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Abstract
Low frequency oscillations (LFOs) threaten the stability of power systems. The estimation of signal parameters
via rotational invariant techniques can analyse LFOs with high accuracy only when the model order of the
analysed signal is known. This paper proposes a novel model order estimation method for modal analysis
of LFOs. The method first builds a singular energy spectrum to inspect whether the measurement data is
being polluted by complex interferences (e.g., impulsive noises). Then, a tailored Rauch–Tung–Striebel
smoother is utilized to alleviate the impact of complex interferences. Afterwards, the mean value of the
singular energies is adopted to determine a rough estimation of the model order of dominant modes in
LFOs. Finally, the reconstruction quality indicator of the reconstructed signal is introduced for detecting and
correcting overestimation and fake modes. The proposed solution is experimentally evaluated via simulations
and field measurement data obtained from the phasor measurement unit installed at a generating station in
North America. Results show that the method is accurate, robust, and suitable for field applications.
Keywords: Low frequency oscillations analysis, impulsive noises, model order estimation, damping ratio
estimation; Rauch–Tung–Striebel smoother.

1. Introduction

The dynamic disturbances (e.g., short-circuit faults) often lead to low frequency oscillations
(LFOs) in interconnected power systems [1]. High-amplitude LFOs, which are also regarded
as dominant modes, can be detrimental to the safety of power systems [2]. Fast and accurate
recognition of LFOs is of great significance for reducing potential risks of power systems [3], [4].
Therefore, the monitoring of LFOs has become a critical assignment at the control centres of
regional power grids. With the widespread use of phasor measurement units (PMUs) in modern
power systems, it has become a hot issue extracting LFOs directly from PMU measurements [5,6].

To identify LFOs quickly and accurately, numerous modal analysis methods have been proposed
to pick out dominant modes from synchrophasor measurements. These methods include Discrete
Fourier Transform-based (DFT) [7–13], Least Squares-based (LS) methods [14–16], Prony-based
methods [17,18], and Estimation of Signal Parameters via Rotational Invariance Techniques-based
(ESPRIT) methods [19–23].
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Among the methods mentioned above, the DFT-based ones are an effective frequency domain
estimation tool because of their low computational burden. However, their behaviour is limited by
spectrum leakage and picket-fence effects [24,25]. Furthermore, they are restricted by spectral reso-
lution, which is not suitable for estimating adjacent dominant modes [26]. The Prony-basedmethods
are proposed to extract the parameters of dominantmodeswith high frequency resolution [17]. These
methods perform accurately and can be applied for offline processing of power system data [18].
However, they are sensitive to noise and require prior knowledge of the number of dominant modes.

Recently, several solutions have been designed to resist noise interference using ESPRIT [19–
22]. The main idea of ESPRIT-based methods is to estimate LFOs by separating the dominant
modes from the noise subspace, which takes advantage of the nature of shift invariance in
the signals. In [19], a modified TLS-ESPRIT method (MTLS-ESPRIT) has been proposed for
parameter estimation of LFOs. The method introduces a low-pass Butterworth filter to resist
coloured Gaussian noise. However, the filter deteriorates the estimation accuracy of the damping
factor. In addition, its model order estimation strategy, i.e., the singular value accumulation index
(SVAI) method, does not work well under impulse noise situations. To solve the model order
estimation problem, the Extract Model Order (EMO) method is designed to enhance the ESPRIT
method [20]. In [21], a prior S-G filter is utilized to mitigate the measuring noise and singular value
accumulation percentage adjacency increment ratio (SVAPAIR) is used to identify the number of
modes in oscillation signals. Although SVAPAIR enhances the adaptability of the ESPRIT method,
its performance depends on the pre-filtering stage. Different from [19, 20] and [21], the clustering
technique is used in [22] to rank the dominant modes of LFOs. However, its behaviour is not clear
under multiple nearly dominant modes conditions. Moreover, its multiple shift operation requires
a relatively larger computation burden than traditional ESPRIT-based methods.

