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Abstract: This paper presents modelling of a squirrel-cage induction motor and an optimal
control method based on suboptimal control for nonlinear systems to minimise consumed
energy and power losses in an induction motor drive. A coupled motor model with optimal
control as a closed-loop integrated system is proposed. For modelling of the squirrel-cage
asynchronous machine, a field-circuit-mechanical finite-element (FE) model is employed, in
which mechanical motion is realised by a moving-mesh method and fixed mesh approach. For
the control problem purpose, a surrogate induction motor model, described in a stationary
rotor reference d–q frame, is applied. The optimal control is realised by a nonlinear feedback
compensator method based on the state-dependent Riccati equation (SDRE) with an infinite
time horizon with the surrogate model state-dependent parametrisation (SDP). To perform
the control strategy, a SDRE technique with Moore–Penrose pseudoinverse is adopted.
To improve the accuracy of the optimisation procedure, a finite element model was used to
calculate the motor performance.
Key words: finite element method, optimal control theory, state-dependent Riccati equation

1. Introduction

Accurate and precise control of electric motors is an area of active research worldwide.
Research being carried out focusses on finding control methods for drive systems that ensure high
robustness to external disturbances in terms of achieving specific trajectories while minimising
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associated errors in position, speed or torque of the drive system [1–3]. The scope of literature
in this area is vast, but some specific topics deserve attention, in particular optimal control
theory [3–8], sliding control methods [2,3], adaptive control employing neural network techniques,
fuzzy logic and genetic algorithms [9–11]. A common goal of the approaches discussed is to
minimise energy losses in the motor windings, as well as energy supplied from the source itself.
This can be achieved by determining the optimal switching angles of the phase excitation, as
discussed, for example, in articles [12] and [13]. One of the most suitable approaches to optimal
current control is the use of finite element (FE) modelling of the magnetic field to accurately
determine the energy distribution, which allows the application of optimal control theory with
a nonlinear state-dependent current controller [7, 8]. The presented approach was published in an
abbreviated form as part of a conference abstract [14], of which the current article is an extension
that contains a detailed description of the control method and the motor modelling techniques.
Thus, the paper presents a complete study related to modelling (including surrogate modelling)
and control of induction motor drives. Thus, the main contribution in this paper is the conception
and design of the control system, where the squirrel-cage motor is modelled by the FE approach
and coupled to a closed-loop integrated system performing the optimal control strategy, employing
the surrogate model of the induction machine and the SDRE technique.

2. FE and surrogate model of the squirrel-cage motor

The field circuit model of the asynchronous squirrel-cage machine has been employed. In the
model two formulations have been applied. The formulation A–V with vector magnetic potential
A and scalar electric V has been used to describe the electromagnetic field in the rotor region with
the squirrel-cage winding [15]. The stator region with stranded winding has been modelled using
the A–T0 method with electric vector potential T0 to represent winding current [15–17]. The edge
values of potentials A and T0 have been applied. It should be noted that the edge values of T0
represent the loop currents in the stator windings and simplify linking the field equations with
circuit equations of the supply and control system.

In the considered drive the field model can be simplified by assuming that the magnetic flux in
the direction parallel to the rotor shaft is negligibly small. Due to this simplification, the stator end
windings are represented by lumped parameters, i.e., resistances and inductances. Moreover, the
2.5D approach presented in [18] has been used to model the rotor slot skew.

The proposed field circuit model should be adapted to the analysis of motor drive transients.
Therefore, it is important to formulate an appropriate method of rotor movement simulation and
formulas of torque calculation. Two methods of rotor movement simulation have been analysed:
(a) the moving-mesh method with the band of remeshing elements in the air gap and (b) less
computationally-consuming, the fixed mesh method [18]. The moving-mesh method is more
accurate and enables one to investigate the effects of the higher harmonics of the moving magnetic
wave, e.g. to investigate the parasitic torques. However, in the analysis of the optimal control
of the considered drive these effects do not need to be taken into account. Therefore, to reduce
computation time, the fixed mesh method given in [5] has been applied. In this method, the
time-stepping scheme is applied. The procedure of time derivative calculation is supported by
a harmonic analysis of the potential distribution in the bars [15, 18].
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The efficient motor control requires a precise description of the electromagnetic torque acting
on the rotor. In order to obtain the formula that describes electromagnetic torque the virtual work
principle has been applied. The rotor region has been represented by a region with magnetisation
and conduction currents. In the discrete FE model these currents are represented by the vector
of magnetomotive forces associated with finite element edges. The torque has been expressed
as a derivative of magnetic coenergy in terms of the virtual angular displacement of these
magnetomotive forces. The FE representation of the virtual displacement is similar to the applied
method of movement simulation. Thanks to that approach, the calculated torque is free of ‘ripple’
caused by non-compliance of the calculation procedure with the discrete FE model. As a result of
FE method application the field equations are approximated by a system of nonlinear differential
equations. Further on these equations for the stator region and the rotor will be presented separately.
The FE model of the stator region consists of equations that describe magnetic field distribution
and a circuit equation that defines the currents in stator windings. In the applied FE method, the
magnetic field is expressed in terms of the edge values of magnetic vector potential A and the stator
currents i are represented by the edge value of T0. These FE and circuit equations can be written
in the following matrix form [18]:[

