
 

1. Introduction 

The problem of identifying thermal stresses is essential in many 

different industries, such as conventional, nuclear, and renewa-

ble power generation, the metallurgical industry, the semicon-

ductor industry, the automotive and aerospace industries, and 

even medicine. 

One of the most popular methods for determining thermal 

stresses, as described in publications in recent years, is the finite 

element method (FEM). For example, for a case from the met-

allurgical industry considered in [1], the authors of the paper 

used FEM in the Ansys software to analyse the thermal stresses 

of a ladle refractory layer on molten steel. This analysis allowed 

the authors to evaluate the effect of dilatations of different sizes 

on the reduction of thermal stresses. Also, it allowed the creation 

of temperature and stress characteristics under different operat-

ing conditions. 

In the context of conventional power generation, the unpre-

dictability of renewable energy production results in the require-

ment for frequent start-up and shut-down and load shifting of 

power units. This results in a reduced equipment lifetime due to 

thermo-mechanical fatigue and creep. Monitoring power plant 

operating conditions and residual life assessments to ensure safe 

operation also requires power plants that have exceeded their 

design life. For the reasons mentioned above, correctly identify-

ing the thermal stresses of critical pressure components of power   
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Nomenclature 

𝑎, 𝑏, 𝑐 – coefficients of a polynomial function 

𝑐 – specific heat capacity, J/(kg K) 

𝐸 – Young's modulus, MPa 

Fo – Fourier number 

ℎ – heat transfer coefficient, W/(m2K) 

𝑘 – thermal conductivity coefficient, W/(m K) 

𝐊 – thermal conductivity tensor 

𝑛𝑐 – number of control volumes 

𝑁 – temperature measuring point 

𝑝𝑛 – overpressure of the fluid inside the cylindrical element, MPa 

�̇�𝑖 – heat flux at the i-th node, W/m2 

�̇�𝑣 – energy generation rate per unit volume, W/m3 

�̇�𝑖,𝑗  – heat flow rate between the nodes i and j, W 

𝑟 – radius, m 

𝑠 – thickness, m 

𝑠𝑁,𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑠– mean squared error of thermal stresses, MPa 

𝑠𝑁,𝑡𝑒𝑚𝑝– mean squared error of temperature, ºC or K 

𝑡 – time, s 

𝑇 – temperature, ºC or K 

𝑇𝑖 – temperature at the i-th node, ºC or K 

�̅� – average temperature over wall thickness, ºC or K 

𝑣𝑇 – rate of temperature change, K/s 

 

Greek symbols 

𝛼 – stress concentration factor 

𝛽  – linear thermal expansion coefficient, 1/K 

𝛿  – distance from the internal surface to the measuring point, m 

∆𝑟  – spatial step, m 

∆𝑡  – time step, s 

∆𝑉𝑖 – volume of the i-th control cell, m3  

𝜀 – tolerance, K 

𝜅 – thermal diffusivity coefficient, m2/s 

𝜈 – Poisson's ratio 

𝜚 – density, kg/m3 

𝜎  – circumferential stresses, MPa 

𝜙 – shape factor 

 

Subscripts and Superscripts 

𝑎𝑙 – allowable 

𝑓 – fluid 

𝑖𝑛 – inner 

𝑚 – mean 

𝑜𝑢𝑡 – outer 

𝑝 – caused by pressure 

P – on the edge of the hole at point P 

𝑇 – thermal 
 

Abbreviations and Acronyms 

FEM – finite element method 

FVM – finite volume method 

DCS – distributed control systems 

 

boilers is crucial. Knowledge of the thermal stresses is also nec-

essary for determining the optimum temperature histories of the 

fluid during heating [2] and cooling [3] of pressure components 

when the rate of temperature change is determined from the con-

dition of not exceeding the allowable stresses. 

Recently, many articles have been devoted to determining 

thermal stresses in nuclear power plants, where the issue of safe 

operation of pressure equipment is critical. An example is the 

paper [4], which presents a simplified method for determining 

thermal stresses at the corners of pressure vessel nozzles of nu-

clear reactors. In order to eliminate the disadvantage of the pop-

ular FEM method, i.e. the high computational cost for three-di-

mensional elements, the thermal stresses are estimated based on 

temperature gradients. Temperature gradients are predicted in 

the cross-section at the corners of the nozzles based on the 

known geometry of the element and the way the temperature is 

distributed in the cylindrical element and semi-infinite plate (de-

termined analytically). The authors of the paper [5] also ad-

dressed the study of thermal stresses at the corners of reactor 

nozzles. They presented simple equations for the prediction of 

the stress intensity factor, which was obtained from thermal 

loading analysis under cooling and heating conditions using the 

FEM. The FEM analyses were used in both cases only to vali-

date the proposed approach. 

Residual stresses arising in pressure components due to ther-

mal shock are also investigated. An example of research on this 

topic is the paper [6], where the authors characterised the resid-

ual stresses in a steel pressure vessel of a nuclear reactor whose 

surface is plated with a nickel-based alloy. The study's authors 

also investigated the interaction between residual and thermal 

stresses during thermal shock. 

A common area for conventional and nuclear power plants 

with a high need for thermal stress analysis are steam turbines. 

In [7], an algorithm for monitoring thermal stresses in rotors and 

bodies of shut-off and control valves of steam turbines is pre-

sented. The developed software allows the determination of 

stresses in critical turbine components based on measured data, 

and it will also enable the optimisation of the device start-up 

process. In [8], thermal stresses were analysed for the case of 

high-temperature steam inlet to steam turbines with a combined 

HP-IP cylinder and high- and medium-pressure rotors located in 

separate casings, operating with a double or single thermal by-

pass. On the other hand, in [9], acceptable parameter deviations 

were analysed to assess the quality of the start-up operation in 

terms of the thermal stress values of the critical elements of the 

power plant thermal scheme, i.e. the high-pressure turbine rotor 

and the high-pressure outlet header of the recovery boiler super-

heater. Calculations were performed using the Ansys software. 

Determining thermal stresses in a thick-walled element with-

out holes, in both quasi-stationary and transient states, requires 

knowledge only of the temperature distribution in the wall of the 

element. However, thick-walled elements often have holes, and 

a quasi-stationary state is difficult to achieve in practice. Given 

this, the thermal stresses can only be correctly calculated by 

knowing the stress concentration factor at the edge of the hole 

and, in turn, this without knowing the exact temperature of the 

fluid flowing through the element and the heat transfer coeffi-

cient at its internal surface. 

In order to determine the heat transfer coefficient, exact tran-

sient temperature measurements are required due to the slight 

difference between the fluid temperature at high pressure and 

the internal surface temperature of the component. The heat 
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transfer coefficient has an essential influence on the optimum 

rate of change of the fluid temperature, which is determined by 

the condition of not exceeding the allowable thermal stresses on 

the inner surface of the pressure element [10]. Strain and stress 

analyses demonstrate that the influence of the time- and loca-

tion-varying heat transfer coefficient compared to the fixed co-

efficient recommended by standards is a crucial factor in fatigue 

calculations. The importance of determining the actual heat 

transfer coefficient on the internal surface of pressure compo-

nents based on numerical studies of steam boiler start-up and 

analysing deformations and stresses in the component is demon-

strated in [11]. 

