
 

1. Introduction 

Different phenomena are responsible and act on the transport of 

matter. The latter can be transported by convection and diffusion 

as it is encountered in the mixed convection rotating-disk sys-

tems. In these processes, all fluids are subjected to a gravita-

tional field in the presence of a thermal gradient that leads spon-

taneously to variation in the density of the fluid, which gives rise 

to complex convective movements within the fluid medium [1]. 

This dynamic behavior can be summarized as being the passage 

towards a secondary flow leading to the appearance of disturb-

ances that develop within the fluid when viscous and thermal 

dissipation are overcome by Archimedean thrust. These insta-

bilities, developing in the phenomena of which many applica-

tions abound, have benefited from great attention from research-

ers, scientists, and industrialists in various fields since the Ray-

leigh-Bernard era, such as gas turbines, rotating-disk air clean-

ers, medical equipment, etc. This frequently encountered phe-

nomenon is the unique solid film generation process [2] with 

high performance and great purity. This process depends  mainly
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Nomenclature 

a ‒ positive constant, 1/s 

f, h ‒ similarity functions 

g ‒ gravitational acceleration, m/s2 

Gr ‒ Grashof number 

k ‒ dimensionless wavenumber 

LN ‒ n-th order Laguerre’s polynomial 

p ‒ dimensionless pressure 

P* ‒ pressure, kPa 

Pr ‒ Prandtl number 

r, z ‒ dimensionless radial and axial coordinates 

r*, z* ‒ radial and axial coordinates, m 

t ‒ time, s 

T ‒ temperature, K 

u, v, w ‒ dimensionless velocity components  

V* ‒ velocity field, m/s 

Zi ‒ location of the collocation node 

Greek symbols 

α ‒ thermal diffusivity, m2/s 

β ‒ thermal expansion coefficient, 1/K 

θ ‒ dimensionless azimuthal coordinate 

Θ ‒ dimensionless temperature 

υ ‒ kinematic viscosity, m2/s 

ρ ‒ density, kg/m3 

ω ‒ dimensionless temporal growth rate 

Ω ‒ dimensionless rotation parameter 

Ω* ‒ angular velocity, s−1 

Subscripts and Superscripts 

c ‒ critical values 

N ‒ expansion coefficients vectors in Laguerre’s polynomials 

w ‒ wall condition 

' ‒ differentiation concerning z  

* ‒ dimensional quantities 

~ ‒ perturbation quantities 

^ ‒ complex amplitude functions of perturbations quantities 

∞ ‒ free stream condition 

Abbreviations and Acronyms 

CVD ‒ chemical vapor deposition  

 

on the convection motions linked to interdependent chemical re-

actions (homogeneous and heterogeneous) in a fluid medium at 

the heated substrate [3]. Hussain et al. [4] examined the convec-

tive traveling modes instability within the boundary layer over 

a rotating disk in an enforced axial flow under the chemical va-

pour deposition (CVD) process. In-depth studies of hydrody-

namics flow have been motivated by the need to avoid or delay 

the transition to turbulence in boundary layers. In the case of 

rotating disk flows, the current field of numerical mechanics re-

quires more advanced techniques for a more precise analysis of 

these various physical phenomena. In this regard, the first simi-

larity transformations designed to convert the governing partial 

differential equations into ordinary differential equations were 

introduced by von Karman [5], who studied with excellence the 

fluid flow due to the disk rotation. Griffiths [6] introduced von 

Karman similarity transformations in a generalized Newtonian 

fluid boundary layer flow due to a rotating disk, after using  

a high Reynolds number boundary-layer approximation. The 

corresponding results provided a more accurate description of 

the flow. Khan et al. [7] analyzed the thermophysical character-

istics of liquids and gases near a heated rotating disk. Usman et 

al. [8] investigated the heat transfer characteristics of a non-iso-

thermal wavy disk rotating in a forced flow. They presented a 

suitable mechanism for the rapid removal of thermal energy 

from the surface of the rotating disk. The combination of ax-

isymmetric stagnation flow on a rotating disc was studied by 

Hannah [9]. Sarkar et al. [10] studied the problem of an axisym-

metric oblique stagnation point flow over the rotating disk. Their 

investigation highlighted that the streamlines shift the location 

of the stagnation point toward the incoming flow. Forced or-

thogonal flow with off-center axisymmetric stagnation point 

flow over a rotating disk was discussed by Wang [11] and Hey-

dari et al. [12]. 

The instability designates the unstable motion, which refers 

to small interruptions in laminar flow. These instabilities accu-

mulate and amplify with the presence of thermal and viscous 

diffusion that occurs within the fluid. When these disturbances 

develop significantly, the flow is profoundly modified, leading 

to unstable behaviours under the competition between these ef-

fects. An impressive study of this instability phenomenon was 

presented by Amaouche et al. [13], where they were able to com-

pare the stability characteristics of thermal convection over 

a non-orthogonal stagnation point flow with those occurring in 

Hiemenz flow over a heated horizontal plate. Moreover, they 

examined the presence of a constant magnetic field on the ther-

mal instability of a two-dimensional stagnation point flow, indi-

cating that magnetic fields act to improve its stability [14]. Nait 

Bouda et al. [15] investigated the effects of mass transfer on the 

thermal instability of a boundary layer stagnation point flow. 

Well afterwards, Mendil et al. [16] examined the effect of tem-

perature-dependent viscosity on the thermal instability of two-

dimensional stagnation point flow. They found that the intensi-

fication of the viscosity of the fluid due to the increase in tem-

perature acts significantly to increase the stability of the flow.  

