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Abstract. To timely detect fire smoke in the early stages and trace the gas generated, thereby avoiding the loss of human life and property
and reducing damage to the ecological environment, this paper proposes a fire smoke tracing method based on the emotional intelligence Jaya
algorithm (EĲaya). The algorithm assigns an anthropomorphic mental state to the unmanned aerial vehicle (UAV) in the traceability task to
realize its self-evaluation and social evaluation. In the simulation concentration field, the EĲaya algorithm, the basic Jaya algorithm, and the
PSO algorithm were used for the verification of the simulation of gas traceability, and the simulation results proved the advantages of the EĲaya
algorithm in terms of the success rate and the iteration times. In this paper, the TT UAV was chosen as an experimental tool to utilize the
functions of its expansion module fully, and the experimental hardware system was constructed by combining it with the corresponding sensors.
The corresponding experimental scene was built in the indoor environment, and the EĲaya algorithm was used to make multiple UAVs cooperate
and conduct traceability experiments, which verified the algorithm feasibility in practical applications and proved that the algorithm could quickly
and accurately trace the fire smoke.
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1. INTRODUCTION

When a fire occurs, the smoke produced by combustion releases
a series of iconic gases, including carbon monoxide (CO), car-
bon dioxide (CO2), and nitrogen oxides (N𝑥O𝑦). Gas traceability
technology can trace these signature gases, and the location of
the fire point can be effectively deduced to achieve the accurate
positioning of the fire scene.

Gas traceability methods are divided into traditional traceabil-
ity and active traceability. Traditional traceability methods in-
clude sensor networks [1] and biological detection methods [2].
Sensor networks require a certain amount of cost and resource
investment to install, calibrate, and maintain sensor nodes. Com-
plex environments and large-scale monitoring may affect posi-
tioning accuracy and sensor networks also face specific chal-
lenges for long-term and large-scale monitoring, such as battery
life, data storage, and transmission. Biological detection is a
traceability method that uses organisms, such as insects and
search and rescue dogs, to sniff the odour in the smoke and indi-
cate the location of the fire point. Biological detection methods
are limited by the quality of training and individual differences
in organisms that can affect the method reliability and envi-
ronmental factors in practical applications. For example, insect
activity is limited by weather conditions and seasonal changes,
and sniffer dogs have difficulty searching for large-scale and
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complex environments. In addition, training living organisms
takes time and effort and requires professional guidance and
handling.

Given the limitations of traditional traceability methods, ac-
tive olfaction technology has become an important development
direction in gas traceability in recent years. In 1984, Larcombe
et al. [3] proposed reducing the risk of personnel exposure to
hazardous environments by using robots carrying various sen-
sors to work in radiation fields and operating them remotely.
In 1991, Rozas et al. [4] proposed developing a chemical gra-
dient tracking algorithm for source localization of gas plumes.
By analyzing the concentration and distribution pattern of the
gas, the robot can determine the source and direction of specific
gases. In 1992, Genovese et al. [5] achieved mutual commu-
nication and coordinated action between robots by using mo-
bile micro-robot groups, sensors, and communication technolo-
gies, forming a self-organizing behaviour pattern for searching
and tracking pollution sources. This method can effectively de-
tect large-scale pollution sources in complex environments and
proves the advantages of self-organizing behaviour and robot
groups in traceability, which is better than applying a single
robot. This early research work laid a good foundation for de-
veloping active olfaction technology.