The highest thermal stresses occur on the inner surface of the 

pressure element, which is in direct contact with the high-pres-

sure, high-temperature fluid. In order to determine the stresses 

on this surface, a temperature measurement is usually taken in 

practice at half the wall thickness s and a distance δ from the 

inner surface of the element of 6 to 10 mm [12]. This method in 

transient states is characterised by low accuracy. The stresses on 

the inner surface of the element determined in this way may dif-

fer by up to several tens per cent from the actual stresses, signif-

icantly when the steam temperature changes rapidly. 

An attempt to develop a mathematical model using the finite 

difference method to determine the transient thermal stresses in 

a thick-walled pressure component was made in the article [13], 

among others. The developed model has been verified experi-

mentally and compared to a model based on FEM. The model 

uses known temperatures of the surroundings, external surface 

and fluid inside the cylindrical element. The method considered 

is based on solving a direct problem. 

Another approach to determining transient thermal stresses 

based on the temperature distribution inside the wall of a pres-

sure element is to use methods based on solving the inverse heat 

conduction problem [14]. In the inverse heat conduction prob-

lem, the temperature at the edge of the element is determined 

based on temperature changes at selected points inside the ana-

lysed body. The determination of thermal stresses based on the 

measurement of the wall temperature of a thick-walled element 

with simple shapes near the inner surface is presented in the ar-

ticle [12]. The temperature measurement location divides the 

wall in the cross-section into direct and inverse areas, with the 

finite volume method (FVM) being used in the inverse area to 

determine the temperature distribution and heat flux. Knowing 

the heat flux and temperature at the internal surface and the tem-

perature of the fluid washing over this surface allows the heat 

transfer coefficient to be determined. The technique of measur-

ing the fluid temperature with new solid-sheathed thermometers 

using the inverse solution of the heat conduction problem is de-

scribed in detail in [15]. In turn, papers [16,17] present a method 

for determining the three-dimensional temperature field in 

thick-walled elements based on temperature measurements at a 

series of points on the thermally insulated external surface. In 

[16], a flat element was analysed and in [17], a cylindrical one. 

In addition, a method for determining the heat transfer coeffi-

cient has been developed for the case of an element with com-

plex shapes. This method is made possible by a 'measuring 

probe', by which the temperature is measured at 6 points near 

the inner surface of the component [18]. 

Inverse problems are characterised by a high sensitivity of 

the solution to input disturbances. To reduce their influence on 

the solution of the inverse problem, one of the regularisation 

methods, such as the Tikhonov method, discrete Fourier trans-

form, energy regularisation method and others, can be used. Ex-

amples of research on Tikhonov regularisation and its modifica-

tions are presented in papers [19,20]. The paper [19] investi-

gated the solution of an inverse problem illustrating the wall of 

a heating device, in which the regularisation parameter was cho-

sen based on Morozov's principle. The paper [20], on the other 

hand, analysed the effect of the regularisation of the inverse 

problem on the stability of the calculated boundary conditions 

during the cooling of a sample in a thermo-chemical treatment 

furnace. A slightly different approach is proposed in [21], for 

the analysis of a ceramic-coated metal element (e.g. a turbine 

blade), where the temperature of the metal is controlled by solv-

ing the Cauchy problem for the heat conduction equation for  

a two-layer element. A regularisation method based on the en-

ergy balance formulation for the ceramic layer was used here, 

and the spectral radius of the equation matrix was used to ana-

lyse the stability of this computational model. 

Another effective and simple solution that eliminates the in-

fluence of random errors on computational results in solving in-

verse problems and that can be applied in real time is smoothing 

measurement data by approximating the measured values with 

digital filters [22]. The smoothing of N-measured data in the 

form fs = f(s) is implemented by the least squares method using 

orthogonal Gram polynomials. An example of the use of digital 

filters for smoothing measured data is presented in the paper 

[15], which demonstrates the application of a new measurement 

technique to determine the transient temperature of superheated 

steam flowing out of the second superheater stage in a power 

boiler, based on the solution of an inverse problem. 

This paper undertakes the determination of thermal stresses 

in thick-walled pressure elements using an inverse method based 

on FVM. The case of a transient and a cylindrical element not 

weakened by holes is considered. While the method is well-

known and, for a cylindrical element, has been described in 

works [12,14], this article focuses on determining the best con-

ditions for its application. The analysis of the accuracy of the 

inverse method consisted of selecting the most favourable divi-

sion into control volumes depending on the distance of the tem-

perature measuring point from the inner surface and the length 

of the time step. This was possible based on the computational 

tests performed, which made it possible to compare the deter-

mined temperature distribution and thermal stresses on the inner 

surface determined by the analytical method and the direct solu-

tion of the heat conduction problem with the results obtained 

from the inverse solution. The choice of the inverse method to 

determine the temperature distribution for thermal stresses using 

the control volume method to carry out accuracy analyses and 

conditions of applicability was due to a number of its ad-

vantages. Its use is simple in practice and does not require tem-

perature measurements to be taken on the internal surface of 

pressure parts, especially as this would be very difficult in the 
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case of pressurised components. Furthermore, the method can 

be used for online stress monitoring. As described in this chap-

ter, FEM for determining stresses is very popular. However, it 

requires the solution of a direct problem and, in the case of com-

ponents with complex shapes, consumes a large amount of com-

putational cost. 

2. Determination of thermal stresses on the inner 

surface of pressure elements 

Thick-walled components are used in power plant units due to 

the high pressure of the working fluid. The highest thermal 

stresses in thick-walled pressure components usually occur 

when there is a change in temperature during operation with 

a simultaneous uneven temperature distribution at the cross-sec-

tion of the component walls, i.e. during start-up and shut-down. 

As a result of the standardisation of calculation procedures for 

boilers, the German regulation TRD 301 [23] and the European 

standard EN 12952-3 [24] were developed. These are the essen-

tial documents describing procedures for determining thermal 

stresses in pressure components. However, they are limited only 

to determining thermal stresses under the assumption of a quasi-

stationary temperature field in the element wall, which is diffi-

cult to achieve in practice. Also, the assumption of a parabolic 

temperature distribution in the wall does not give satisfactory 

results for rapid and sudden temperature changes over time. 

Simplified methods for determining transient thermal 

stresses on the surfaces of pressure parts washed with a working 

fluid based on the provisions mentioned above are described be-

low. The main advantage of the methods discussed in this sec-

tion is the simple formulae for determining the stresses on the 

inner surface of the element. Despite their approximate nature, 

they are used by boiler manufacturers. However, due to the de-

velopment of DCS (distributed control systems) in power plants, 

there is now the possibility of using more complex formulas to 

calculate stresses online. 