The stability of flows impinging on curved cylindrical sur-

faces is the subject of several investigations in the literature due 

to their wide application. This type of convective motion devel-

ops a more complex behaviour than flat surfaces. Mittal [17] re-

alized the stabilizing effect as a function of the flow regime on 

the stability of a flow past a cylinder. The stability of an axisym-

metric stagnation flow obliquely striking a circular cylinder in 

uniform rotation under the effect of the Lorentz force associated 

with a radial magnetic field has been analyzed by Amaouche 

et al. [18]. Among the studies on the onset of instabilities of 

mixed convection over circular cylinders, a two-dimensional 

boundary layer problem induced by an upward flow on a heated 

circular horizontal cylinder was investigated by Mouloud et al. 

[19]. They found that growing instability accumulates in free 

convection flow and stable sections correspond to forced and 

mixed convection flow. 

Mechanisms having significant effects on flows in most cur-

rent research are increasingly focused on the complex chal- 
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lenges encountered in a wide range of current applications. Ro-

tating surfaces with high heat transfer has been the subject of 

many recent works where investigations are mainly motivated 

by the possibility of solving the boundary layer equations. At 

this level, the stability theory aims precisely to prevent the de-

velopment of disturbances and to determine the critical condi-

tions for the appearance of the instabilities. In this regard, the 

theoretical and experimental study of linear stability in a spiral 

vortex in the boundary-layer transition regime on a rotating disk 

under the effects of streamline curvature and Coriolis force was 

carried out by Kobayashi et al. [20]. Malik et al. [21] examined 

the Coriolis effect and the streamline curvature on the stability 

of three-dimensional rotating disk flow. Lingwood [22] ex-

plored the characteristics of boundary layer flow over a rotating 

disk in an otherwise still fluid by analyzing the inviscid stability 

of the flow and the stability with viscous curvature, Coriolis and 

streamlining effects. The instability of trailing-edge flows and 

wakes is a considerable topic in aerodynamics. Practical interest 

in this area has driven research to examine the stability of these 

flows by theoretical and experimental means to improve the un-

derstanding of the transition to turbulent flow. In this aspect, an 

analytic approach for calculating absolutely unstable inviscid 

modes of the boundary layer on a rotating disk is examined by 

Türkyılmazoglu and Gajjar [23]. A recent review of the topic 

relating to the phenomenon of instability of fluid flows can be 

found in [24,25]. Miller et al. [26] investigated the stability of 

a heated rotating-disk boundary layer in a temperature-depend-

ent viscosity fluid. Sharma et al. [27] performed a numerical 

analysis of the nonlinear characteristics of the transition to the 

chaos caused by thermal instability in a bottom-heated slotted 

channel undergoing natural convection. Roşca et al. [28] ana-

lyzed linear temporal stability of an axisymmetric rotational 

stagnation flow over a rotating disk under a radially stretching 

sheet and also presented the radial and azimuthal shear stresses 

in an axisymmetric rotational stagnation flow. Healey [29] ex-

amined the relation between viscous and inviscid absolute insta-

bilities in a boundary layer flow induced by a rotating disk. In 

some cases, with temperature changes, the viscosity may also 

undergo a significant change in flow behaviour. Jasmine and 

Gajjar [30] investigated the absolute and convective instabilities 

in the incompressible boundary layer on a rotating von Karman 

disk flow with temperature-dependent viscosity. Wiesche and 

Helcig [31] investigated experimentally the effect of heating on 

the stability of the laminar three-dimensional boundary layer 

flow over a rotating disk. The stability of the three-dimensional 

boundary layer flow introduced into a rotating disk has been 

studied numerically using linear stability theory and experimen-

tally by Lee et al. [32]. An overview of developments in the the-

ory of hydrodynamic stability related to the concepts of abso-

lute/convective and local/global instability was performed by 

Huerre and Monkewitz [33], where they demonstrated how 

these notions can be used effectively to obtain a description of 

the spatio-temporal dynamics of open shear flows. Based on the 

linearized incompressible Navier-Stokes equations, numerical 

simulations of the flow developing on the surface of a rotating 

disk were examined with excellence in [34]. Mechanisms hav-

ing significant effects on flows in most current research are in-

creasingly focused on the complex challenges encountered in 

a wide range of current applications. Rotating surfaces with high 

heat transfer has been the subject of many recent works where 

investigations are mainly motivated by the possibility of solving 

the boundary layer equations.  

In light of these previous findings, even though the above-

mentioned studies on instabilities are inherent to many applica-

tions, the novelty of this original contribution is focused on the 

appearance of thermal instability of three-dimensional boundary 

layer stagnation point flow over a heated rotating disk. For this 

reason, the thermal instability analysis implemented in [13‒16] 

for two-dimensional flat plate boundary layer flow has been ex-

tended and applied to the three-dimensional boundary-layer 

flow rotating disk. By taking into account the Boussinesq ap-

proximation, the resulting dynamic and temperature field are 

coupled to each other leading to an eigenvalue problem consti-

tuted by making use of the linear stability theory. The latter is 

then solved numerically using the pseudo-spectral collocation 

method based on Laguerre’s polynomials expansion. The rotat-

ing disk parameter (Ω) is also one of the novelties or key objec-

tives of this given analysis. Indeed, great attention is given to the 

competition between rotation parameter and thermal buoyancy 

forces on the linear stability of the basic flow. Therefore, we 

seek to examine the evolution of the instability threshold and the 

effects of pertinent parameters such as the disk radius, the rotat-

ing disk parameter, the Prandtl and Grashof numbers (r, Ω, Pr, 

Gr) linked to the different stages of the transition to turbulence. 