With the continuous advancement of UAV technology, its
compactness and flexibility show significant advantages in ac-
tive olfaction [6]. Since the 1990s, researchers have gradually
recognized and enhanced gas traceability technology based on
UAVs at home and abroad [7–9]. However, in complex situa-
tions, more than a single UAV traceability system is needed
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to fulfil the accuracy and efficiency criteria. The collaborative
traceability of multiple UAVs has become the key to solving
this problem, which centres on using swarm intelligence al-
gorithms. These algorithms originate from group behaviour in
the biological population and find the optimal path to solve the
problem through sharing experiences and cooperation between
individuals. In the field of gas traceability, the commonly used
swarm intelligence algorithms include particle swarm optimiza-
tion algorithm (PSO) [10], ant colony optimization algorithm
(ACO) [11], and genetic algorithm (GA) [12]. Van [13] designed
an algorithm that fully uses the very compassionate character-
istics of the fruit fly olfactory system. The algorithm designs
corresponding decision strategies according to different search
stages so fruit flies can explore the environment widely in the
early stage and gradually turn to more likely areas for in-depth
search. With the help of swarm intelligence algorithms and ac-
tive olfaction, multi-UAVs have better collaborative traceability
and optimize search paths to improve the accuracy and efficiency
of traceability results.

In this study, a swarm intelligence algorithm based on the ba-
sic Jaya algorithm is proposed to solve the collaborative trace-
ability task of multiple UAVs. It innovatively combines psy-
chological theories to apply human psychological states to the
traceability tasks of UAVs. By utilizing a combination of vari-
ous UAV and swarm intelligence optimization algorithms, gas
sources can be searched more accurately. This method greatly
enhances the information perception and environment recogni-
tion capabilities of UAVs, significantly reducing the search time
and improving the overall traceability efficiency.

2. DESIGN OF THE EIJAYA GAS TRACEABILITY
ALGORITHM

Aiming at the problems in the basic Jaya algorithm, this pa-
per proposes an improved version based on emotional intelli-
gence, abbreviated as EĲaya. The improved algorithm mainly
introduces self-evaluation and social evaluation based on the
traditional algorithm to improve its convergence speed and op-
timization ability. It increases the attention to the individual
state of the UAV to achieve a more accurate and more efficient
traceability effect.

2.1. Basic Jaya algorithm

The basic Jaya algorithm is a meta-heuristic optimization algo-
rithm proposed by scholar Rao [14] in 2016. The algorithm is
known for its simple and efficient features without specific con-
trol parameters. The Jaya algorithm realizes cooperation and
competition among individuals through a cooperation mecha-
nism, which promotes the evolution of excellent individuals to
better solutions and avoids the adverse effects of inferior indi-
viduals on the whole. Through this cooperation, individuals can
communicate and learn from each other to obtain better solu-
tions. At the same time, the competition mechanism between
individuals also plays a role in screening excellent solutions and
eliminating inferior solutions so that the population can gradu-
ally converge to the global optimal solution. The position update

formula is shown in (1):

𝑋𝑖+1 = 𝑋𝑖 + 𝑟1 (𝑋best − |𝑋𝑖 |) − 𝑟2 (𝑋worst − |𝑋𝑖 |) , (1)

where 𝑋𝑖 is the current search position of the UAV, 𝑋𝑖+1 is the
updated search position of the UAV, 𝑋best is the location of the
UAV with the highest gas concentration searched, 𝑋worst is the
location of the UAV with the lowest gas concentration searched,
and 𝑟1, 𝑟2 are random numbers between [0,1].

As the algorithm converges faster, it may reduce the diversity
of the population, trapping the population in a region of local
optimality and affecting the global optimization capability [15].
At the same time, the Jaya algorithm is limited by the absolute
value sign when dealing with optimization problems in positive
search space, which will affect its efficiency. Therefore, to ef-
fectively apply the Jaya algorithm to solve various optimization
problems and enhance the convergence speed, the global search
ability, and the stability and robustness of the algorithm, it needs
to be improved to be more effective in addressing the flue gas
traceability problem.

2.2. EIJaya algorithm design

2.2.1. Self-evaluation and social evaluation

Self-evaluation is an important psychological concept that re-
flects an individual’s perception and assessment of his or her
abilities and values. Psychology-related studies have shown that
people with higher levels of self-evaluation are more confi-
dent in their abilities [16]. Similarly, self-evaluation helps UAVs
decide on their next course of action. In the two-dimensional
self-evaluation model, the 𝑋-axis indicates the UAV detected
distance from its teammates. When the UAV is farther away
from its teammates, it is more confident and decisively exe-
cutes commands to complete the search task to the best of its
ability.