2.1. Thermal stresses in the plate assuming a quasi-sta-

tionary temperature field 

Cylindrical pressure elements with a large diameter can be 

treated as flat elements. It is then assumed that the element can 

expand freely but not bend. An example of a cylindrical element 

that can be treated as a flat wall is the wall of a steam drum. 

The basis for determining allowable heating and cooling 

rates of thick-walled cylindrical pressure elements is the condi-

tion of not exceeding the circumferential allowable stresses on 

the inner surface of the pressure element at the hole's edge at 

point P. The circumferential stresses at point P are the sum of 

the stresses due to pressure and thermal stresses: 

 𝜎P = 𝛼𝑝𝜎𝑝 + 𝛼𝑇𝜎𝑇, (1) 

where 𝛼𝑝 is the pressure stress concentration factor at point P 

lying on the edge of the hole (Fig. 1), and 𝛼𝑇 is the thermal stress 

concentration factor at point P. 

 
The symbol 𝜎𝑝 denotes the circumferential stresses from the 

pressure in a cylindrical element not reinforced by holes, which 

are expressed by the relation: 

 𝜎𝑝 =
𝑝𝑛𝑟𝑚

𝑠
, (2) 

where 𝑝𝑛 is the overpressure of the medium inside the element, 

𝑠 is the thickness of the element, and 𝑟𝑚 = (𝑟𝑖𝑛 + 𝑟𝑜𝑢𝑡)/2 is the 

mean radius of the cylindrical pressure element determined as 

the arithmetic mean of the inner radius 𝑟𝑖𝑛 and the outer radius 

𝑟𝑜𝑢𝑡. 

The highest thermal stress in a cylindrical element occurs at 

the surface in contact with the fluid and is determined by the 

formula: 

 𝜎𝑇 =
𝐸𝛽

1−𝜈
(�̅� − 𝑇|𝑟=𝑟𝑖𝑛

), (3) 

where 𝐸 is Young's modulus, 𝛽 is the linear thermal expansion 

coefficient, 𝜈 is Poisson’s ratio, 𝑇 is the temperature, and �̅� de-

notes the average temperature over wall thickness. 

After determining the average wall temperature of the com-

ponent �̅� from the solution of the heat conduction equation, 

a general relationship is obtained: 

 𝜎𝑇 = 𝜙
𝐸𝛽

1−𝜈

𝑣𝑇𝑠2

𝜅
, (4) 

where the symbol 𝜙 is usually referred to as the shape factor, 𝜅 

is the thermal diffusivity coefficient, and 𝑣𝑇 is the rate of tem-

perature change. 

For the inner surface of a cylinder, the ends of which are free 

to extend, the shape factor for a cylindrical element [24,25] is 

expressed by the formula: 

 𝜙 =
1

8

(𝑘2−1)(3𝑘2−1)−4𝑘4𝑙𝑛𝑘

(𝑘2−1)(𝑘−1)2 , (5) 

where 𝑘 = 𝑟𝑜𝑢𝑡 𝑟𝑖𝑛⁄ . 

Stress concentration factors can be determined based on  

EN 12952-3 [24] or can be determined by FEM in the case of 

vessel-to-spigot connections with more complex geometries. 

The allowable heating or cooling rates of a pressure element are 

determined by the condition: 

 𝜎P ≤ 𝜎𝑎𝑙 , (6) 

 

Fig. 1. Section of the wall of a steam drum with a hole. 
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where 𝜎𝑎𝑙 is the allowable stress determined from the Wöhler 

fatigue diagram in the standard [24]. 

Equation (6) gives satisfactory results when determining the 

permissible heating rates from the cold state when the pressure 

element is heated at a constant rate over a long time. With 

a time-varying rate of change in the fluid temperature, Eq. (1) is 

not very accurate, particularly with rapid temperature changes. 

Sudden changes in the fluid temperature occur, for example, 

when the evaporator is flooded with hot water at the beginning 

of a start-up, when cooling water is injected in superheated 

steam temperature controllers or when the boiler pressure is sud-

denly reduced due to damage to the steam evaporator tubes or 

superheaters. 

It should be added that Eq. (1) remains valid at the pressure 

elements for time-varying heating or cooling rates. 

This paper focuses only on the determination of thermal 

stresses. 

2.2. Transient thermal stresses in a cylindrical element 

A more general method for determining the thermal stresses in 

cylindrical elements without holes is the one using Eq. (3), 

where the average temperature �̅� over the wall thickness is de-

termined from the formula: 

 �̅� =
2

𝑟𝑜𝑢𝑡
2 −𝑟𝑖𝑛

2 ∫ 𝑟𝑇(𝑟, 𝑡)𝑑𝑟
𝑟𝑜𝑢𝑡

𝑟𝑖𝑛
, (7) 

where 𝑟 denotes the radius. 

The spatiotemporal distribution of the temperature in a cy-

lindrical wall can be obtained from the analytical solution of the 

heat conduction equation or by using numerical methods, for ex-

ample FEM or FVM. When numerical methods are used, the 

wall temperature is determined only at discrete points, while the 

average temperature is determined using the chosen approxima-

tion method [26,27]. By calculating the integral in Eq. (7) using, 

for example, the trapezoidal rule for discrete points, the follow-

ing expression is obtained: 

 �̅� =
1

𝑟𝑜𝑢𝑡
2 −𝑟𝑖𝑛

2 ∑ (𝑟𝑖−1𝑇𝑖−1 + 𝑟𝑖𝑇𝑖)∆𝑟𝑁
𝑖=2 , (8) 

where 𝑟𝑖 is the radius at which the i-th node is located, ∆𝑟 is the 

spatial step, and 𝑇𝑖  is the temperature at the i-th node. 

In some cases, the number of points at which the wall tem-

perature is determined may be too small, and the accuracy of the 

average temperature determined from Eq. (8) may be insuffi-

cient. Another method of determining the average wall temper-

ature can then be used, in which temperatures determined, for 

example, from the inverse solution of the heat conduction equa-

tion are interpolated by a second-degree polynomial [26,27]: 

 𝑇(𝑟, 𝑡) = 𝑎(𝑡) + 𝑏(𝑡)𝑟 + 𝑐(𝑡)𝑟2, (9) 

where 𝑎(𝑡), 𝑏(𝑡) and 𝑐(𝑡) denote time-dependent coefficients. 

For example, if the temperature is measured at two points in 

the wall, i.e. 𝑇1 at the inner radius 𝑟𝑖𝑛 and 𝑇2 at half the wall 

thickness at radius 𝑟𝑚, and the pipeline is insulated at the outer 

surface, after determining the coefficients 𝑎(𝑡), 𝑏(𝑡) and 𝑐(𝑡) 

for such boundary conditions and substituting the resulting tem-

perature distribution 𝑇(𝑟, 𝑡) expressed by Eq. (9) into Eq. (7), 

the following relation is obtained: 

 �̅� = 𝑇1 +
2

9
(4 +

∆𝑟

𝑟𝑖𝑛+∆𝑟
) (𝑇2 − 𝑇1). (10) 

Both Eqs. (8) and (10) make it possible to calculate the ap-

proximate value of the average temperature over the thickness 

of the cylindrical wall. 