2. Model description 

2.1. Disk geometry  

We consider a heated horizontal disk with a large radius rotating 

about its axis (z*) with an angular velocity Ω* subject to an ex-

ternal axisymmetric orthogonal flow V∞*(ɑr*, 0, 2ɑz*), where 

ɑ is a positive constant, as shown in Fig. 1. The temperature at 

the disk (Tw) is assumed to be constant and greater than the ex-

ternal temperature (T∞). Here, the coordinate frame is not related 

to the disk rotation. 

 

Fig. 1. Physical model and coordinate system for the stagnation 

point flow considered. 
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For the steady state, all the physical quantities are assumed 

to be independent of θ since the flow is axisymmetric about the 

z*-axis that is measured from the stagnation point (r* = 0). The 

physical properties of the fluid are assumed to be constant, ex-

cept for the density belonging to the buoyancy term given by 

Boussinesq approximation. We note that in cylindrical coordi-

nates (r*, θ, z*), the flow moves within the velocity field u*, v* 

and w* in the radial, azimuthal and axial directions, respectively. 

The governing equations of the problem under the assumptions 

and approximations of the boundary layer are given by [13‒16]: 

 ∇𝑽∗ = 0, (1) 

 
𝜕𝑽∗

𝜕𝑡∗ + (𝑽∗ ⋅ ∇)𝑽∗ = −
1

𝜌
∇𝑃∗ + 𝜐∇2𝑽∗ − 𝒈𝛽(𝑇 − 𝑇∞), (2) 

 
𝜕𝑇

𝜕𝑡∗ + (𝑽∗ ⋅ ∇)𝑇 = 𝛼∇2𝑇. (3) 

The appropriate boundary conditions are applied, such that 

the radial and azimuthal velocities on the disk are subject to no-

slip conditions, while the axial one verifies the non-permeabil-

ity. Far from the disk, the flow tends to the external stream. Con-

cerning the thermal conditions, the temperature at the disk is 

maintained at (Tw) whereas, at infinity, the temperature is equal 

to that of the external flow (T∞) such as: 

 𝑢∗ = 0, 𝑣∗ = 𝑟∗𝛺∗,  𝑤∗ = 0, 𝑇 = 𝑇𝑤    at   𝑧∗ = 0, (4) 

 𝑢∗ = 𝑎 𝑟∗,  𝑣∗ = 0,  𝑤∗ = −2𝑎 𝑧∗, 𝑇 = 𝑇∞  as   𝑧∗ → ∞, (5) 

where 𝜐 designates the kinematic viscosity,  is the density of 

the fluid, g is the gravitational acceleration,  is the thermal ex-

pansion coefficient, α is the thermal diffusivity of the fluid and 

T is the temperature. The dimensionless form of the Eqs. (1)‒(3) 

is obtained by injecting these scaling variables below. 

𝑡∗ = 𝑎𝑡,   𝑟∗ = √𝜐𝑎−1𝑟,    𝑧∗ = √𝜐𝑎−1𝑧, 

(𝑢∗, 𝑣∗, 𝑤∗) = (√𝜐𝑎𝑢, √𝜐𝑎𝑣, √𝜐𝑎𝑤), 

  (𝑝∗, 𝑇) = (𝜌(𝜐𝑎)𝑝,    𝛩(𝑇𝑊 − 𝑇∞) + 𝑇∞). 

2.2. Solution of the basic flow 

In this area, the steady state of the three-dimensional boundary 

layer flow (Eqs. (1)‒(3)) is associated with the cylindrical coor-

dinates r, θ, and z. The buoyancy effect has an important posi-

tion in the governing differential equations through this mixed 

convection problem. Taking into account the axial symmetry of 

the steady state, the equation system is then reduced after ne-

glecting some terms. By subtracting the equation projected 

along the axial direction from that projected along the radial di-

rection, after deriving them to (∂ ∂𝑟, ∂ ∂𝑧⁄⁄ ) respectively, this 

leads to eliminating the pressure term in the momentum equa-

tion as follows: 

 

∂

∂𝑧
(𝑢

∂𝑢

∂𝑟
−

𝑣2

𝑟
+ 𝑤

∂𝑢

∂𝑧
) −

∂

∂𝑟
(𝑢

∂𝑤

∂𝑟
+ 𝑤

∂𝑤

∂𝑧
) − Gr

∂𝛩

∂𝑟
=

=
∂

∂𝑧
(

∂2𝑢

∂𝑟2 +
1

𝑟

∂𝑢

∂𝑟
−

𝑢

𝑟2 +
∂2𝑢

∂𝑧2) −
∂

∂𝑟
(

∂2𝑤

∂𝑟2 +
1

𝑟

∂𝑤

∂𝑟
+

∂2𝑤

∂𝑧2 )
, (6) 

 𝑢
∂𝑣

∂𝑟
+

𝑢𝑣

𝑟
+ 𝑤

∂𝑣

∂𝑧
= (

∂2𝑣

∂𝑟2 +
1

𝑟

∂𝑣

∂𝑟
−

𝑣

𝑟2 +
∂2𝑣

∂𝑧2), (7) 

 𝑢
∂𝛩

∂𝑟
+ 𝑤

∂𝛩

∂𝑧
=

1

Pr
(

∂2𝛩

∂𝑟2 +
1

𝑟

∂𝛩

∂𝑟
+

∂2𝛩

∂𝑧2). (8) 

The heat transfer is transferred by forced convection, which 

involves the only normal component of the flow field. There-

fore, the temperature field is fully slaved to the normal compo-

nent of the flow, making the basic flow independent of the 

Grashof number. Taking into account the following similarity 

variables [35]: 