Conversely, when the UAV is closer to its teammates, it tends
to reduce its stride length or withdraw to avoid a collision. The𝑌 -
axis indicates the UAV electricity status. The UAV can execute
the corresponding task when its electricity is high, while the
UAV will be more easily exhausted when the battery is low and
will have some difficulties in perfroming the following search
task. In this self-evaluation two-dimensional model, the rules
for determining each coordinate value are shown in equations
(2) and (3):

𝑎𝑖 =
𝑛−𝑤𝑖

𝑛
, (2)

𝑏𝑖 =
𝑄𝑖

100
, (3)

where 𝑎𝑖 is the value of the 𝑋-axis of the self-evaluation 2D
model, 𝑏𝑖 is the value of the 𝑌 -axis of the self-evaluation 2D
model, 𝑛 is the population size, i.e., the number of UAVs, 𝑤𝑖 is
the number of UAVs 𝑖 spaced from other teammates beyond the
safe distance 𝑑min, and 𝑄𝑖 is the percentage of UAV battery.

Based on the values of the 𝑋-axis and 𝑌 -axis in the self-
evaluation model, the self-evaluation factor 𝑃self,𝑖 , of the UAV
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can be calculated using equation (4):

𝑃self,𝑖 =

√︄
𝑎2
𝑖
+ 𝑏2

𝑖

2
. (4)

At this time, the drone has preliminary anthropomorphic emo-
tion, and on this basis, it more accurately reflects the emotional
condition of the drone by imitating the idea of social evaluation
in the social-emotional optimization algorithm [17]. The UAV
is divided into three categories: clumsy, ordinary, and sensi-
tive individuals, using the social-evaluation rules. The following
evolutionary behaviour is chosen based on the individual’s emo-
tional condition, which improves with higher social assessment.
The following are the social evaluation guidelines:

clumsy individuals, 𝑐𝑖 < 𝑐mean ,

ordinary individuals, 𝑐mean ≤ 𝑐𝑖 ≤ 𝑐gmean ,

sensitive individuals, 𝑐gmean < 𝑐𝑖 ,

(5)

𝑐mean =
1
𝑛

𝑛∑︁
𝑖=1

𝑐𝑖 , (6)

where 𝑐𝑖 is the value of gas concentration searched by UAV 𝑖 at
the current location, and the average gas concentration searched
by the UAV swarm is 𝑐mean. Individuals with concentration val-
ues higher than the average concentration are categorized as
high-quality individuals and the average concentration of the
high-quality individuals is calculated and noted as 𝑐gmean.

The social-evaluation factor P𝑠𝑜𝑐𝑖𝑎𝑙,𝑖 of UAVs is calculated as
shown in equation (7):

𝑃social,𝑖 =
𝑐𝑖

𝑐max
, (7)

where 𝑐max is the highest gas concentration value searched in
the UAV swarm.

2.2.2. Position update formula optimization

In the basic Jaya algorithm, random numbers are used in the
position-updating rules, and social evaluation factors and self-
evaluation factors are introduced in the position-updating rules.
By assessing the UAV state, its subsequent behaviour is more
evidence-based, and the UAV should update its position accord-
ing to the revised rules for different individuals.

When the concentration detected by the UAV is lower than
the overall average concentration, it proves that the clumsy indi-
vidual is not highly effective in searching at the current location,
and it is necessary to expand the search space of the individual.
The positional update equation is as follows:

𝑋𝑖+1 = 𝑋𝑖 +
( 𝑝social,𝑖 + 𝑟1

2

)
× (𝑋best − |𝑋𝑖 |)

−
( 𝑝self,𝑖 + 𝑟2

2

)
× (𝑋worst − |𝑋𝑖 |) . (8)