3. Determination of the one-dimensional temper-

ature distribution in a cylindrical element using 

the inverse marching method 

Suppose the temperature measurement in the thick-walled com-

ponent can only be realised at the external surface and/or inside 

the pipe wall. In that case, the transient temperature field in the 

inverse region can be determined from the solution of the in-

verse heat conduction problem. 

The general form of the heat conduction equation for station-

ary solids that can be treated as incompressible is presented as 

follows [28]: 

 𝑐(𝑇)𝜌(𝑇)
𝜕𝑇

𝜕𝑡
= ∇(𝐊∇𝑇) + �̇�𝑣, (11) 

where 𝑐 is the specific heat capacity, 𝜌 is the density, 𝐊 is the 

thermal conductivity tensor, and �̇�𝑣 is the energy generation rate 

per unit volume. 

In [28], FVM was used to solve the inverse problem: the heat 

conduction equation and known boundary conditions. FVM, 

also known as the control volume method, is versatile and effi-

cient for solving heat conduction problems. Assuming that the 

temperature field is two-dimensional and the physical proper-

ties: specific heat capacity c, density ρ, thermal conductivity co-

efficient k and energy generation rate per unit volume �̇�𝑣 are 

temperature dependent, the heat conduction equation can be 

transformed to the form: 

 ∆𝑉𝑖𝑐(𝑇𝑖)𝜌(𝑇𝑖)
𝜕𝑇𝑖

𝜕𝑡
= ∑ �̇�𝑖,𝑗

𝑛𝑐
𝑗=1 + ∆𝑉𝑖�̇�𝑣(𝑇𝑖), (12) 

where �̇�𝑖,𝑗 is the heat flux rate transferred from node 𝑗 inside the 

neighbouring cell to node 𝑖, and ∆𝑉𝑖  is the volume of the 𝑖-th 

control cell. Node 𝑖 is located inside the analysed area and heat 

transfer occurs in 𝑛𝑐 control volumes adjacent to the analysed 

control area. 

In this paper, the inverse heat conduction problem will be 

solved for the case of a cylindrical wall when heat is transferred 

only in the radial direction. 

The proposed inverse method is stable and has high accuracy 

if the condition is met [29]: 

 ΔFo ≥ 0.05. (13) 

Furthermore, due to the method's sensitivity to random er-

rors in the temperature measurement 𝑇(𝑡), to at least partially 

eliminate their influence on the calculation results, the tempera-

ture waveform is proposed to be smoothed using a 9-point digi-



Jaremkiewicz M.  
 

100 
 

tal filter [22]. Filtering also makes it possible to accurately de-

termine the values of the derivatives of the temperature function 

𝑇(𝑡) from measured data perturbed by random errors. 

3.1. One-dimensional transient temperature field in el-

ements with simple shapes 

In the measurement method, the temperature, heat transfer coef-

ficient and thermal stresses on the inner surface of a thick-walled 

cylindrical element are determined by measuring the tempera-

ture inside the wall at a single point. For this purpose, the tem-

perature distribution in the area 𝑟𝑖𝑛 ≤ 𝑟 ≤ 𝑟𝑜𝑢𝑡  and the heat flux 

density on the pipe's inner surface are investigated. The temper-

ature measurement is taken at node 𝑁 inside the pipe wall, which 

has been thermally insulated (Fig. 2). The pipeline cross-section 

is divided into a direct and an inverse region, where the bound-

ary between the two is at radius 𝑟𝑁. 

 
Heat transfer through the cylindrical wall is assumed to take 

place only in the radial direction 𝑟. In this case, the heat conduc-

tion equation in the cylindrical coordinate system takes the form 

[29,30]: 

 𝑐(𝑇)𝜌(𝑇)
𝜕𝑇

𝜕𝑡
=

1

𝑟

𝜕

𝜕𝑟
[𝑘(𝑇)𝑟

𝜕𝑇

𝜕𝑟
]. (14) 

The heat conduction equation is solved first for the direct 

area for the boundary conditions: 

 𝑇|𝑟=𝑟𝑁
= 𝑇𝑁, (15) 

 𝑘(𝑇)
𝜕𝑇

𝜕𝑟
|

𝑟=𝑟𝑜𝑢𝑡

= 0, (16) 

where 𝑇𝑁 is the temperature measured at node 𝑁 located inside 

the pipeline wall (Fig. 2). In this way, the temperature distribu-

tion in the area 𝑟𝑁 ≤ 𝑟 ≤ 𝑟𝑜𝑢𝑡 and the heat flux �̇�𝑁 at node 𝑁 are 

determined. The solution assumes that the values of the physical 

properties of the pipe material: 𝑐, 𝜌, 𝑘 are variable and tempera-

ture dependent. 

Equation (14) is then solved for the inverse region 

𝑟𝑖𝑛 ≤ 𝑟 ≤ 𝑟𝑁 using the boundary conditions: 

 𝑇|𝑟=𝑟𝑁
= 𝑇𝑁, (17) 

 𝑘(𝑇)
𝜕𝑇

𝜕𝑟
|

𝑟=𝑟𝑁

= �̇�𝑁. (18) 

The inverse problem described by Eqs. (14) and (16)−(18) 

was solved using FVM (Eq. (12)) and approximating the deriv-

atives of the temperature function by differential quotients: 

 
𝜕𝑇

𝜕𝑟
|

𝑟𝑖+1

=
𝑇𝑖+1−𝑇𝑖

∆𝑟
,       

𝜕𝑇

𝜕𝑟
|

𝑟𝑖

=
𝑇𝑖−𝑇𝑖−1

∆𝑟
. (19) 

An illustration of the division of the inverse area into control 

volumes is shown in Fig. 3. As for the direct area, this solution 

assumes that the values of the physical properties of the pipe 

material 𝑐, 𝜌, 𝑘 are temperature-dependent. FVM allows the 

temperature distribution in the area 𝑟𝑖𝑛 ≤ 𝑟 ≤ 𝑟𝑁  to be deter-

mined. Some examples of the division of the inverse area into 

different numbers of control volumes are shown in Fig. 3. 