 
𝑢(𝑟, 𝑧) = 𝑟 𝑓′(𝑧), 𝑣(𝑟, 𝑧) = 𝑟 Ω ℎ(𝑧),

𝑤(𝑟, 𝑧) = −2𝑓(𝑧), 𝛩(𝑟, 𝑧) = 𝛩(𝑧)
. (9) 

By subsuming the above similarity transformation (9) in the 

previous system (Eqs. (6)-(8)), and after some development, the 

equations are reduced in terms of f, h, 𝛩, leading to the following 

ordinary and nonlinear coupled differential equations system: 

 𝑓‴ − 2𝑓′2
+ 2𝑓𝑓″ + Ω2ℎ2 + 1 = 0, (10) 

 ℎ″ − 2𝑓′ ℎ + 2𝑓 ℎ′ = 0, (11) 

 𝛩″ + 2Pr𝑓𝛩′ = 0, (12) 

where the prime (') denotes differentiation with respect to z, and 

the transformed boundary conditions are given by: 

 𝑓(0) = 𝑓′(0) = 0,   ℎ(0) = 1,   𝛩(0) = 1   at   𝑧 = 0, (13) 

 𝑓′(𝑧) = 1,   ℎ(𝑧) = 0,   𝛩(𝑧) = 0   as   𝑧 → ∞. (14) 

The above equations are, for convenience, formulated in 

terms of dimensionless variables. The distance along the disk 

and time are scaled using the factors ℓ = (𝜐/𝑎)1/2 and ɑ-1, re-

spectively. Prandtl and Grashof numbers are given, respectively, 

by Pr = 𝜐/𝛼, Gr = g𝛽 (𝑇𝑤 − 𝑇∞) ℓ3 / 𝜐2, and Ω = Ω∗/𝑎 is the 

dimensionless rotation parameter. It is preliminary to analyze 

the basic flow before examining the critical conditions related to 

the transition to turbulence because the solution of this one ap-

pears as variable coefficients in the stability problem. The non-

linear differential Eqs. (10)‒(12) with the associated boundary 

conditions (13) and (14) are solved numerically using the fourth-

order Rung-Kutta method with the so-called shooting technique. 

By keeping an accuracy of 10-6, the process is repeated until the 

correct results are obtained. 

3. Linear stability analysis 

The linear stability analysis consists in determining the complex 

wave numbers and frequencies of the waves that the system sup-

ports. In most stability studies, either a purely temporal or spatial 

instability approach is taken. The limitations of adopting 

a purely spatial or temporal instability analysis were made clear 

with the introduction of the concepts of absolute and convective 

instability. It seems from [22,23,30] that the choice of a temporal 

or spatial analysis can only be fixed after the behaviour of both 

the wave number and frequency have been studied in the com-

plex plane and the convective or absolute character of the insta-
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bility has been determined. In the problem at hand it is custom-

ary to focus attention on temporal instability, i.e. disturbances 

grow in time at every fixed point in space [19]. In this part, the 

work is oriented toward the three-dimensional stability analysis 

in order to examine the temporal growth and spatial amplifica-

tion of disturbances. Investigations in this section are based on 

the instability of the flow that occurs after the loss of stability in  

order to understand the destabilizing mechanisms linked to the 

different stages of the transition to turbulence. We consider 

small disturbances propagating along the boundary layer so that 

the instantaneous quantities can be expressed as the sum of the 

quantities of the base state and that of the disturbances state as 

follows: 

 (�̅�, �̅�, �̅�, �̅�, �̅�)(𝑟, 𝜃, 𝑧, 𝑡) = (𝑢, 𝑣, 𝑤, 𝑝, 𝛩)(𝑟, 𝑧) + (�̃�, �̃�, �̃�, 𝑝, �̃�)(𝑟, 𝜃, 𝑧, 𝑡). (15) 

By substituting the above decomposition (Eq. (15)) into the Na-

vier-Stokes and energy equations, after subtracting the base state 

and eliminating the nonlinear terms, we obtain a set of equations 

governing the evolution of the three-dimensional perturbations 

in time and space as follows:  

 (
𝜕

𝜕𝑟
+

1

𝑟
) �̃� +

1

𝑟

𝜕�̃�

𝜕𝜃
+

𝜕�̃�

𝜕𝑧
= 0,  (16) 

 (
∂

∂𝑡
− ∇2 + 𝑢

∂

∂𝑟
+

𝑣

𝑟

∂

∂𝜃
+ 𝑤

∂

∂𝑧
+

∂𝑢

∂𝑟
) �̃� − 2

𝑣

𝑟
�̃� +

∂𝑝

∂𝑟
= 0, (17) 

 (
𝑣

𝑟
+

∂𝑣

∂𝑟
) �̃� + (

∂

∂𝑡
− ∇2 + 𝑢

∂

∂𝑟
+

𝑣

𝑟

∂

∂𝜃
+ 𝑤

∂

∂𝑧
+

𝑢

𝑟
) �̃� +

∂𝑣

∂𝑧
�̃� +

1

𝑟

∂𝑝

∂𝜃
= 0, (18) 

 (
∂

∂𝑡
− ∇2 +

𝑣

𝑟

∂

∂𝜃
+ 𝑤

∂

∂𝑧
+

∂𝑤

∂𝑧
) �̃� +

∂𝑝

∂𝑟
− Gr �̃� = 0, (19) 