When the concentration detected by the UAV is higher than the
overall average concentration but lower than the average con-
centration of high-quality individuals, it indicates that the search

of ordinary individuals at the current location is effective. How-
ever, it still needs to be improved. As the number of iterations
increases, most individuals will gather around the current opti-
mal individual for local search. In contrast, the other few lagging
individuals will move away from the current optimal individ-
ual to perform the global exploration task. During this search
process, the average position of the current population shifts.
Therefore, the mean value of the current position is introduced
into the position update rule of ordinary individuals so that the
algorithm can escape from the local optimum, resulting in im-
proved search performance of the population. The positional
update equation is as follows:

𝑋𝑖+1 = 𝑋𝑖 +
( 𝑝social,𝑖 + 𝑟1

2

)
× (𝑋best − |𝑋𝑖 |)

−
( 𝑝self,𝑖 + 𝑟2

2

)
× (𝑋mean − |𝑋𝑖 |) , (9)

𝑋mean =
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 , (10)

where 𝑋mean is the average position of the UAV population.
When the concentration detected by the UAV is higher than

the average concentration of high-quality individuals, the search
of the machine-sensitive individuals at the current position is
amazingly effective. The current optimal individual is the dom-
inant one in the UAV swarm, which is oriented to the current
optimal individual to accelerate the convergence of the Jaya
algorithm. A random perturbation term is added to the position-
updating rule of the machine-sensitive individuals, i.e., by ran-
domly selecting two UAVs to utilize their current position to
avoid the situation that the second term of the formula is 0 and
cannot update the position when the current individual is the
optimal individual, and its position update formula:

𝑋𝑖+1 = 𝑋𝑖 +
( 𝑝social,𝑖 + 𝑟1

2

)
× (𝑋best − |𝑋𝑖 |)

+
( 𝑝self,𝑖 + 𝑟2

2

)
× (𝑋𝑙 − 𝑋𝑚) , (11)

where 𝑙, 𝑚 are random integers between [1, 𝑛] and 𝑙, 𝑚 are not
equal to 𝑖.

2.2.3. EIJaya algorithm flow

The specific steps of the EĲaya algorithm for gas source local-
ization are as follows:
Step 1: Initialize settings, including the number of UAVs 𝑛, the
initial position of each UAV, and the maximum number of iter-
ations.
Step 2: Based on the internal state of each UAV, establish a
two-dimensional self-assessment model and calculate the self-
assessment factor.
Step 3: Classify the UAVs into three categories based on the
social evaluation rules according to the gas concentrations de-
tected by each UAV and calculate the social evaluation factor.
Step 4: Incorporate the self-assessment factor and social evalua-
tion factor into the position update rules and update the positions
and the detected gas concentrations according to the correspond-
ing rules for each individual.
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Step 5: Check if the maximum number of iterations has been
reached. If it has, proceed to Step 6; if not, increase the iteration
count by 1 and return to Step 2.
Step 6: Output the position with the highest gas concentration,
and the algorithm ends.

The overall flow of the EĲaya algorithm for gas source local-
ization is illustrated in Fig. 1.

Fig. 1. Flowchart of the traceability of the EĲaya algorithm

3. EXPERIMENTAL VALIDATION OF EIJAYA GAS
TRACEABILITY ALGORITHM IN SIMULATION

To evaluate the performance stability and adaptability of the al-
gorithm, considering that it is impossible to control the changes
of all factors in the natural environment, it is necessary to set dif-
ferent environmental parameters, such as wind speed and source
strength, to simulate such changes. By changing the wind speed
and source strength, multiple simulated concentration fields can
be constructed to simulate the gas diffusion in different scenar-
ios, which can effectively evaluate the robustness and reliability
of the algorithm. In this paper, five different wind speeds are se-
lected, which are 0.5 m/s, 2.0 m/s, 4.0 m/s, 6.0 m/s, and 8.0 m/s,
and five different source strengths are set, which are 0.002kg/s,
0.004kg/s, 0.006 kg/s, 0.008 kg/s, and 0.010 kg/s. To make an
objective and comprehensive algorithmic evaluation, this paper

chooses success rate, iteration times, and distance ratio as per-
formance evaluation indexes. The distance ratio is a measure of
the energy efficiency of the algorithm by calculating the ratio of
the total distance by the UAV to the straight-line distance from
the starting point to the final point. The closer the ratio is to
1, the better the algorithm performance is. The Jaya algorithm,
PSO algorithm, and EĲaya algorithm are run 200 times in each
different turbulent concentration field, and the success rate is
represented by a line graph. The iteration times and the distance
ratio are shown using a half-violin plot.