It is well known that the ESPRIT-based methods can analyse LFOs with high accuracy only
when the model order of the analysed signal is known [23]. However, most of the existing model
order estimation methods often fail when the frequencies of dominant modes are close to each
other under low SNR conditions. Due to a relatively small difference between the singular values of
modes and noise in such a case, it is difficult to separate signal space from noise space. To this end,
the iterative cumulative sum of squares (ICSS) method is presented in [27] to estimate model order,
which aims to find boundary in the magnitude of singular values/eigenvalues of the autocorrelation
matrix. The ICSS method performs better than the SVAI and EMO methods. In [28], the adaptive
model order estimation (AMOE) method is proposed to further solve the model order estimation
issue. However, the methods mentioned above still do not work well when complex interference,
i.e., strong noise, impulse noise, and mixed density modes, is present in the PMU measurements.
Overall, there are three major drawbacks in the existing ESPRIT-based methods in complex
interference situations: i) lack of a robust model order estimation method which will constrain the
behaviour of ESPRIT-based methods under complex interference conditions; ii) lack of an effective
index to quantify the performance of modal analysis results; iii) lack of an effective mechanism for
fake mode detection. Such substantial shortcomings limit the ESPRIT-based method from being
applied in actual working environments.

To solve the problems presented above, this paper proposed a new solution for dominant
modes estimation using a singular energy spectrum, Rauch–Tung–Striebel (RTS) smoother, and
reconstruction quality indicator (RQI). The proposed method is named the RTSS-ESPRIT method.
It first builds a singular energy spectrum to inspect whether the analysed data is undergoing
complex interference. If the analysed data is contaminated by complex interference, a specially
designed RTS smoother is introduced to alleviate the effect of the complex interference. Then,
an accurate rough model order can be obtained by comparing multiples of the mean value
of the singular energy spectrum. Afterward, the RQI is defined to quantify the quality of the
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estimated dominant modes resulting from the ESPRIT method. Finally, a procedure is designed
to determine the optimally dominant modes set by avoiding fake modes and overestimation. As
a result, the estimated dominant modes have the smallest reconstruction error compared with
existing ESPRIT-based modal analysis methods.

2. Signal model and ESPRIT Method

In this section, the most frequently-used signal model of LFOs in power systems is first
introduced, and the classical ESPRIT method is then recalled.

2.1. Low-Frequency Oscillation Model

Generally, LFOs in power systems can be modelled as the sum of damped real-valued sinusoids
as [20]:

x(n) =
M∑
i=1

(
AieβnTi cos (2πnTs fi + θi)

)
+ ξ(n), (1)

where x(n) is the PMU measurement result, i.e., the values of the reported power flow by PMUs.
Ai , fi , βi , and θi refer to the amplitude, frequency, damping factor, and phase, respectively, of
the ith dominant mode of x(n). Ts refers to the reporting interval of PMUs and M is the number
of decomposed modes. ξ(n) refers to the contribution from noise and unknown disturbances. The
ESPRIT-based methods are superior in parameter estimation of the dominant modes due to their
super-resolution feature in the frequency domain. Therefore, they are used to extract the dominant
modes from PMUmeasurements (i.e., modal analysis). For this application, the input data is consid-
ered as PMU measurements ofN consecutive points, hence, 1 ≤ n ≤ N and N is specified as odd.

2.2. Overview of the Classical ESPRIT Method

A simple recall of the ESPRIT method is provided in this subsection. First, the detrended
PMU measurements are formed into a square matrix. A square Hankel structure is defined as:

H =


x(1) x(2) · · · x(L)
x(2) x(3) · · · x(L + 1)
...

...
...

...
x(L) x(L + 1) · · · x(N)

L×L
, (2)

where L = (N + 1)/2, and L should be even to ensure that singular values occur in pairs. Then the
singular value decomposition (SVD) is applied to Hankel matrix H, and one obtains [29]:

H = USVT , (3)

where the superscript (•)T is the transpose operator, UL×L and VL×L are unitary matrixes, and
SL×L is a diagonal matrix, which includes all the singular values of H as:

S = diag
[
σ11, σ12, · · · , σi1, σi2, · · · , σM1, σM2, · · · , σG1, σG2

]
, (4)

where G = L/2, and σ11 ≥ σ12 ≥ · · · ≥ σM1 ≥ σM2 ≥ · · · ≥ σG1 ≥ σG2 . Here, a pair of
consecutive singular values, i.e., σi1 and σi2 , are considered corresponding to the ith mode [30].
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Assuming the number of the dominant modes M is known. The right-singular vectors
corresponding to the dominant modes can be expressed as:

VM =
[
c11, c12, · · · , ci1, ci2, · · · , cM1, cM2

]
L×2M , (5)

where c11, c12, · · · , ci1, ci2, · · · , cM1, cM2 are the first 2M column vectors of matrix VT which can
be obtained from (3). By removing the last and first rows of VM , one obtains:{

V1 = [r1, r2, · · · , ri, · · · , rL−1]
T

V2 = [r2, r3, · · · , ri, · · · , rL]T
, (6)

where r1, r2, . . . , rL are the row vectors of VM . Then, the incidence matrix Q can be obtained by
the least square method:

Q =
(
VT

1 V1

)−1
VT

1 V2, (7)

where Q is a 2M × 2M matrix whose eigenvalues can be used to estimate the frequency, damping
factor, and damping ratio of each dominant mode. The related calculation formulas are:

f̂i =
1
Ts
·

Im
(
log10 (zi)

)
2π

∀i = 1, 2, · · · , M

β̂i =
1
Ts
· Re

(
log10 (zi)

) ∀i = 1, 2, · · · , M

γ̂i = −
β̂i√

β̂2
i +

(
2π f̂i

)2
∀i = 1, 2, · · · , M

, (8)

where f̂i , β̂i , and γ̂i are the estimated frequency, damping factor, and damping ratio of the ith
dominant mode. Im(·) and Re(·) return the image and real part of its argument, respectively;
zi ∈ zM = [z1, z∗1, · · · , zM, z

∗
M ], where the superscript (·)

∗ is the conjugate operator, which refers
to the ith pair of successive eigenvalues of the incidence matrix Q. The eigenvalues set zM can be
easily obtained by:

zM = diag[eig(Q)]. (9)

Once the frequencies and damping factors are obtained, the complex amplitudes can be estimated
by using the LS algorithm:

p̂ =
(
Φ

H
Φ

)−1
Φ

H x, (10)

where the superscript (·)H is theHermitian transpose operator, p̂ = [p̂1, p̂∗1, . . . , p̂i, p̂∗i , . . . , p̂M, p̂∗M ]
T ,

x = [x (1) , x (2) , . . . , x (N)]T , and:

Φ =



1 1 · · · 1 1 · · · 1 1
z1 z∗1 · · · zi z∗i · · · zM z∗M
...

... · · ·
...

... · · ·
...

...
zn1

(
z∗1

)n
· · · zni

(
z∗i

)n
· · · znM

(
z∗M

)n
...

... · · ·
...

... · · ·
...

...

zN−1
1

(
z∗1

)N−1
· · · zN−1

i

(
z∗i

)N−1
· · · zN−1

M

(
z∗M

)N−1


. (11)
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Finally, the amplitudes and phases of all dominant modes in the LFOs signal can be obtained:
Âi = 2 · | p̂i |

θ̂i = arctan
(

Im(p̂i)
Re(p̂i)

)
. (12)

In fact, the ESPRIT-based methods only perform well on the premise of being able to know
the true number (i.e., M) of the dominant modes. Thus, estimating the value of M is one of the
most difficult points in modal analysis of LFOs.

3. Proposed Model Order Estimation Method

To precisely estimate the number of dominant modes (i.e., the so-called model order) from the
PMU measurements which are contaminated by complex interferences, a novel method is reported
in this section. First, the proposed method obtains rough estimation of the model order. Then, an
overestimation detection and correction procedure, based on the RQI, is used to determine the
final dominant modes.

3.1. Rough Estimation of the Model Order

The rough estimation of the model order considers not only the simple interference (i.e., noise
with a high SNR) but also the complex interference (e.g., impulse noises and strong noises). The
method first takes advantage of the gap between dominant modes and the ‘noise’ modes in the
singular energy spectrum. If complex conditions are detected, a tailored RTS smoother is used to
suppress the effects of complex interferences.

3.1.1. Pre-Estimation under Simple Conditions

In relatively ideal situations, PMU measurements are mainly disturbed by white noises. This
means there are only a few trivial modes in the signals being processed while the dominant modes
overwhelm. The manifestation on the singular spectrum is that the singular values corresponding
to the dominant mode are much larger than those of the noises. Thus, the first pre-estimation is
achieved by using the mean values of the singular energy spectrum.