 (
∂

∂𝑡
−

1

Pr
∇2 +

𝑣

𝑟

∂

∂𝜃
+ 𝑤

∂

∂𝑧
) �̃� +

∂Θ

∂𝑧
�̃� = 0, (20) 

where ∇2 refers to the three-dimensional Laplace operator. It 

should be noted that the quantities (u, v, w, 𝛩) as previously in-

dicated, represent variable coefficients corresponding to the  

solution of the basic flow. These coefficients show significant 

variations in the normal direction (z) and change linearly in 

the chordwise direction (r), but not in the spanwise direction 

(θ). The strong dependence of the basic state on radial distance 

in  the  problem at  hand does not permits  the  introduction of  

eigenmodes in the chordwise direction (r), in general. However, 

the introduction of the eigenmodes in the spanwise (θ) direction 

to model the problem permits considering the solution separable 

in the variables θ and t, as discussed previously by Amaouche 

et al. [14]. Retaining self-similarity for the perturbation ampli-

tude. The disturbance quantities of a general traveling mode can 

be expressed in the form of the normal mode of Görtler-Ham-

merlin [36,37], as follows: 

 (�̃�, �̃�, �̃�, 𝑝, �̃�)(𝑟, 𝜃, 𝑧, 𝑡) = (𝑟�̂�, 𝑟�̂�, �̂�, �̂�, �̂�)(𝑧)exp(𝑖𝑘𝜃 + 𝜔𝑡). (21) 

In the current study, our attention is focused on temporal in-

stability, where the wave number k is real and the temporal 

growth rate ω is allowed to be complex. Here, 

(𝑟�̂�, 𝑟�̂�, �̂�, �̂�, Θ̂) are complex amplitude functions of three-di-

mensional small disturbances. This so-called Görtler-Hammer-

lin model has been the subject of many works reported before. 

It was also extended for three-dimensional stability analysis as 

in [14]. In the present study, we are interested in the region lo-

cated near the stagnation point, therefore, the non-parallel flow 

effects of order (r2) in the terms [1/r2 (∂2V*/∂θ2)] are included, 

and the thermal stability analysis are examined in the concept of 

non-parallel flow. Introducing the decomposition given by 

Eq. (21), Eqs. (16)‒(20) take the following algebraic system 

form: 

 2 �̂� + 𝑖𝑘 �̂� + 𝐷 �̂� = 0, (22) 

 (𝐷2 + 2𝑓 𝐷 − 2𝑓′ − 𝑖𝑘Ω ℎ −
𝑘2

𝑟2) �̂� + 2 (𝛺 ℎ −
𝑖𝑘

𝑟2) �̂� − 𝑓″ �̂� = 𝜔  �̂�, (23) 

 −2 (Ω ℎ −
𝑖𝑘

𝑟2) �̂� + (𝐷2 + 2𝑓 𝐷 − 2𝑓′ − 𝑖𝑘Ω ℎ −
𝑘2

𝑟2) �̂� − Ω ℎ′�̂� −
𝑖𝑘

𝑟2 �̂� = 𝜔 �̂�, (24) 

 (𝐷2 + 2𝑓 𝐷 − 2𝑓′ − 𝑖𝑘 Ω ℎ −
𝑘2

𝑟2) �̂� − 𝐷�̂� + Gr�̂� = 𝜔  �̂�, (25) 

 (𝐷2 + 2Pr𝑓𝐷 − 𝑖𝑘ΩPrℎ −
𝑘2

𝑟2) �̂� − Pr 𝛩′�̂� = Pr𝜔  �̂�. (26) 
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The disturbances cancel each other out at the wall as well as out-

side the boundary layer, as indicated by these boundary condi-

tions:  

  �̂� = �̂� = 𝐷 �̂� = �̂� = �̂� = 0    at   𝑧 = 0, (27) 

 �̂� = �̂� = �̂� = �̂� = 0    as    𝑧 → ∞. (28) 

The pressure and azimuthal component of the velocity can be 

deduced from Eqs. (22) and (24) in the form: 

 �̂� = −
1

𝑖𝑘
(𝜆 1 + 2𝑓′) − 𝑖 𝑘 Ω ℎ″(2�̂� + 𝐷�̂�), (29) 

 �̂� =
𝑟2

𝑘2
(𝜆 1 + 2𝑓′) − 𝑖𝑘Ωℎ″[2(𝐷2 + 2𝑓𝐷 − 2𝑓′ − 𝜔)�̂� + (𝜆 1 − 2𝑓′ − 𝜔)𝐷�̂� + 𝑖𝑘Ωℎ′�̂�]. (30) 

The combined Eqs. (22) and (24) lead us to reduce the num-

ber of unknowns within the system itself. This simplification is 

achieved by extracting the term �̂� from Eq. (22) and introducing 

it into Eqs. (23) and (24). Additionally, the pressure �̂� is extra-

cted from Eq. (24) and introduced into Eq. (25). Thereafter, we 

can replace the pressure term as well as the azimuthal velocity 

component to obtain a reduced system of an eigenvalue problem 

in the following form:  

 (

𝜆 1 − 2𝑓′ + 2𝜉 𝜉𝐷 − 𝑓″ 0

𝜆 3 𝜆 4 −
𝑘2

𝑟2 Gr

0 −Pr𝛩′ 𝜆 5

)    (
�̂�
�̂�
�̂�

) = 𝜔 (
1 0 0

2𝐷 𝜆 2 0
0 0 Pr

)   (
�̂�
�̂�
�̂�

), (31) 

such as 

 𝐷 =
𝜕

𝜕𝑧
, 𝜆1 = (𝜆2 + 2𝑓𝐷 − 𝑖 𝑘 Ω ℎ), 𝜆2 = 𝐷2 −

𝑘2

𝑟2 , 𝜉 =
2

𝑘2 (𝑖 𝑘 Ω ℎ +
𝑘2

𝑟2), 

 𝜆3 = 2(𝐷2 + 2𝑓 𝐷)𝐷 − 4𝑓″,    𝜆4 = 𝜆1𝐷2 − 2𝑓″  𝐷 − [
𝑘2

𝑟2
(𝜆1 + 2𝑓′) − 𝑖𝑘Ωℎ″],  

 𝜆5 = 𝜆2 + 2Pr𝑓𝐷 −  𝑖 𝑘 Pr Ω ℎ.  