The energy balance equation for the control volume with 

node 𝑁 has the form: 

 𝜋 [𝑟𝑁
2 − (𝑟𝑁 −

∆𝑟

2
)

2

] 𝑐(𝑇𝑁)𝜌(𝑇𝑁)
𝑑𝑇𝑁

𝑑𝑡
=  

 = 2𝜋 (𝑟𝑁 −
∆𝑟

2
)

𝑘(𝑇𝑁−1)+𝑘(𝑇𝑁)

2

𝑇𝑁−1−𝑇𝑁

∆𝑟
+ 2𝜋𝑟𝑁�̇�𝑁, (20) 

from which the temperature 𝑇𝑁−1 can be determined: 

 𝑇𝑁−1 =
(Δ𝑟)2(𝑟𝑁−

Δ𝑟

4
)

𝑟𝑁−
Δ𝑟

2

𝑐(𝑇𝑁)𝜌(𝑇𝑁)

𝑘(𝑇𝑁−1)+𝑘(𝑇𝑁)

𝑑𝑇𝑁

𝑑𝑡
+  

                −
2𝑟𝑁Δ𝑟

𝑟𝑁−
Δ𝑟

2

�̇�𝑁

𝑘(𝑇𝑁−1)+𝑘(𝑇𝑁)
+ 𝑇𝑁. (21) 

The energy balance equation for a full-dimensional control 

volume (with thickness Δ𝑟) for nodes 2 to (𝑁 − 1) is shown in 

the following equation: 

 𝜋 [(𝑟𝑖𝑛 + (2𝑖 − 1)
∆𝑟

2
)

2

− (𝑟𝑖𝑛 + (2𝑖 − 3)
∆𝑟

2
)

2

] ×  

 𝑐(𝑇𝑖)𝜌(𝑇𝑖)
𝑑𝑇𝑖

𝑑𝑡
= 2𝜋 (𝑟𝑖𝑛 + (2𝑖 − 3)

∆𝑟

2
)

𝑘(𝑇𝑖−1)+𝑘(𝑇𝑖)

2

𝑇𝑖−1−𝑇𝑖

∆𝑟
+  

 +2𝜋 (𝑟𝑖𝑛 + (2𝑖 − 1)
∆𝑟

2
)

𝑘(𝑇𝑖)+𝑘(𝑇𝑖+1)

2

𝑇𝑖+1−𝑇𝑖

∆𝑟
 ,  

 𝑖 = 2, … , 𝑁 − 1, (22) 

from which the temperature 𝑇𝑖−1 can be determined: 

 𝑇𝑖−1 = 2(∆𝑟)2 2𝑟𝑖𝑛+(2𝑖−2)∆𝑟

2𝑟𝑖𝑛+(2𝑖−3)∆𝑟

𝑐(𝑇𝑖)𝜌(𝑇𝑖)

𝑘(𝑇𝑖−1)+𝑘(𝑇𝑖)

𝑑𝑇𝑖

𝑑𝑡
+  

          −
2𝑟𝑖𝑛+(2𝑖−1)∆𝑟

2𝑟𝑖𝑛+(2𝑖−3)∆𝑟

𝑘(𝑇𝑖)+𝑘(𝑇𝑖+1)

𝑘(𝑇𝑖)+𝑘(𝑇𝑖−1)
(𝑇𝑖+1 − 𝑇𝑖) + 𝑇𝑖 . (23) 

Since for individual temperatures 𝑇𝑖−1 (for 𝑖 = 2, … , 𝑁) the 

values of 𝑘(𝑇𝑖−1) are not known (the equation is non-linear), the 

sought temperature 𝑇𝑖−1 is obtained after n iterations. In the first 

iteration (𝑛 = 0) for individual nodes, it is assumed that 

𝑘(𝑇𝑖−1
(0)

) = 𝑘(𝑇𝑖). 

The iteration process continues until a condition is met [29]: 

 |𝑇𝑖−1
(𝑛+1)

− 𝑇𝑖−1
(𝑛)

| ≤ 𝜀, (24) 

where the tolerance 𝜀 ≈ 0.000 01 K. If the values of the physi-

cal properties are constant, iterations are not required. 

FVM also allows the heat flux �̇�𝑖𝑛 at the inner surface of the 

pipeline to be determined from the energy balance for node 1: 

 

Fig. 2. Pipe wall cross-section with control volumes. 
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 𝜋 [(𝑟𝑖𝑛 +
∆𝑟

2
)

2

− 𝑟𝑖𝑛
2 ] 𝑐(𝑇1)𝜌(𝑇1)

𝑑𝑇1

𝑑𝑡
=     

            = 2𝜋𝑟𝑖𝑛�̇�𝑖𝑛 + 2𝜋 (𝑟𝑖𝑛 +
∆𝑟

2
)

𝑘(𝑇2)+𝑘(𝑇1)

2

𝑇2−𝑇1

∆𝑟
, (25) 

from which it can be determined: 

 �̇�𝑖𝑛 =
(𝑟𝑖𝑛+

∆𝑟

2
)

2
−𝑟𝑖𝑛

2

2𝑟𝑖𝑛
𝑐(𝑇1)𝜌(𝑇1)

𝑑𝑇1

𝑑𝑡
+   

                 −
𝑘(𝑇2)+𝑘(𝑇1)

2

𝑟𝑖𝑛+
∆𝑟

2

𝑟𝑖𝑛∆𝑟
(𝑇2 − 𝑇1). (26) 

The application of the described method in the inverse region 

consists in determining the temperatures at successive nodes 

((𝑁 − 1), (𝑁 − 2),..., 2 and 1) marching towards the inner sur-

face of the pipeline. Based on the measured temperature 𝑇𝑁(𝑡) 

inside the pipeline wall at node 𝑁, the temperature of node  

(𝑁 − 1) is determined from Eq. (21). If the solution of the direct 

problem allows this and the temperature at node (𝑁 + 1) is cal-

culated, the temperature at node (𝑁 − 1) can be determined from 

Eq. (23). By substituting the calculated temperature 𝑇𝑁−1(𝑡) into 

Eq. (23), the temperature 𝑇𝑁−2(𝑡) at node (𝑁 − 2) is determined. 

The procedure is repeated using Eq. (23) until the temperature 

𝑇1(𝑡) at node 1 is determined. Knowing the temperatures 𝑇1(𝑡) 

and 𝑇2(𝑡) from Eq. (26) the heat flux �̇�𝑖𝑛(𝑡) on the inner surface 

of the pipe can be determined. 

In order to determine the heat transfer coefficient at the in-

ternal surface of the pipe ℎ, it is necessary to know the temper-

ature of the fluid 𝑇𝑓 flowing through the pipe. The boundary 

condition should then be used: 

 �̇�|𝑟=𝑟𝑖𝑛
= ℎ(𝑇𝑓 − 𝑇|𝑟=𝑟𝑖𝑛

), (27) 

where 

 𝑇|𝑟=𝑟𝑖𝑛
= 𝑇1, �̇�|𝑟=𝑟𝑖𝑛

= �̇�𝑖𝑛. (28) 

A transformation of Eq. (27) gives: 

 ℎ =
�̇�𝑖𝑛

𝑇𝑓−𝑇1
. (29) 

After determining the temperature distribution at the cross-

section of the cylindrical element at time 𝑡, the temperature dis-

tribution at time 𝑡 + ∆𝑡 is calculated. 