S −zT

pz Rw + pLw

] [
ϕ
i

]
=

[
0
u

]
. (1)

Here, S is the reluctance (stiffness) matrix, ϕ is the vector that consists of edge values of
magnetic vector potential A, p = d/dt, Rw is the diagonal matrix of winding resistances, Lw is
the matrix of end-turn inductances, u and i are vectors of supply voltages and motor currents,
respectively. Matrix z describes the winding distribution in the FE space and transforms the edge
values of the magnetic vector potential into the flux linkages of the phase windings. The element
of the u-th row and v-th column of z is equal to the number of conductors of phase u in the region
associated with the v-th edge of the mesh. It should be noted that the edge values of A represent
loop fluxes in the loops around the edges of the element. Thus, the expression zpϕ describes
electromotive force (emf) in the stator windings. For each phase winding, this emf is completed
by emf caused by end-turn leakage flux, Lwi.

The applied model of a squirrel-cage winding includes the eddy current in the rotor bars. To
represent the skew of rotor slots and bars, the rotor region is divided into segments of different
positions in relation to the stator. It has been assumed that the current density in each bar segment
has only a component parallel to the bar. Because of this assumption, the distribution of electric
potential V can be easily determined analytically. For the i-th bar segment of length li we obtain
gradV = usi/li , where usi is the voltage across the bar segment. Consequently, the problem
of solving the FE equations for potential V is replaced with the problem of solving the circuit
equations describing voltages us across the bar segments and bar currents ib .

These equations and the equations describing the edge values of potential A can be written as
follows: [

S + Gp −zT

−kcGp (kcGkTc )
−1

] [
ϕ
ub

]
=

[
0
ib

]
, (2)

where G is the matrix of conductances associated with the edges of the mesh, and matrix kc
transforms the currents associated with the element edges into the total currents ib in the bars.
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The presented above equation for rotor segments should be completed by the equations that
describe the segment connections and the connection of bars with end-rings. It was assumed that
end-rings can be represented by equivalent, concentrated resistance Re and inductance Le of the
end-ring segment. Here the end-ring segment is the part of the ring between the two neighbouring
bars. In the considered motor, end-rings on both sides of the rotor are identical; therefore, in the
circuit equations for the loops with bars and end-ring segments resistance Re and inductance Le

are multiplied by 2:

ib = ke ie, (3)
2(Re + pLe)ie + kek

T
s us = 0. (4)

Here: ie is a vector of currents in the end-ring segments, the matrix ks transforms the voltages
us into the voltages ub across the bars (ub = ksus) and ke is the connection matrix that transforms
the currents in the end-ring segments into the currents in bars [15, 18]. The solution for a time-
dependent field is obtained using the time-stepping method. The Crank–Nicolson schema is used.
However, in order to avoid non-monotonicity, a fully implicit schema is applied at the beginning
of the analysed time period.

In FE modelling there is a problem of modelling distributed parameters because the state
depends not only on time but also on space configuration (plane configuration in this case).
Obtaining an optimal control law for this model could be difficult and would require too much
computational effort. Thus, based on the efficient modelling technique, a surrogate state-space
model seems to be more suitable and smart to obtain the mentioned control law. The model should
be both simple and useful.