This combination will not only facilitate the numerical solution 

of the system but also minimize the computation time.  

4. Computational method 

The basic flow is solved simultaneously with the stability prob-

lem, which appears in the form of variable coefficients. To ap-

proximate the solution of the problem, the flow stability charac-

teristics are calculated by solving the generalized algebraic ei-

genvalue problem (31) through a pseudo-spectral method based 

on the expansion of Laguerre’s polynomials. The most im-

portant feature of this method is exponential convergence, 

which allows high precision with a modest number of colloca-

tion points. However, the use of Laguerre polynomials is moti-

vated by the distribution of their zeros, i.e. the first zeros are 

close to each other and this distribution is perfectly suited to de-

scribe regions of strong gradients in the boundary layers. Ac-

cording to mathematical models, an approach of the three-di-

mensional complex amplitude functions is given as an approxi-

mation in the form �̂�𝑁(�̂�𝑁, �̂�𝑁 , �̂�𝑁) [13‒16], defined as: 

 �̂�𝑁(𝑧) = exp(−𝑧) ∑  
𝑧𝐿𝑁(𝑧)

𝑧𝑖(𝑧−𝑧𝑖)
𝑑𝐿𝑁(𝑧𝑖)

𝑑𝑧

𝑁
𝑖=1 𝜙𝑁(𝑧𝑖). (32) 

The simplification related to this approximation gives rise to an 

algebraic eigenvalue system in terms of discretized square ma-

trices (3×N, 3×N) such as: 

 (

𝝀 1 − 2𝒇′ + 2𝝃 𝝃(𝐃 − 𝐈) − 𝒇″ 𝟎

𝝀 3 𝝀 4 −
𝑘2

𝑟2 Gr𝐈

𝟎 −Pr𝜣′ 𝝀 5

) (

�̂�𝑵

�̂�𝑵

�̂�𝑵

) = 𝜔 (
𝐈 𝟎 𝟎

2(𝐃 − 𝐈) 𝝀 𝟐 𝟎
𝟎 𝟎 Pr𝐈

) (

�̂�𝑵

�̂�𝑵

�̂�𝑵

), (33) 

such as 

 𝝀 𝟏 = (𝝀 𝟐 + 2𝒇𝐃 − 2𝒇 − 𝑖𝑘Ω𝒉), 𝝀 𝟐 = 𝐃2 − 2𝐃 + (1−
𝑘2

𝑟2) 𝑰, 𝝃 =
2

𝑘2 (𝑖𝑘Ω𝒉 +
𝑘2

𝑟2 𝐈),   

 𝝀𝟑 = 2(𝐃2 + 2(𝒇 − 𝐈)𝐃 + 𝐈)(𝐃 − 𝐈) − 4𝒇″,   

 𝝀 𝟒 = 𝝀 𝟏(𝐃2 − 2𝐃 + 𝐈) − 2𝒇″(𝐃 − 𝐈) − (
𝑘2

𝑟2
(𝝀 𝟏 + 2𝒇′) − 𝑖𝑘Ω𝒉″),   

 𝝀 𝟓 = 𝝀 𝟐 + 2Pr𝒇(𝐃 − 𝐈) − 𝑖𝑘 𝑃𝑟 Ω 𝒉.   
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The square matrices D and I are the matrices associated with the 

differential operator D and the identity matrix, respectively. Pa-

rameters �̂�𝑵, �̂�𝑵 and �̂�𝑵 denote the expansion coefficients vec-

tor. The system (33) can be expressed in terms of square matri-

ces A and B taking the form (𝐀 −  𝜔𝐁) �̂�𝑁. For that, the matrix 

system does not have a unique solution; the matrix A ‒ ω B must 

be regular to have non-trivial solutions. The combination of the 

parameters r, Ω, Pr, and Gr allows us to examine the critical 

conditions for the appearance of instability which occurs for the 

minimum value of Gr that cancels the det(A) at marginality. 

5. Results and discussion 

5.1. Basic flow 

Within the framework of this study, the instability of the three-

dimensional stagnation point flow is examined in cylindrical co-

ordinates. The solution of the basic flow appears as variable co-

efficients in the generalized algebraic eigenvalue problem (33). 

Parameters f, h, and 𝛩 are some of the dominating parameters 

controlling the stability problem, which must be examined at the 

beginning. 

The governing basic flow (Eqs. (10)‒(12)) subject to the 

boundary conditions (13)‒(14) is reduced using the shooting 

technique method, which consists of converting it into a set of 

first-order differential equations to facilitate its resolution. With 

the prescribed values of Pr and Ω, the primary solution of the 

basic flow (1)‒(3) is first obtained numerically by the iterative 

fourth-order Runge-Kutta method. For a step of 10-6, the calcu-

lations proved sufficiently accurate. The resolution of the equa-

tions was carried out from z = 0 to z → ∞ under Dirichlet bound-

ary conditions imposed on the considered problem. The numer-

ical scheme can be optimized by reducing the step size 

Δz = 0.001 in the considered range [0,10]. However, for such 

high levels of precision, the iteration process requires a signifi-

cant increase in computation time. The validation is carried out 

by a calculation code where the results of f"(0) and h'(0) are re-

ported in Tables 1 and  2. For all given values of the rotation 

parameter Ω, the results show considerable agreement with re-

spect to those reported in [10‒12]. Table 3 gives computa-tional 

results of the effects of rotation parameter and Prandtl number 

on the rate of heat transfer, indicating that an increase in both 

parameters leads to the increase in the rate of heat transfer. Nu-

merical calculations are carried out for Ω and Pr ranging from 0 

to 10 and 0.7 to 7, respectively. Using the numerical procedures 

described above, the radial, azimuthal velocity and temperature 

distributions for the flow considered from Eqs. (10)‒(12) are 

displayed in Fig. 2.

