗ S = π, (7)
M∑
i=1

πi = 1. (8)

The objective function of the problem is obtained
as follows:

F (C) =
Total failure cost
Time to failure

+ expeted operation cost

=
Maintenance cost + Failure cost

Time to failure
+ expeted operation cost

=
MC + C2F02 + C3F03

T
+ C0π0 + C1π1 . (9)

Case study

A cooling tower, one of the main parts of the steel
industry with four operational states is considered as
case study. The transition probability matrix among
the states without performing repairs and periodic in-
spection is as follows:

P =


0.8 0.1 0 0.1

0 0.7 0.2 0.1

0 0 1 0

0 0 0 1

 .

In addition, the transition probability among the
matrix states when repairs and periodic inspections

are performed is as follows:

P =


0.9 0.05 0 0.05

0 0.8 0.15 0.05

0 0 1 0

0 0 0 1

 .

According to the above matrix, states 3 and 4 absorb
the system.

The matrix of the expected costs is as follows:

C =
[
100 150 1500 2000

]
.

The MC parameter, the maintenance cost, is equal
to 200, which denotes the cost of periodic inspections
and repairs. First, the objective function of the aver-
age cost of the production process without performing
periodic inspections and repairs is determined.

The transient state matrix of the system is as fol-
lows:

Q =

[
0.8 0.1

0 0.7

]
.

The matrix N , which represents the average num-
ber of stages until the absorption occurs, is equal to

N = [I −Q]−1 =

[
0.2 −0.1

0 0.3

]−1

=

[
5 1.67

0 3.34

]
.

The Fij values, which are the absorption probabil-
ities of the system, are obtained as follows:

F = N ∗R =

[
5 1.67

0 3.34

]
∗

[
0 0.1

0.2 0.1

]

=

[
0.334 0.667

0.668 0.334

]
.

The πi values, which are the limiting probabilities of
the transient states of the system, are equal to

π ∗ S = π =
[
π0 π1

]
∗

[
0.9 0.1

0.3 0.7

]
=

[
π0 π1

]
,

π0 + π1 = 1.

The objective function of the problem without main-
tenance is expressed as follows:

F (C) =
MC + C2F02 + C3F03

T
+ C0π0 + C1π1

=
0 + (1500 ∗ 0.334) + (2000 ∗ 0.667)

6.67

+ (100 ∗ 0.75) + (150 ∗ 0.25) = 387.6.
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Now the average cost of the production process, con-
sidering the maintenance decision is computed. The
objective function is obtained as follows:

F (C) =
MC + C2F02 + C3F03

T
+ C0π0 + C1π1

=
200 + (1500 ∗ 0.375) + (2000 ∗ 0.625)

12.5

+ (100 ∗ 0.8) + (150 ∗ 0.20) = 271.

According to the above results, it is clear that the av-
erage cost of the production process can be reduced
from 387.6 units to 271 units by carrying out peri-
odic inspections and repairs; therefore, the optimal
policy is to conduct periodic inspections and repairs.
Thus, the proposed model can be used to analyze any
maintenance policy, and the optimal policy can be de-
termined.

It is assumed that the maintenance cost is equal to
X, then the cost of the production process with main-
tenance decision is equaled to the cost of the produc-
tion process without the maintenance decision. Thus
following is obtained:

X + 1812.5

12.5
+ 110 = 387.6 → X = 1657.5.

Thus, it can be concluded that if the maintenance
cost will be less than X = 1657.5 it will be better to
perform periodic inspections and repairs. In addition,
experts can determine transition probabilities in any
maintenance and repair policy, and the cost of each
maintenance and repair strategy can be evaluated and
select the strategy with the lowest cost. In addition,
the transition probabilities for each maintenance pol-
icy can be estimated based on the historical data of
previously implemented strategies.

Conclusions

Since the components of machinery are worn out
and the failure of any of these parts stops the ma-
chine or production line, and since maintenance and
repair costs account for a significant portion of pro-
duction costs, implementing an optimal maintenance
and repair policy is essential for ensuring equipment
reliability and reducing downtime costs. In this re-
search, using the absorbing Markov process, a math-
ematical model was developed to analyze the mainte-
nance policy of the production process. The different
maintenance policies can be analyzed to minimize the
average cost of the production process. The results
show the applicability of the proposed methodology in

determining the optimal maintenance policy and can
be used to determine the optimal maintenance and
repair policies for critical equipment in various indus-
tries, including the steel industry, where the produc-
tion system is continuous, and the performance and
efficiency of each equipment have a significant impact
on the production rate and profit. At the end of the
article, a case study for one of the critical equipment
of the steel industry (cooling tower) is presented, and
the obtained results show that the average cost of the
production process can be reduced by carrying out
periodic inspections and repairs for this equipment;
therefore, the optimal maintenance and repair policy
for this equipment is to conduct periodic inspections.
In future research, assumptions such as considering
several machines instead of a single machine and the
effect of a single machine’s failure on the performance
of other machines can be added to the problem. The
optimal maintenance and repair policy can then be
calculated under different conditions. It is also pos-
sible to model the problem and determine the opti-
mal policy by considering the reservation machine.
In addition to cost minimization, machine reliability
maximization can be considered in the problem. The
optimal maintenance and repair policy can then be
calculated for the multi-objective problem.
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