4. Computational validation of the inverse 

method 

The calculations were carried out for a header with an external 

diameter of 355 mm and a wall thickness of 50 mm. The pipe 

material is P91 steel. The temperature-dependent physical prop-

erties of the steel were assumed for the calculations: 

 𝑘(𝑇) = −0.003 × 10−10𝑇5 + 4.741 × 10−10𝑇4 +  

            −2.874 × 10−7𝑇3 + 6.438 × 10−5𝑇2 +  

 −4.177 × 10−4𝑇 + 28.676, (30) 

 𝑐(𝑇) = 1.41 × 10−6𝑇3 − 6.43 × 10−4𝑇2 +  

 +4.88 × 10−1𝑇 + 439.80. (31) 

The approximation of the physical properties was made us-

ing data from [28], the coefficient of determination of the two 

functions obtained being 𝑟2 ≅ 1. The value of the density of P91 

steel was assumed to be constant, equal to 𝜚 = 7750 kg/m3, as 

it changes very little in the temperature range for which the cal-

culations were carried out. 

Firstly, the temperature distribution in the pipeline wall was 

determined using a direct, analytical method, with the assump-

tion that the temperature of the fluid increases stepwise from 

20°C to 100°C with a heat transfer coefficient at the inner sur-

face of the pipeline of ℎ = 1 000 W/(m2K). The transient tem-

perature waveforms were determined at 51 evenly spaced nodes 

over the wall thickness, where the first node is on the internal 

surface, and the last node is on the external surface, assuming 

ideal heat insulation on the external surface of the pipeline  

(�̇� = 0). In addition, the heat flux and thermal stresses on the 

inner surface of the pipeline without holes were determined. The 

temperature waveforms from the selected nodes were then per-

turbed with random errors and were used as ‘measured data’ for 

the calculations performed using the inverse marching method. 

Then, the temperature, heat flux and thermal stress on the 

inner surface were reconstructed using an inverse marching 

method based on a temperature measurement inside the pipeline 

wall disturbed by random errors. 

In the proposed inverse marching method to monitor thermal 

stresses in simple shaped elements based on the measurement of 

the wall temperature at a single point, the sequence of operations 

is as follows. For a given time, the temperature distribution in 

the direct area is determined from the temperature measurement 

at node 𝑁 and for the insulated outer surface, including the tem-

perature at node (𝑁 + 1) located at a distance ∆𝑟 from 𝑁. Then, 

based on the temperature waveforms at nodes 𝑁 and (𝑁 + 1), 

the temperatures in the inverse region at nodes (𝑁 − 1),  

(𝑁 − 2),..., 1 are determined with a spatial step ∆𝑟, as well as 

the thermal stress and heat flux at node 1 (on the internal sur-

face). 

In the research presented in this paper, the main objective is 

to evaluate the influence of the number of nodes in the inverse 

region, the distance of node 𝑁 from the inner surface and the 

size of the time step on the accuracy of the performed calcula-

tions using the proposed inverse method. Therefore, in the cal-

culations made with the inverse method, the above-described se-

quence of operations was shortened and the ‘measured data’ 

generated by the analytical direct method at nodes 𝑁 and  

(𝑁 + 1) were used immediately. 

Cases where the node is located at distances 𝛿 of 6, 12 and 

18 mm were analysed. In addition, the inverse area was divided 

into 2, 3 and 4 control volumes in each case. Calculations were 

performed for time steps ∆𝑡 with values of 1, 2, 3, 4, 5 and 6 s. 

The division of the inverse region in the cross-section of the 

cylindrical element into finite volumes is shown in Fig 3. 

For each case, the mean squared errors of the calculated val-

ues of temperature and thermal stresses were determined relative 

to those determined from the solution of the direct problem. The 

results of the calculations are shown in Table 1. For each time 

step, the smallest mean squared error values for a given distance 

𝛿 from the internal surface are highlighted in green in Table 1.  
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The best results were obtained for the position of the temper-

ature measuring point at a distance of 6 mm from the inner sur-

face, for which the smallest errors correspond to a time step ∆𝑡 

of 1 s and a division into 2 control volumes. For this case, the 

mean-square error of the temperature 𝑠𝑁,𝑡𝑒𝑚𝑝 determined by the 

inverse marching method is only 0.289 K and the error in deter-

mining the thermal stress 𝑠𝑁,𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑠  is 0.871 MPa. For a meas-

uring point distance 𝛿 of 12 mm from the inner surface, the 

smallest errors are obtained for a time step ∆𝑡 of 2 s and division 

into 2 control volumes, and for a distance 𝛿 of 18 mm  for  

a time step ∆𝑡 of 5 s and division also into 2 control volumes. It 

is not a rule that, for a given time step, a division into two control 

volumes is the most favourable, especially for smaller time step 

values, but in fact, the most favourable choice of time step length 

corresponds to a division into the minimum number of control 

volumes. 

It should also be noted that very large mean squared errors 

were obtained for 𝛿 = 18 mm and a time step ∆𝑡 of 1 s. These 

results should not be taken into account because, according to 

the condition described in Eq. (13), the minimum time step for 

this distance is 2 s. 

The temperature and thermal stress curves calculated by the 

direct and inverse method on the surface of the analysed thick-

walled cylindrical element for several selected cases summari-

(a) 

 

(b) 

 

(c) 

 

 

 

Fig. 3. Division of the inverse area in the cross-section of a cylindrical element into: (a) two control volumes, (c) three control volumes, (c) four 

control volumes; N - position of the wall temperature measurement point. 

Table 1. Summary of mean square error values for the determined temperature and thermal stress depending on the value of the time step ∆𝑡, the 

number of control volumes and the distance from the inner surface 𝛿.  

Number of con-
trol volumes 

Time step 𝚫𝒕, 
s 

Distances of the measuring point from the inner surface 𝜹 

6 mm 12 mm 18 mm 

𝒔𝑵,𝒕𝒆𝒎𝒑, K 
𝒔𝑵,𝒔𝒕𝒓𝒆𝒔𝒔𝒆𝒔, 

MPa 
𝒔𝑵,𝒕𝒆𝒎𝒑, K 

𝒔𝑵,𝒔𝒕𝒓𝒆𝒔𝒔𝒆𝒔, 
MPa 

𝒔𝑵,𝒕𝒆𝒎𝒑, K 
𝒔𝑵,𝒔𝒕𝒓𝒆𝒔𝒔𝒆𝒔, 

MPa 

2 

1 

0.289 0.871 0.804 2.327 1.777 4.895 

3 0.344 1.040 0.761 2.271 2.632 7.744 

4 0.456 1.376 0.743 2.212 2.309 6.937 

2 

2 

0.310 0.938 0.427 1.240 0.965 2.702 

3 0.373 1.131 0.469 1.373 0.887 2.567 

4 0.459 1.390 0.541 1.577 0.834 2.424 

2 

3 

0.378 1.144 0.411 1.197 0.740 2.116 

3 0.417 1.268 0.502 1.472 0.660 1.898 

4 0.509 1.542 0.585 1.705 0.708 2.025 

2 

4 

0.435 1.318 0.508 1.473 0.628 1.824 

3 0.477 1.448 0.594 1.743 0.670 1.922 

4 0.567 1.720 0.664 1.939 0.735 2.090 

2 

5 

0.483 1.463 0.615 1.783 0.597 1.760 

3 0.522 1.584 0.671 1.972 0.719 2.064 

4 0.597 1.809 0.716 2.097 0.777 2.216 

2 

6 

0.519 1.571 0.715 2.071 0.623 1.825 

3 0.543 1.651 0.731 2.154 0.776 2.236 

4 0.613 1.860 0.756 2.227 0.823 2.362 
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sed in Table 1 are shown in Figs. 4 – 9. In the figures, two cases 

each for distance 𝛿 with, respectively, the smallest and largest 

mean square error of the determined temperature and thermal 

stresses using the inverse method are selected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusions  