 

 

Table 1. Initial values of f" for various values of Ω.  

 f"(0) 
𝛀 Present work Sarkar [10] Wang [11] Heydari [12] 

0 1.311938 1.31194 1.31194 1.311958 

1 1.573923 1.57392 1.57539 1.573930 

2 2.295649 2.29564 2.2951 2.295639 

5 6.259882 6.25987 6.2602 6.259869 

7 9.916523 9.91652 9.9165 9.916513 

 

Table 2. Initial values of h' for various values of Ω. 

 h'(0) 

𝛀 Present work Sarkar [10] Wang [11] Heydari [12] 

0 -1.074667 -1.07467 -1.07467 -1.074697 

0.5 -1.083905 ‒ -1.0839 -1.083934 

1 -1.109996 -1.11000 -1.1100 -1.110020 

2 -1.196826 -1.19676 -1.1968 -1.196841 

5 -1.531978 -1.53198 -1.5320 -1.531983 

7 -1.745103 -1.74511 -1.7451 -1.745106 

 

Table 3. Initial values of -Θꞌ(0) for various values of  Ω and Pr  

 -Θꞌ(0) 

𝛀 Pr = 0.7 Pr = 7 

0 0.6654 1.5458 

0.5 0.6696 1.5620 

1 0.6817 1.6078 
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Figure 2 shows the variation in velocity field f '(z) and h(z) func-

tions for different values of the rotation parameter. As Ω is in-

creased, the radial velocity profile increases near the stagnation 

point flow. When Ω is greater than 3.33, it is observed that with 

increased Ω, the rotation effect generates an overshoot of the 

radial velocity. The influence of the rotation parameter on the 

h(z) component is presented in Fig. 2B. It can be seen that an 

increase in Ω generates a gradual decrease in the azimuthal ve-

locity. 

The results presented in Fig. 3 confirm those obtained in pre-

vious studies [14,15] indicating that the temperature of the fluid 

reduces for large Prandtl numbers, because with an increase in 

Pr the thermal diffusivity decreases. The fluid particles are able 

to conduct less heat and consequently temperature profiles de-

crease with a reduction in thermal boundary-layer thickness. In 

this case, temperature profiles within the fluid will be strongly 

influenced by the velocity profiles. 

5.2. Stability analysis 

The generalized algebraic eigenvalue problem given by Eq. (33) 

has been solved numerically using a pseudo-spectral method 

based on the expansion of Laguerre’s polynomials. Numerical 

computations are performed for several values of control param-

eters such as Prandtl number (Pr), disk radius (r) and rotation 

parameter (Ω). The neutral curve is generated using Newton's 

method where the iteration process is repeated until |det(A)| van-

ishes with the assumed tolerance |det(A)| ≤ 10−6. For satisfactory 

convergence, the effect of the level of truncation N was taken 

into account on the critical conditions for the onset of instability. 

Convergence criteria are based on the relative difference of 

|Grc,i+1−Grc,i|. This showed that the accuracy of the numerical 

scheme can be improved by increasing the number of colloca-

tion nodes. 

Figure 4 shows the effect of the number of collocation nodes 

N on the critical Grashof error. It can be clearly seen that the 

number of polynomials required rises by increasing the Pr num-

ber. This can be explained by the fact that an increase in Pr re-

duces the thermal boundary layer thickness, which requires 

 

Fig. 2. Variation of f'(z) and h(z) for different values of Ω and Pr = 7. 

 

Fig. 3. Temperature profile change for a wide range 

of Prandtl numbers and Ω = 1. 
 

Fig. 4. Effect of the number of collocation nodes N 

on the critical Grashof error. 
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a larger number of terms in order to avoid spurious nodes and 

preserve the prescribed precision.  

The stability analysis depicts that the critical conditions of 

the onset of thermal instability are significantly affected by disk 

rotation. Generally, one can observe that the disk radius (r), ro-

tation parameter (Ω) and Prandtl number (Pr) act to increase or 

decrease the stability of the flow. An overview of the stability 

properties of the basic flow can be seen from the sequence of 

neutral stability curves displayed in Fig. 5. We recall that each 

curve illustrates a minimum value (critical) of the Grashof num-

ber (Grc) for which the boundary layer is stable or unstable. The 

unstable state lies above the curve, while the opposite behaviour 

lies below it. As it can be seen from Fig. 5A, for typical values 

of the rotation parameter, an increase in Ω leads to 

a decrease in Grc. Therefore, increasing Ω acts to destabilize the 

basic flow (i.e. Grc decreases and the unstable regions are ex-

panding). This can be explained by the fact that the induced cen-

trifugal forces by increasing Ω tend to destabilize the basic flow 

as previously observed in Fig. 2. In Fig. 5B, the sensitivity of 

the base flow to small disturbances at various locations along 

the disk radius (r) is examined to distinguish between the most 

stable and the least stable positions. For the given values of r, 

the corresponding neutral stability curves show that as we ap-

proach the stagnation point, the Grc increases and the unstable 

modes become imperceptible as r→0. In this region, the flow 

remains more stable. In the opposite case, away from the stag-

nation point (r → ∞), Grc becomes very weak and the flow be-

comes unstable even without heating effect. 