In the original singular spectrum within formula (4), the ith pair of consecutive singular values
corresponds to the ith mode. The difference between those two singular values may be very large
in some contexts (depending on parameters of the modes). Considering the robustness of model
order estimation, the quadratic sum of each pair of consecutive singular values is used here to
construct an improved singular spectrum called a singular energy spectrum. The new one can be
expressed as:

sses = [σ1, · · · , σi, · · · , σM, σM+1, · · · , σG] , (13)
where σ1, · · · , σi, · · · , σM correspond to the dominant modes while σM+1, · · · , σG are related to
the contributions of trivial modes and noise. And σi is called energy of the ith mode and it can be
calculated by the following formula:

σi =

√
σ2
i1
+ σ2

i2
. (14)

To pick out the dominant modes from the trivial modes and ‘noise’ modes, a threshold η is set
as follows:

η = Kth ·Mean (sses) , (15)
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where Mean(·) returns the mean value of sses. Kth represents the sensitivity coefficient which is
determined by the statistical analysis of experimental results under different noise levels. Kth is
recommended to be set to 3 and 5 for simple and complex conditions, respectively. Then the first
pre-estimation MS of the model order can be considered as the number of elements in sses with
energy greater than the threshold η.

It is worth clarifying that modal analysis of LFOs only needs to distinguish dominant modes
from the trivial modes and ‘noise’ modes. Therefore, a loose heuristic threshold based on
experimental results is sufficient under relatively ideal scenarios. Moreover, model order estimation
under complex disturbance conditions will be presented later.

3.1.2. Pre-Estimation under Complex Conditions

In addition to the white noise, PMU measurements are frequently affected by impulsive noises
in practical scenarios, which are usually induced by improper hardware wiring, communication
interferences or unavailability of the GPS time reference [31]. Unfortunately, the first pre-estimation
MS is not sufficient to deal with such complex situations.

To suppress the effects of impulse noises, a data pre-processing technique called an RTS
smoother is utilized before performing the ESPRIT method. There are three stages to implement
the RTS smoother: system modelling, forward filtering, and backward smoothing [32].

First, the input data sequence is hypothetically modelled as a one-dimensional linear discrete-
time system as follows: {

y(n) = Fn−1 · y(n − 1) + wn−1
x(n) = Hn · y(n) + vn

, (16)

where y(n) is the true state of the system at time n, x(n) is the measurement at time n. Fn−1 is the
state-transition coefficient. Hn is the measurement coefficient. wn−1 and vn are the process noise
and measurement noises, which are assumed to be uncorrelated Gaussian additive noises with
zero-mean and covariance Qn−1 and Rn, respectively.

Second, the standard forward Kalman filter is performed on the PMU measurements, i.e., x(n),
where 1 ≤ n ≤ N . The forward recursive process can be briefly summarized as:



P−f (n) = Fn−1 · P+f (n − 1) · Fn−1 +Qn−1

K f (n) =
P−f (n) · Hn

Hn · P−f (n) · Hn + Rn

ŷ−f (n) = Fn−1 · ŷ
+
f (n − 1)

ŷ+f (n) = ŷ−f (n) + K f (n) ·
(
x(n) − Hn · ŷ

−
f (n)

)
P+f (n) =

(
1 − K f (n) · Hn

)
· P−f (n)

(17)

where K f (n) is the Kalman filter gain at time n, P−f (n) and ŷ−f (n) are the predicted covariance and
mean of the state y(n), respectively, at time n before processing the measurement x(n), ŷ+f (n) and
P+f (n) are the estimatedmean and covariance of the state y(n), respectively, at time n after processing
the measurement x(n). The superscript (·)− and (·)+ denote that the prediction and estimation are
a priori and a posteriori, respectively. The subscript (·) f denotes that it is a forward process. It is
worth noting that the initialization parameters of the forward filter are ŷ+f (0) = x(1) and P+f (0) = 0.
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Finally, the backward smoothing process is performed on the posteriori estimates, i.e., ŷ+f (n),
where N − 1 ≥ n ≥ 0. The backward recursive process can be briefly summarized as:

K(n) =
P+f (n) · Fn

P−
f
(n + 1)

P(n) = P+f (n) − K(n) ·
(
P−f (n + 1) − P(n + 1)

)
· K(n)

ŷ(n) = ŷ+f (n) + K(n) ·
(
ŷ(n + 1) − ŷ−f (n + 1)

) , (18)

where K(n) is the smoother gain at time n, P(n) and ŷ(n) are the smoother estimates for
state covariance and state mean, respectively, at time n. The initialization parameters of the
backward process are ŷ(N) = ŷ+f (N) and P(N) = P+f (N). After performing the designed RTS
smoother on the original PMU measurements sequence x, one obtains a new data sequence, i.e.,
ŷ = [ŷ(1), · · · , ŷ(n), · · · , ŷ(N)].