Based on analyses of the accuracy of the inverse marching 

method used to determine thermal stresses in cylindrical pres- 

 

Fig. 4. Results of calculations of temperature and thermal stresses  

on the internal surface of a cylindrical element for measuring point 𝑁  

at a distance of 𝛿 = 6 mm using the direct and inverse method  

for ∆𝑡 = 1 s and division of the inverse area into 2 control volumes. 

 

Fig. 5. Results of calculations of temperature and thermal stresses  

on the internal surface of a cylindrical element for measuring point 𝑁  

at a distance of 𝛿 = 6 mm using the direct and inverse method  

for ∆𝑡 = 6 s and division of the inverse area into 4 control volumes. 

 

Fig. 6. Results of calculations of temperature and thermal stresses  

on the internal surface of a cylindrical element for measuring point 𝑁  

at a distance of 𝛿 = 12 mm using the direct and inverse method  

for ∆𝑡 = 3 s and division of the inverse area into 2 control volumes. 

 

Fig. 7. Results of calculations of temperature and thermal stresses  

on the internal surface of a cylindrical element for measuring point 𝑁  

at a distance of 𝛿 = 12 mm using the direct and inverse method  

for ∆𝑡 = 1 s and division of the inverse area into 2 control volumes. 

 

Fig. 9. Results of calculations of temperature and thermal stresses  

on the internal surface of a cylindrical element for measuring point 𝑁  

at a distance of 𝛿 = 18 mm using the direct and inverse method  

for ∆𝑡 = 2 s and division of the inverse area into 2 control volumes. 

 

Fig. 8. Results of calculations of temperature and thermal stresses  

on the internal surface of a cylindrical element for measuring point 𝑁  

at a distance of 𝛿 = 18 mm using the direct and inverse method  

for ∆𝑡 = 5 s and division of the inverse area into 2 control volumes. 
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sure elements without holes, the following conclusions can be 

drawn: 

 the best choice of time step length and number of control 

volumes/nodes depends on the location of the measurement 

point. It is advisable to select the location of the measuring 

point by making test calculations and checking which time 

step and number of nodes will give the results with the low-

est errors. The results of the test calculations confirm what 

could be expected, i.e. the closer the measuring point is to 

the inner surface, the more accurate the results. If the posi-

tion of the measuring point is imposed in advance, it is worth 

carrying out test calculations to determine the optimum num-

ber of nodes in the inverted area and the length of the time 

step; 

 the mean squared errors for temperature measurements are 

less than 1 K (for those selected as most favourable for 

a given distance from the inner surface 𝛿); 

 the mean squared errors of the thermal stresses for the most 

favourable configurations of the number of control volumes 

and time step length for a given distance 𝛿 range from 

0.871 MPa to 2.424 MPa, corresponding to temperature de-

termination errors of 0.289 K to 0.834 K. The maximum 

thermal stress during pipeline heating is approximately 

76 MPa. This shows how important it is to determine the ex-

act temperature distribution in the pipeline wall and to 

choose the best possible conditions (time step, distance 𝛿 and 

number of nodes) for making the calculations using the pre-

sented inverse method; 

 in addition to the calculations described, the heat transfer co-

efficient ℎ on the internal surface of the pipeline was deter-

mined. However, the mean square errors of the heat transfer 

coefficient determination are substantial. The slightest error 

was obtained for the case when the time step is ∆𝑡 = 3 s, the 

inverse area is divided into 4 control volumes, and the meas-

uring point is located at a distance 𝛿 of 6 mm and is 

215.6 W/(m2K) with a reference value ℎ of 1 000 W/(m2K). 

This leads to the conclusion that the heat transfer coefficient 

should be determined either from a correlation for the 

Nusselt number or by another method, such as that described 

in [30]. 

Acknowledgements  

This work was partially funded by the National Science Centre 

in Poland within the framework of research project no. 2021/43/ 

B/ST8/01170. 

References 

[1] Fang, L., Su, F., Kang Z., & Zhu, H. (2024). Finite element (FE) 

analysis of thermal stress in production process of multi-layer lin-

ing ladle. Case Studies in Thermal Engineering, 57, 104307. doi: 

10.1016/j.csite.2024.104307 

[2] Taler, D., Dzierwa, P., Kaczmarski, K., & Taler, J. (2022). In-

crease the flexibility of steam boilers by optimisation of critical 

pressure component heating. Energy, 250, 1–18. doi: 10.1016/ 

j.energy.2022.123855 

[3] Taler, D., Kaczmarski, K., Dzierwa, P., Taler, J., & Trojan, M. 

(2024). Optimisation of the cooling of pressurised thick-walled 

components operating with fluid at saturation temperature. En-

ergy, 290, 1–15. https://doi.org/10.1016/j.energy.2023.129975 

[4] Oh, Ch., Lee,S., Jhung, M. J., & Huh N.-S. (2022). Analytical 

approach to estimate the thermal stress distribution of reactor 

pressure vessel nozzle corners with a constant cooldown rate. In-

ternational Journal of Pressure Vessels and Piping, 197, 104608. 

doi: 10.1016/j.ijpvp.2022.104608 

[5] Jeong, S.-H., Chung, K.-S., Ma, W.J., Yang, J.S., Choi, J.B., & 

Kim, M. K. (2022). Thermal stress intensity factor solutions for 

reactor pressure vessel nozzles. Nuclear Engineering and Tech-

nology, 54, 2188–2197. doi: 10.1016/j.net.2022.01.006 

[6] Olivera, S. J., Mostafavia, M., Hosseinzadehb, F., & Paviera, M. 