To distinguish between stable and unstable regions along the 

disk radius, the results discussed in Fig. 5 can be interpreted in 

another aspect to check their validity. It is found that the same 

observation has been confirmed again. Figure 6 provides an 

overview of the critical Grashof number (Grc) as functions of the 

disk radius (r) for different values of Prandtl number and rota-

tion parameter (Ω). We can see that Grc grows rapidly to infinity 

when r → 0 (by approaching the stagnation point). However, the 

variation of Grc becomes significantly weaker and decreases  

 

Fig. 5. Neutral stability curves for different values of: A) rotation parameter Ω, B) disk radius r. 

 

Fig. 6. Critical Grashof number as a function of the disk radius: A) for different values of Pr, B) with varying Ω. 
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rapidly moving away from the stagnation point. The observa-

tions show that disturbances decrease as one approaches the 

stagnation point (at the vicinity of the stagnation point the flow 

remains stable) and increase significantly as one moves away 

from it as shown previously in Fig. 5B. For large values of r (far 

away from the stagnation point), the critical Grashof number can 

reach zero values and the flow becomes unstable even without 

the thermal effects. As well, the transition to a secondary flow 

is linked to viscous instability. 

More precisely, instability refers to the transition to  

a secondary flow, which occurs at a certain critical Grashof 

number. This transition can be explained by the influence of the 

buoyancy forces term in Eq. (19). The above results shown in 

the (k, Gr) plane indicated that the most unstable branches effec-

tively correspond to large values of rotation parameter and disk 

radius. However, strong thermal gradients notably produce an 

opposite effect, i.e. small values of Pr are reflected with an at-

tenuation of the instability region. 

Regarding the critical conditions for the appearance of insta-

bility. Figure 7 shows an overall overview of the evolution of 

the critical Grashof number (Grc) as function of Pr. For  

a given values of r and Ω, both figures show that Grc grows very 

rapidly when Pr → 0, i.e. a small change in the Pr affects signif-

icantly the stability threshold. However, when Pr → ∞ then Grc 

becomes insensitive to Pr and decreases suddenly with a large 

expansion of instability region as observed previously by 

Amaouche et al. [13]. This can be explained by the fact that, for 

low values of Pr, the thermal disturbances are promoted to be 

dissipated rapidly, and the variation in Grc number correspond-

ing to the most unstable mode remains imperceptible [15]. This 

means that larger thermal gradients are required to destabilize 

the basic flow. In contrast, for larger Prandtl numbers, thermal 

dissipation is slower and the thermal fields are predominated by 

the velocity fields, which make the equilibrium less stable. Also, 

the corresponding thermal boundary-layer thickness is weak, 

which promotes instability even close to the stagnation point. 

Concerning the rotation parameter, its influence on the stability 

of the basic flow changes for small and great Pr. For large Pr, Ω 

has a destabilizing effect while for small Pr (around the unity) it 

tends to stabilize the basic flow. 

The description of the physical mechanism governing this 

phenomenon was also carried out by establishing a concept to 

justify the occurrence of these fluctuations on the least stable 

and the most unstable branches. Figure 8 shows the temporal 

 

Fig. 8. Temporal growth rate as a function of wavenumber k for different values of Ω and Pr. 

 

Fig. 7. Critical Grashof number (Grc) as a function of Pr: A) for different values of disk radius (r), B) for different values of rotation parameter (Ω). 
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growth rate (ω) versus the wavenumber (k) for different values 

of Pr and Ω. Knowing that the stable region corresponds to neg-

ative values of temporal growth rate (ω < 0), while the unstable 

region corresponds to positive ones (ω > 0). At r = 1 and Gr = 

450 and 800, it is seen from both figures that an increase in the 

Prandtl number and rotation parameter leads to a progressive ex-

pansion of the most unstable modes. However, the results indi-

cate that the heating effect significantly increases the stability of 

the base flow, i.e. the most stable modes are improving as the 

Prandtl number decreases (Pr → 0) [19]. The graphs confirm 

that the effect of heating increases the stability of the flow while 

the effect of disk rotation decreases its stability. Within a spe-

cific range of the control parameters, the results also seem to 

confirm the stability analysis shown in Fig. 5. 

6. Conclusions  

In this paper, the thermal instability characteristics of three-di-

mensional stagnation point flow over a heated rotating disk is 

carried out under the effect of heat transfer, rotation parameter 

and disk radius. The eigenvalue problem governing the stability 

process has been constituted by applying linear stability theory, 

and solved numerically by making use of a pseudo-spectral 

method using Laguerre’s polynomials. Our findings provide 

a  significant contribution by examining the evolution of thermal 

instabilities in the boundary layer stagnation point flow under 

the appropriate control parameters, and the main results pre-

sented in this study can be summarized as follows:  

i) Thermal excitation generates three-dimensional instabili-

ties in the presence of heat transfer, which leads to a large 

critical Grashof number for the onset of instability. 

ii) An increase in fluid temperature gives a larger critical 

Grashof number for the onset of thermal instability. In ad-

dition, for quite small values of the Prandtl number, the 

flow tends to be in a stable state. 

iii) Expansion of unstable regions far from the stagnation point 

(r → ∞), and the opposite effect turns out to be observed 

as we approach it (r→ 0). This region appears to be the 

most stable area with a very high critical Grashof number. 

iv) The rotation parameter presents a destabilizing effect lead-

ing to the expansion of instability regions. 

In perspective, the work can be improved by investigating the 

spatio-temporal instabilities analysis in order to identify possi-

ble convective/absolute and local/global instabilities. In addi-

tion, the asymptotic analysis of the instability can be studied and 

it is of capital importance to further enhance the validity of the 

stable and unstable regimes.  
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