3.1.3. Overall Process of the Rough Estimation Method

The flowchart of the proposed rough estimation method for the number of dominant modes is
shown in Fig. 1. The overall process can be divided into four stages.

Fig. 1. The flowchart of the proposed rough estimation method for model order.

Stage 1: Assuming the detrended PMUmeasurements x as being in simple conditions, calculate
the first pre-estimation of the model order (i.e., MS) by using (2) ∼ (4) and (13) ∼ (15).

Stage 2: Determining whether the PMUmeasurements x is in simple conditions. If the smallest
of singular energies corresponding to the dominant modes is twice the largest of singular energies
corresponding to the trivial or ‘noise’ modes (i.e., σMS > 2 · σMS+1), the data sequence x should
be judged to be disturbed by simple interference. In this case, set the final rough estimation of the
model order MR to MS .

Stage 3: If σMS ≤ 2 · σMS+1, the PMU measurements x could be considered disturbed by
complex interference. In such a case, the RTS smoother is performed on the data sequence x to
suppress the effects of complex interference. The smoothed data sequence is denoted as ŷ.
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Stage 4: Performing (2) ∼ (4) and (13) ∼ (15) on ŷ to obtain the second pre-estimation of
the model order (i.e., MC). Finally, set the final rough estimation of the model order MR to the
maximum between MC and MS .

3.2. Correction and Final Determination

Although the proposed rough model order method is well equipped to deal with the challenges
arising from impulsive noises and strong noises, it still has three shortcomings when dealing with
field PMU data. Firstly, the sensitivity coefficient Kth adopted to determine the model order is
a relatively loose empirical value. This means the number of dominant modes may be overestimated
at some point. Secondly, in rare cases, there may be a fake mode with zero frequency if MR is
used directly with the ESPRIT. Thirdly, there is no metric to prove whether the dominant modes
decomposed according to MR are the most appropriate choice. To solve the above problems,
a reconstruction quality indicator (RQI) is first introduced to quantify the reconstruction error of
the estimated dominant modes. A procedure, which is used to determine the optimally dominant
modes set, is then designed based on the minimum reconstruction error rule.

3.2.1. Reconstruction Quality Indicator

To quantify the quality of the estimated dominant modes resulting from the ESPRIT method,
the RQI is defined as:

RQIM = 10 · log10

(
‖ x̂ − x ‖
‖ x ‖

)
, (19)

where | | · | | is the 2-norm operator. x and x̂ are the detrended PMU measurements and the
reconstructed data sequence, respectively. RQIM represents the reconstruction quality when the
number of the dominant modes is estimated as M . According to the definition of RQI, it can be
seen that RQI denotes the error of the reconstructed sequence of the estimated dominant modes
concerning the input sequence. Therefore, the smaller the value of RQI, the higher the quality of
the estimated dominant modes. The mathematical formula for entries in x̂ is given as:

x̂(n) =
M∑
i=1

Âieβ̂inTs cos
(
2πnTs f̂i + θ̂i

)
∀n = 1, 2, · · · , N, (20)

where Ts refers to reporting interval of PMUs; Âi , β̂i , f̂i and θ̂i are estimated parameters (i.e.,
amplitude, damping factor, frequency, and phase) of ith dominant mode from (8) and (12).

3.2.2. Proposed Procedure for Final Determination

It is easy to infer that a more accurate M leads to a smaller reconstruction error (i.e., a smaller
RQIM ) from (19). Moreover, a loose Kth may lead to overestimation with a low probability. For
these two reasons, it is reasonable to assume that the optimal determination can be achieved by
searching for the smallest RQI value when M is less than or equal to MR. The pseudocode of the
proposed method is reported in Table 1.