J. (2019). Redistribution of residual stress by thermal shock in 

reactor pressure vessel steel clad with nickel alloy. International 

Journal of Pressure Vessels and Piping, 169, 37–47. doi: 

10.1016/j.ijpvp.2018.11.007 

[7] Radin, Y.A., Kontorovich, T.S., & Golov, P.V. (2020). Monitor-

ing The Thermal Stress State In Steam Turbines. Power Technol-

ogy and Engineering, 53(6), 719–723. doi: 10.1007/s10749-020-

01146-6 

[8] Radin, Y.A., & Kontorovich, T.S. (2021). Influence Of The Ar-

rangement Of The Highand Intermediate-Pressure Cylinders Of 

Steam Turbines  With Different Bypass Circuits On Their Ther-

mal Stress State During Start-Ups And Shutdowns. Power Tech-

nology and Engineering, 54(5), 720–725. doi: 10.1007/ s10749-

020-01276-x 

[9] Radin, Y.A., & Kontorovich, T.S. (2024).  Influence Of Parame-

ter Deviations Vis-À-Vis Assignment Schedule On Thermally 

Stressed State Of Main Thermal Power Plant Equipment. Power 

Technology and Engineering, 57(6), 918–921. doi: 

10.1007/s10749-024-01758-2 

[10] Taler, J., Taler, D., Kaczmarski, K., Dzierwa, P., Trojan, M., & 

Jaremkiewicz, M. (2018). Allowable Rates of Fluid Temperature 

Variations and Thermal Stress Monitoring in Pressure Elements 

of Supercritical Boilers. Heat Transfer Engineering, 40(17–18), 

1430–1441. doi: 10.1080/01457632.2018.1474584 

[11] Wacławiak, K., & Okrajni, J. (2019). Transient heat transfer as a 

leading factor in fatigue of thick-walled elements at power plants. 

Archives of Thermodynamics, 40(3), 43–55. doi: 10.24425/ather. 

2019.129549 

[12] Taler, J., Dzierwa, P., Jaremkiewicz, M., Taler, D., Kaczmarski, 

K., & Trojan, M. (2018). Thermal stress monitoring in thick-

walled pressure components based on the solutions of the inverse 

heat conduction problems. Journal of Thermal Stresses, 

41(10−12), 1501–1524. doi: 10.1080/01495739.2018.1520621 

[13] Teixeira Júnior, M., Zilio, G., Mortean, M.V.V., de Paiva, K.V., 

& Oliveira, J.L.G. (2023). Experimental and numerical analysis 

of transient thermal stresses on thick-walled cylinder. Interna-

tional Journal of Pressure Vessels and Piping, 202, 104884. doi: 

10.1016/j.ijpvp.2023.104884 

[14] Taler, J., & Duda, P. (2000). Experimental verification of space 

marching methods for solving inverse heat conduction problems. 

Heat and Mass Transfer, 36, 325–331. doi: 10.1007/ 

s002310000082 

[15] Jaremkiewicz, M., Dzierwa, P., Taler, D., & Taler, J. (2019). 

Monitoring of transient thermal stresses in pressure components 

of steam boilers using an innovative technique for measuring the 

fluid temperature. Energy, 175, 139–150. doi: 10.1016/j.energy. 

2019.03.049 

[16] Jaremkiewicz, M., Taler, D., Dzierwa, P., & Taler, J. (2019). De-

termination of transient fluid temperature and thermal stresses in 

pressure thick-walled elements using a new design thermometer. 

Energies, 12, 1–21. doi: 10.3390/en12020222 



Analysis of the accuracy of the inverse marching method used to determine thermal stresses… 

 

105 
 

[17] Taler, J., Dzierwa, P., Jaremkiewicz, M., Taler, D., Kaczmarski, 

K., Trojan, M., Węglowski, B., & Sobota, T. (2019). Monitoring 

of transient 3D temperature distribution and thermal stress in 

pressure elements based on the wall temperature measurement. 

Journal of Thermal Stresses, 42, 698–724. doi: 10.1080/ 

01495739.2019.1587328 

[18] Taler, J., Dzierwa, P., Jaremkiewicz, M., Taler, D., Kaczmarski, 

K., Trojan, M., & Sobota, T. (2019). Thermal stress monitoring 

in thick walled pressure components of steam boilers. En-

ergy, 175, 645–666. doi: 10.1016/j.energy.2019.03.087 

[19] Joachimiak, M., Joachimiak, D., & Ciałkowski, M. (2022). Inves-

tigation on Thermal Loads in Steady-State Conditions with the 

Use of the Solution to the Inverse Problem. Heat Transfer Engi-

neering, 44(11–12), 963–969. doi: 10.1080/01457632.2022. 

2113451 

[20] Joachimiak, M., & Joachimiak, D. (2024). Stabilization of bound-

ary conditions obtained from the solution of the inverse problem 

during the cooling process in a furnace for thermochemical treat-

ment. International Journal of Heat and Mass Transfer, 224, 

125274. doi: 10.1016/j.ijheatmasstransfer.2024.125274 

[21] Ciałkowski, M., Joachimiak, M., Mierzwiczak, M., Frąckowiak, 

A., Olejnik, A., & Kozakiewicz, A. (2023). The analysis of the 

stability of the Cauchy problem in the cylindrical double-layer 

area. Archives of Thermodynamics, 44(4), 563–579. doi: 

10.24425/ather.2023.149735 

[22] Taler, J. (1995). Theory and practice of identifying heat transfer 

processes, Zakład Narodowy im. Ossolińskich (in Polish). 

[23] TRD 301 (2001). Zylinderschalen unter innerem Überdruck. 

Technische Regeln für Dampfkessel (TRD), Heymanns Beuth 

Köln-Berlin. 

[24] European Standard EN 12952-3 (2001). Water-tube boilers and 

auxiliary installations. Part 3: design and calculation for pres-

sure parts. European Committee for Standardization. 

[25] Taler, J., Dzierwa, P., & Taler, D. (2011). Optimisation of heating 

and cooling of thick-walled boiler components. In Thermal and 

flow processes in large power boilers, Modelling and monitoring 

(pp. 584–625). Wydawnictwo Naukowe PWN (in Polish). 

[26] Taler, J., & Zima, W. (1999). Solution of inverse heat conduction 

problems using control volume approach. International Journal 

of Heat and Mass Transfer, 42, 1123–1140. doi: 10.1016/S0017-

9310(98)00280-4 

[27] Taler, J., Zima, W., & Jaremkiewicz, M. (2016). Simple method 

for monitoring transient thermal stresses in pipelines. Journal of 

Thermal Stresses, 39, 386–397. doi: 10.1080/01495739.2016. 

1152109 

[28] Taler, J., & Duda, P. (2006). Solving Direct and Inverse Heat 

Conduction Problems, Springer. 

[29] Taler, J.(1999). A new space marching method for solving in-

verse heat conduction problems. Forschung im Ingenieurwesen, 

64, 296–306. doi: 10.1007/PL00010844 

[30] Jaremkiewicz, M., & Taler, J. (2018). Measurement of Transient 

Fluid Temperature in a Pipeline. Heat Transfer Engineering, 

39(13–14), 1227–1234. doi: 10.1080/01457632.2017.1363631 

 