3.1. Analysis of the effect of wind speed on algorithm
performance

Based on Fig. 2, it can be seen that the EĲaya algorithm per-
forms well in terms of success rate in the environment of chang-
ing wind speed, which is significantly better than the Jaya algo-
rithm and PSO algorithm. In five different wind speed environ-
ments, the average success rate of the EĲaya algorithm reaches
92.9%, which is higher than that of the Jaya algorithm at 77.6%
and that of the PSO algorithm at 49.6%.

Fig. 2. Effect of wind speed variations on success rates

Based on Fig. 3, it can be seen that the change in wind speed
affects the distance ratio and the iteration times of the three
algorithms. Regarding the distance ratio, the average distance
ratio of the PSO algorithm and the EĲaya algorithm basically
stays below 3.0 under different wind speeds, which outperforms
the Jaya algorithm. The data of the Jaya algorithm is distributed
in the interval of [2.0,4.0] as a whole; the overall distribution
of the PSO algorithm fluctuates under different wind speeds and
is roughly distributed in the range of [1.5,3.5]. Most of the data
of the EĲaya algorithm is distributed in the range of [1.0,3.0],
with only a tiny portion distributed between [3.0,6.0]. In con-
trast, with the change in wind speed, the distance ratio by the
Jaya algorithm and the EĲaya algorithm is more stable than that
of the PSO algorithm, showing better robustness. In terms of the
iteration times, the average iteration number of the EĲaya al-
gorithm for successful traceability under the five different wind
speed environments is around 21, which is much less than that
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(a) Impact on the distance ratio of the Jaya algorithm

(b) Impact on the iteration times of the Jaya algorithm

(c) Impact on the distance ratio of the PSO algorithm

(d) Impact on the iteration times of the PSO algorithm

(e) Impact on the distance ratio of the EĲaya algorithm

(f) Impact on the iteration times of the EĲaya algorithm

Fig. 3. Effect of wind speed variation on distance ratio and iteration times
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of the PSO algorithm and slightly higher than that of the Jaya
algorithm. With the gradual increase of wind speed, the itera-
tion number of the PSO algorithm shows a fluctuating upward
trend, and most of the data are distributed above 80 times. In
contrast, the distribution state of the iteration number of the Jaya
algorithm and EĲaya algorithm remains unchanged. The aver-
age iteration number of the Jaya algorithm slightly increases,
exceeding 40, whereas the EĲaya algorithm exhibits a more
centralized distribution, mainly within the range of 13 to 30,
with better performance.

3.2. Analysis of the impact of source strength on
algorithm performance

As shown in Fig. 4, the success rates of the three algorithms fluc-
tuate slightly in different source strength environments, with the
EĲaya algorithm having a significantly higher success rate than
the Jaya algorithm and the PSO algorithm. In the five simula-
tion environments with different source strengths, the average
success rate of the EĲaya algorithm reaches 91.7%, while that
of the Jaya algorithm is 82.3%, and that of the PSO algorithm
is only 47%.