As shown in Table 1, the proposed method is dedicated to finding the modal decomposition
solution corresponding to the minimum reconstruction error. The whole search process is to
check whether a higher RQI exists when the model order is less than MR. This is also to avoid
overestimation. In fact, the rough estimation MR is already a relatively accurate choice. Therefore,
the whole process requires no more than three iterations and the proposed method does not impose
a heavy computational burden. Moreover, a potential fake mode with zero frequency will be
detected and discarded, which is rarely considered by other ESPRIT-based modal analysis solutions.
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Table 1. Pseudocode for the Final Determination Process.

Input:V , MR , x, N , and Ts . Initialize: RQIfinal = +∞

1. for M = MR → 1

2. estimate f̂i and β̂i by using (5) ∼ (9)

3. if zero frequency occurrence; go to line 1

4. estimate Âi and θ̂i by using (10) ∼ (12)

5. reconstruct x̂ by using (20)

6. calculate RQIM by using (19)

7. if RQIM <RQIfinal

8. RQIfinal = RQIM , Mfinal = M

9. else

10. break

11. end if

12. end for

Output: Mfinal, f̂i , β̂i , Âi , and θ̂i related to RQIfinal.

4. Proposed Model Order Estimation Method

The performance of the proposed method is assessed using a few numerical tests in MATLAB
R2019b. These tests focus on two main aspects of performance under different noise levels: 1)
success rate of model order estimation; and 2) estimation accuracy of parameters of the dominant
modes. To demonstrate the generality of the method, two synthetic signals were considered. The
first is the classical LFOs signal, which contains four dominant modes. The frequencies of the
modes distribute between 0.1 and 2.5 Hz with relatively large intervals in the frequency domain.
The second includes four nearby dominant modes in the frequency domain, which makes it difficult
to determine the model order under strong or impulse noise conditions. The expression of the
synthetic signals is:

x1,2(n) =
4∑
i=1

(
AieβinTs cos(2πnTs fi + θi)

)
, (21)

where the amplitudes Ai are random values between 1 and 2 p.u., the phases θi are also random
values between −π and π. Frequencies fi and damping factors βi for these two synthetic signals
are listed in Table 2. The sampling interval Ts is set as 1/30 s which corresponds to the most
frequently used PMU reporting rate 30 Hz/s, and the sampling length is 10 s.

Table 2. Frequencies and Damping Factors of Signals of x1(t), x2(t).

Signals f1,2,3,4 (Hz) β1,2,3,4

x1(t) 0.21 0.79 1.61 2.33 –0.17 –0.12 –0.13 –0.07

x2(t) 0.21 0.34 0.72 0.85 –0.17 –0.12 –0.13 –0.07
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4.1. Success Rate of Model Order Estimation

Success rates formodel order estimation are conducted to validate the robustness of the proposed
method. To better assess the behaviour of the proposed method, both synthetic signals are super-
imposed with Gaussian white noise with zero mean. The noise levels range from 0 to 30 dB at an
increment of 1 dB. The behaviour of the method is compared with those of the AMOEmethod [28],
the SVAI method [19], and the ICSS method [27]. It is worth noting that the ICSS method
outperforms the EMO method [20], the RD method [33], and the TTM method [34] according to
the results reported in [27]. All reported results were obtained from 2000 independent randomized
tests. The success rate for model order estimation is defined as

(
NM̂=4/2000

)
× 100%, where

NM̂=4 refers to the number of times the number of dominant modes is estimated to be equal to 4.
The success rates regarding the model order estimation of dominant modes are reported in

Fig. 2 and Fig. 3. It can be observed that for test signals containing dominant modes with evenly
distributed frequencies as in x1(t), the proposed method offers a success rate of over 80% when
SNR = 0 dB while the other three methods are all below 40%. The most challenging conditions
for ESPRIT-based methods usually mean that test signals contain nearby dominant modes in the
frequency domain as in x2(t). In such situations, a portion of the singular values corresponding
to dominant modes become smaller due to the frequencies of modes being close to each other.
Therefore, it is difficult to separate dominant modes from ‘noise’ modes when SNR is low. The
proposed method benefits from the RTS smoother, as it can suppress the impact of strong noise
while preserving the trend of the original signal. As shown in Fig. 3, the proposed method
outperforms the other three methods when the test signal contains multiple nearby modes under
low SNR conditions. This indicates that the proposed model order estimation method has better
robustness and can be adapted to more complex field situations.

Fig. 2. Success rates of dominant model order estimation
for x1(t).

Fig. 3. Success rates of dominant model order estimation
for x2(t).

4.2. Estimation Accuracy of Parameters of Dominant Modes

Simulations are implemented to evaluate the accuracy of the proposed method under noise
conditions. To demonstrate the performance of the method, it has been compared with the AMOE-
ESPRIT [28] and MTLS-ESPRIT [19] methods. For the MTLS-ESPRIT method, the model order
of the synthetic signal is known since the SVAI method does not work well. The test signals are
simulated under varying SNRs which range from 10 to 70 dB at an increment of 1 dB. All results
are obtained from the statistics for 2000 independent tests and are reported as the mean square
error (MSE). It is worth stating that results in the case of error order estimation had been removed.
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The MSEs of the estimated frequencies and damping factors, for both x1(t) and x2(t), are
reported in Fig. 4, Fig. 5, Fig. 6, and Fig. 7, respectively. The curves corresponding to the proposed
method and AMOE-ESPRIT overlap, indicating that both methods behave in the same way. This
is because the ESPRIT-based methods provide the same performance once the proper model order
is known. The estimation accuracy of the proposed method is proportional to the SNR while the
accuracy of the MTLS-ESPRIT method does not improve as the noise level decreases. This is due
to the five-order low pass Butterworth filter adopted in the MTLS-ESPRIT method deteriorating
the behaviour of the method. Comparing the MSEs of estimated parameters for x1(t) and x2(t), the
estimation accuracy of the proposed method is decreased when signals contain dominant modes
with multiple nearby frequencies.

Fig. 4. MSEs of the estimated frequencies versus SNR for
x1(t).

Fig. 5. MSEs of the estimated damping factors versus SNR
for x1(t).

Fig. 6. MSEs of the estimated frequencies versus SNR for
x2(t).

Fig. 7. MSEs of the estimated damping factors versus SNR
for x2(t).
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4.3. Computational Burden Analysis

The computational burden of the proposed method is also analysed using simulations in
MATLAB R2023a running on a computer with 16-GB RAM and a 2.3-GHz processor. In such
simulations, test signals with a length of 10s are considered, i.e., N = 299. The total execution time
of 2,000 runs is reported in Table 3. Although the proposed method is heavier than AMOE-ESPRIT,
it is lighter than MTLS-ESPRIT. Moreover, the average execution time of the proposed method is
still an acceptable value at 13.529 ms. This indicates that it is still suitable for field applications.
Compared to AMOE-ESPRIT, the proposed method sacrifices computational efficiency but
improves robustness in the presence of complex disturbances. Specifically, the proposed method
can avoid false modes in the estimation results and provides the smallest reconstruction error.

Table 3. Total Execution Time of 2000 Runs in Seconds.

Signal/Method MTLS-ESPRIT AMOE-ESPRIT Proposed

x1(t) 26.611 s 15.600 s 21.850 s

x2(t) 32.996 s 18.993 s 27.057 s

5. Field PMU Measurements Experiment

To validate the effectiveness of the method, field PMMU measurements including actual
events are analysed. These events occurred in the Independent System Operator-New England
System (ISO-NE), a North-Eastern part of the Eastern Interconnection in the United States (its
peak load being about 26,000 MW). The measurements are from the Test Cases Library [35] and
the investigation was carried out using MATLAB R2019b.

The event happened on October 3, 2017 (Case 2 of [35]) when an issue in the governor of
a large generator outside the ISO-NE created a multi-frequency process that lasted 5 minutes.
In the case described, the active power flows through the transmission line Sub2-Ln3 that are
shown in Fig. 8. The PMU reporting rate is 30 frames/s. Two acquisitions (Window 1 and Window
2) lasting 10 seconds each (i.e., 301 samples), as shown in Fig. 8, were used to validate the
robustness of the proposed method. Windows 1 and 2 respectively correspond to data obtained
from 144.1993 to 154.1993 s, and 248.7318 to 258.7318 s. The estimation of dominant modes of
the oscillation signals corresponding to the two windows was evaluated by using the proposed
method, the AMOE-ESPRIT method [28] and the MTLS-ESPRIT method [19]. The frequencies,
damping ratios, rough model order MR, final model order Mfinal, and RQIfinal obtained through
both methods are reported in Table 4.