Fig. 4. Effect of release rate variation on success rate

Under different release rate environments, the changing trend
of the distance ratio and the iteration times of the three algo-
rithms is shown in Fig. 5. The PSO algorithm performs well
in the average distance ratio. With the release rate increase,
the average distance ratio decreases slightly from about 2.5 to
about 2.3, and the data are mainly distributed in the interval of
[1.5,3.5]. The distance ratio of the Jaya algorithm shows a slight
upward trend with the increase in release rate, and the average
distance ratio reaches 3.5 when the release rate is 0.01 kg/s and
the data greater than 6.0 increases. The average distance ratio
of the EĲaya algorithm is about 2.7, which is more stable than
that of the PSO algorithm and the Jaya algorithm. The data are
mainly distributed in the interval of [1.0,3.0]. A small portion
of the data is distributed in the interval of [3.0,6.0]. In terms
of the iteration times, the EĲaya algorithm performs well; the
average number of iterations is about 33 times without obvi-

(a) Impact on the distance ratio of the Jaya algorithm

(b) Impact on the iteration times of the Jaya algorithm

(c) Impact on the distance ratio of the PSO algorithm

Fig. 5
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(d) Impact on the iteration times of the PSO algorithm

(e) Impact on the distance ratio of the EĲaya algorithm

(f) Impact on the iteration times of the EĲaya algorithm

Fig. 5. Effect of release rate variation on distance ratio and iteration
times

ous fluctuations, and the data distribution is more concentrated,
basically below 60 times. The average number of iterations of
the Jaya algorithm shows an upward trend. The data above 50
times gradually increase, and the data are slightly dispersed.
The average number of iterations of the PSO algorithm fluctu-
ates slightly. As the source strength increases, the data below 75
times gradually increase, but the average number of iterations
remains above 80 times.

3.3. Analysis of the effect of the number of UAVs
on the performance of the algorithm

The change in the success rate of the three algorithms when the
number of UAVs is gradually increased from 3 to 8 is shown
in Fig. 6. The EĲaya algorithm performs slightly worse than
the PSO algorithm and the Jaya algorithm when the number
of drones is 3 and 4. However, when the number of drones
increases to 5, the success rate of the EĲaya algorithm shows
a significant increase and reaches 90.5% at the number of 6
drones. In contrast, the Jaya algorithm, despite some degree of
improvement, has a maximum success rate of only 81%, while
the PSO algorithm has an optimal success rate of only 66%.

Fig. 6. Impact of changes in the number of UAVs on success rates

According to the results shown in Fig. 7, it can be seen that
the change in the number of UAVs has an impact on the distance
ratio and the iteration times of the three algorithms. As far as
the distance ratio is concerned, all three algorithms show an
increasing trend. The PSO algorithm performs the best, the data
distribution is more centralized, and when the number of drones
reaches 5, the average distance ratio stays around 2.9. The av-
erage distance ratio of the Jaya algorithm shows a fluctuating
growth overall, staying above 3.0 when there are 6 to 8 drones
and reaching 3.5 when there are 7 drones, and the main data
distribution area also shows an upward trend; the data below
2.5 will increase first and then decrease with the increase of
the number of drones. The average distance ratio of the EĲaya
algorithm is more concentrated, and the overall average distance
ratio performs better, with an average distance ratio of about 2.4
for 3 and 4 drones and an average distance ratio of about 2.7 for 5
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(a) Impact on the distance ratio of the Jaya algorithm

(b) Impact on the iteration times of the Jaya algorithm

(c) Impact on the distance ratio of the PSO algorithm

(d) Impact on the iteration times of the PSO algorithm

(e) Impact on the distance ratio of the EĲaya algorithm

(f) Impact on the iteration times of the EĲaya algorithm

Fig. 7. Effect of number of UAVs on distance ratio and iteration times
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to 8 drones. Regarding the number of iterations, as the number
of UAVs increases, the number of iterations required for suc-
cessful localization of all three algorithms shows a decreasing
trend. Although all of them have improved their performance,
the Jaya algorithm still has more data over 60 times, and the
PSO algorithm still occupies the majority of data over 80 times.
In contrast, the EĲaya algorithm has a gradual increase in the
amount of data under 40 times and a gradual decrease in the
number of data over 80 times. Regarding the average number
of iterations, the EĲaya algorithm performs the best, much less
than the PSO algorithm and slightly less than the Jaya algo-
rithm. Still, the performance improvement is not apparent when
the number of drones increases from 7 to 8. Therefore, it is
sufficient to use 6 UAVs, and there is no need to allocate more
UAVs to increase the cost.