Modal analysis results for both windows are reported in Table 4 and the reconstructed PMU
signals are shown in Fig. 9. For Window 1, the proposed method and the AMOE-ESPRIT method
behave in the same way. They extracted the four dominant modes from PMU measurements and
offered the highest reconstruction quality among the three methods. This is because: i) the model
order estimation methods adopted in both methods offer the same result under the Window 1
condition; ii) the proposedmethod did not detect overestimation and a fakemodewith zero frequency
in such a situation. As for the MTLS-ESPRIT method, it not only provides an overestimation of
the six modes, but also has the worst signal reconstruction quality indicator with an RQI = 4.90.

The proposed method outperforms the other two methods under the Window 2 condition.
It can be observed that the proposed method has the highest signal reconstruction quality of
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Fig. 8. Active Power Flow in MW during power oscillation.

Table 4. Estimated Modes Corresponding to Two Windows.

Estimated modes corresponding
to Analysis Window 1

Estimated modes corresponding
to Analysis Window 2

Methods MR Mfinal RQIfinal f̂i (Hz) γ̂i (%) Methods MR Mfinal RQIfinal f̂i (Hz) γ̂i (%)

M
TL

S-
ES

PR
IT

– 6 4.90

0.1034 16.34

M
TL

S-
ES

PR
IT

– 8 2.73

0.1123 4.782
0.3539 –3.460 0.3032 –22.12
0.5744 –4.300 0.4862 –1.750
0.5373 –43.67 0.5770 5.567
0.7928 –1.080 0.8149 –2.328
1.0763 –2.580 0.9792 2.942

– – 1.1176 –1.766
– – 4.7927 0.066

A
M
O
E-
ES

PR
IT

– 4 –11.9

0.1027 13.99

A
M
O
E-
ES

PR
IT

– 5 –5.14

0.0000 100.0
0.3605 –1.800 0.1228 9.161
0.5499 –3.690 0.3659 –12.46
0.6798 –2.810 0.5274 –5.082

– – 0.9078 3.683

Pr
op

os
ed

4 4 –11.9

0.1027 13.99

Pr
op

os
ed

5 4 –10.83

0.1156 5.395
0.3605 –1.800 0.3188 –17.53
0.5499 –3.690 0.5130 –4.917
0.6798 –2.810 0.8186 6.982

RQI = −10.83. Meanwhile, the reconstructed signal of the proposed method, as shown in Fig. 9,
provides the highest coincidence with the original PMU measurements compared to other two
methods. Although a fakemodewith zero frequency occurred during the rough estimation stage, i.e.,
MR = 5, the proposed correction process (in Sec III, B) successfully detected this overestimation
and offered a better selection of Mfinal = 4. However, the AMOE-ESPRIT method and the
MTLS-ESPRIT method provide neither overestimation detection nor fake mode identification. The
proposed method, which is based on the RQI values of the reconstructed signals, greatly improves
the robustness of the modal analysis results. This feature allows the proposed method to be more
suitable for field PMU data subject to complex interferences compared to existing methods.
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Fig. 9. Recorded and reconstructed signals for two analysis windows.

6. Conclusions

In this article, a robust ESPRIT-based method, i.e., RTSS-ESPRIT, has been presented for the
analysis of LFOs occurring in power systems. The contribution is fourfold: firstly, the singular
energy spectrum has been proposed as the basis for estimating the model order of LFOs, which is
more suitable for model order estimation than the original singular spectrum. Secondly, a tailored
Rauch–Tung–Striebel smoother has been introduced at the model order estimation stage, which
improves the success rate of the model estimation method under complex interference and low
SNR working conditions. Thirdly, the reconstruction quality indicator has been proposed to
quantify the reconstruction error of modal analysis. Fourthly, a supplementary procedure has
been designed to detect and correct overestimation and fake mode. Compared to the existing
ESPRIT-based methods, the proposed solution not only provides the highest success rate for
model order estimation, but also provides the optimal modal analysis results with the highest
reconstruction quality. The effectiveness of the solution has been verified by simulations and actual
data provided by a field PMU in North America. Results reveal that the proposed solution can
effectively estimate dominant modes from PMU measurements, even if the PMU data contains
mixed density modes and strong/impulse noises. It should be also noted that the limitations of
RTSS-ESPRIT are twofold. The first is that the RTS smoother cannot be applied to estimate the
parameter of the mode whose frequency is larger than 3 Hz. The second is that the computational
burden of RTSS-ESPRIT is greater than that of AMOE-ESPRIT.
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