By comprehensively analyzing the performance of the three
algorithms under different wind speeds, release rates, and num-
bers of UAVs, it is evident that the EĲaya algorithm outperforms
others in terms of success rate and iteration times. It is slightly
inferior to the PSO algorithm regarding the average distance
ratio but still better than the Jaya algorithm. Wind speed and
release rate do not significantly impact the EĲaya algorithm,
indicating that it is robust. The change in the number of drones
has a more significant effect on the EĲaya algorithm, and the
increase in the number of drones later causes an increase in the
distance ratio, probably because the contractual collaborative
traceability between the drones increases the distance travelled.

4. EXPERIMENTAL VALIDATION OF THE EIJAYA GAS
TRACEABILITY ALGORITHM

4.1. Construction of experimental hardware system

The DJI RoboMaster Tello Talent (TT) UAV was chosen for this
experiment, and the TT UAV consists of two parts: the flight
vehicle and the expansion accessories. The vehicle contains
components such as flight control, communication system, vi-
sual positioning system, power system, and flight battery, which
provide functions such as stable flight, positioning, and power
output. Expansion accessories can be added to the aircraft to
realize a broader function expansion and programming envi-
ronment, promote multi-aircraft cooperative control, and write
diverse formation control programs.

Specifically, the visual localization system of the TT UAV,
which consists of a camera and an infrared sensor, is located at
the bottom. This visual positioning system uses a combination
of images and infrared sensors to obtain the position informa-
tion of the vehicle using the camera and determine the current
altitude through the infrared sensors to realize the precise posi-
tioning of the vehicle and to provide a reference of the vehicle
altitude to the ground. The extension module part of the TT
UAV is an open-source controller built-in with an ESP32 chip,
which integrates a dual-frequency WiFi module and a Bluetooth
module. It supports graphical programming, Python, and other
programming languages to write multi-copter cooperative flight
programs. Serial communication is realized through the UAV
onboard Micro USB interface, providing power to the TT expan-

sion modules. This enables multiple RoboMaster TT UAVs to
be connected to a WiFi router simultaneously to achieve multi-
machine state synchronization and cooperative control, and its
specific control mode is shown in Fig. 8.

Fig. 8. TT combination control mode

The expansion board used in this study provides interfaces
to connect the signal pins of the ESP32 and the GND, 5V, and
3.3V power supplies to the ESP32 expansion module, which
facilitates the integration of other open-source hardware and
third-party sensors into the system for gas traceability. Figure 9
shows the specific control of the UAV.

Fig. 9. UAV control mode

4.2. Experimental scenario construction

To simulate a relatively stable gas diffusion scenario and bet-
ter control the experimental conditions, this experiment used
a metal steel frame and plastic film to construct a transparent
closed three-dimensional space (see Fig. 10). The specific di-
mensions of this experimental space are 3 m in length, 3 m in
width, and 1.8 m in height. CO2 in the fire signature gas is a
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non-toxic gas, and to ensure the safety of the experiment, food-
grade CO2 cylinders with a purity of ≥ 99.9% were selected as
the gas source for this indoor traceability experiment. In order
to accurately control the amount of CO2 released, the flow rate
of the gas was controlled by installing a pressure reducer, as
shown in Fig. 11. In addition, an air inlet with a specification of
20 cm×20 cm was opened at the rear side film 100 cm from the
ground, and a fan was used to provide a constant wind speed for
the experiment to ensure that the CO2 was fully diffused in the
experimental space, as shown in Fig. 12.

Fig. 10. Indoor lab space map

Fig. 11. CO2 pressure reducing valve

In this study, CO2 was detected using the SGP30 sensor, as
shown in Fig. 13. The SGP30 is an electrochemical-based sen-
sor with an internal metal oxide sensing element that is heated
and reacts with chemicals in the air, resulting in a change in
the conductance of the aspect, generating an electrical signal
to measure and quantitatively analyze the concentration of CO2
in the air. The SGP30 is easily integrated into a mobile device

Fig. 12. Fans and emission sources

Fig. 13. SGP30 sensor

with 12×12×1.6 mm dimensions and is suitable for TT drones.
The sensor-equipped UAV utilizes a flight map for localization,
where the position is determined by recognizing signs and pat-
terns on the map with a vision sensor. The flight map shown in
Fig. 14 is a 3 m×3 m area containing the DJI Logo, decorative
pattern, and a small planet. The DJI Logo represents the posi-
tive direction of the 𝑋-axis, and the centre is the origin of the
coordinate system. The small planet pattern identifies the map
and obtains the coordinates. The map should be placed horizon-
tally, and the logo should be oriented so the UAV can recognize
the logo and record its position with Mind+ programming. Fig-
ure 15 shows a schematic of the coordinates corresponding to
the flight map, where the CO2 emission source is set at (0,140),
and the unit is cm.
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Fig. 14. Flight map

Fig. 15. Map coordinates of indoor experiment

4.3. Results showcase

For indoor traceability experiments, the CO2 cylinder needs to
be opened, and the pressure-reducing valve adjusted to 5 MPa,
3.5 kgf/cm2, to ensure that the CO2 is released at a constant
flow rate. At the same time, the fan was turned on to promote
the complete diffusion of CO2 throughout the experimental area.
After five minutes, three UAVs were randomly placed in the ex-
perimental area with initial position coordinates of (46,−18),
(−39,−95), and (−116,77), respectively, and the UAVs were
kept at the same altitude during flight, as shown in Fig. 16a.
Figure 16b shows the flight trajectories of the three UAVs in
the traceability experiment, and each UAV works together to
complete the traceability task by mutually cooperating. In the
initial stage of the experiment, UAV No. 3 is a resourceful indi-
vidual, so UAVs No. 1 and No. 2 tend to be closer to UAV No. 3
for a better traceability task. After exchanging information with
each other and being conditioned by the emotionally intelligent
Jaya algorithm, the three drones gradually converged to search
in the same direction. Eventually, they are located at (0,133),
(−4,118), and (7,122), respectively. The straight-line distance
between the UAV closest to the emission source and the source
was 7 cm, and the entire process of the traceability experiment
took a total of 47 seconds.

(a) UAV flight process

(b) UAV flight trajectory

Fig. 16. Indoor traceability experiment

The experimental results show that the emotionally intelli-
gent Jaya algorithm proposed in this paper is feasible in indoor
traceability experiments and can successfully locate the source
of CO2 emissions.

5. CONCLUSIONS

Focused on the defect of the basic Jaya algorithm easily falling
into the local optimum in the multi-UAV cooperative traceability
task, this study innovatively combines the psychological theory,
applies the human psychological state to the traceability task
of the UAV, and proposes the EĲaya algorithm. The EĲaya
algorithm assigns self-evaluation and social evaluation to the
UAV so that it can make more intelligent decisions according to
its state and surrounding environment, increases the population
diversity, improves the position update formula, avoids the local
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optimal problem caused by a single strategy, and improves the
convergence speed and optimization ability of the algorithm. In
the constructed concentration field, several different simulated
concentration fields were generated by changing the wind speed
and source strength of the environmental conditions, and exper-
imental assessment was conducted using different numbers of
UAVs. The evaluation was conducted by selecting three indexes.
Namely, success rate, iteration number, and distance travelled
ratio, as well as comparing and evaluating the basic Jaya and
particle swarm algorithms. The results show that the EĲaya
algorithm performs better in the multi-UAV cooperative trace-
ability task. When improving the emotionally intelligent Jaya
algorithm in the future, it is necessary to consider the three-
dimensional characteristics of smoke diffusion and include the
obstacle avoidance function when the UAV is flying. This will
enable the algorithm to better cope with the challenges in real-
life scenarios, improve the accuracy and applicability of gas
identification, and apply it to a broader range of scenarios.
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