The induction motor model is described by equations that are expressed in a stationary rotor
reference d–q frame. The d-axis aligns with the a-axis. All quantities in the rotor reference frame
are referred to the stator:

d
dt

[
Ψsd

Ψsq

]
=

[
vsd
vsq

]
− Rs

[
isd
isq

]
− ωda

[
0 −1
1 0

] [
Ψsd

Ψsq

]
, (5)

d
dt

[
Ψrd

Ψrq

]
=

[
vrd
vrq

]
− Rr

[
ird
irq

]
− ωdA

[
0 −1
1 0

] [
Ψrd

Ψrq

]
, (6)

where fluxes are functions of motor currents
Ψsd

Ψsq

Ψrd

Ψrq

 =


Ls 0 Lm 0
0 Ls 0 Lm

Lm 0 Lr 0
0 Lm 0 Lr



isd
isq
ird
irq

 . (7)

Ψsd , Ψsq , Ψrd , Ψrq are the stator and rotor q and d fluxes, isd , isq , ird , irq are the stator and
rotor q and d currents, vsd , vsq , vrd , vrq are the stator and rotor q and d voltages, ωda is the d–q
stator electrical speed with respect to the rotor a-axis and ωdA is the d–q stator electrical speed
with respect to the rotor A-axis, Rs and Rr are the resistances of the stator and rotor winding, Ls ,
Lr , and Lm are the stator, rotor and magnetising inductance, respectively.
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To calculate the d–q rotor electrical speed with respect to the rotor A-axis (dA), the model
uses the difference between the stator a-axis (da) speed and slip speed:

ωdA = ωda − ωdm. (8)

To simplify the equations for the flux, voltage, and current transformations, using a stationary
reference frame, the speeds (8) are

ωda = 0 and ωdA = ωem = Pωm, (9)

where ωem, ωm, P are the electrical rotor speed, angular velocity of the rotor and the number of
pole pairs, respectively.

The full 3-phase asynchronous motor model must also include a motion equation.

J
dωm

dt
+ bωm = Te − Tload, (10)

where Tload is the load torque and the electromagnetic motor torque Te is the nonlinear function of
motor currents.

Te = PLm(isqird + isdirq), (11)

where b and J are the damping and rotor inertia, respectively.
Neglecting Tload in (10), above Eqs. (5), (6) coupled with (10) can be written in one system of

nonlinear equations in state-space form:


Ls 0 Lm 0 0
0 Ls 0 Lm 0

Lm 0 Lr 0 0
0 Lm 0 Lr 0
0 0 0 0 J





disd
dt

disq
dt

dird
dt

dirq
dt

dωm

dt


=


Rs 0 0 0 0
0 Rs 0 0 0
0 −PωmLr Rr −PωmLr 0

PωmLm 0 PωmLr Rr 0
PLmirq PLmirq 0 0 −b



isd
isq
ird
irq
ωm


+


1 0
0 1
0 0
0 0
0 0


[
vsd
vsq

]
, (12)

or shortly writing
Edq Ûxdq = Gdq(xdq)xdq + Hudq, (13)

where
xdq =

[
isd isq ird irq ωm

]T (14)
and

udq =
[
vsd vsq

]T
. (15)
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The stator phase voltages and currents are computed by power invariant d–q transformation to
ensure that the d–q and three-phase powers are equal:[

vsd
vsq

]
=

√
2
3

[
cos (θda) cos (θda − k) cos (θda + k)
sin (θda) sin (θda − k) sin (θda + k)

] 
va
vb
vc

 (16)

and [
isd
isq

]
=

√
2
3

[
cos (θda) cos (θda − k) cos (θda + k)
sin (θda) sin (θda − k) sin (θda + k)

] 
ia
ib
ic

 , (17)

where k = 2π/3.
Considering the AC motor model described by (13) and the applied d–q transformation

(16)–(17), for the control problem purpose, the motor model can be rewritten in a useful form:

E Ûx = G(x)x + Hu, (18)

where
x =

[
ia ib ic ωm

]T (19)

and
u =

[
ua ub uc

]T
. (20)

3. SDRE control formulation

Optimal control theory concentrates on optimising a control law that brings a dynamic system
from a certain initial state to a certain final state, by requiring the control law to minimise the
objective function associated with the system. In the case of minimizing energy in an ASM drive
system, the linear-quadratic performance index is a reasonable solution [7]. It allows one to find
optimal waveforms of the excitation voltage supplied to the motor windings in terms of minimising
the supplied energy and power losses in the winding resistance. The control problem is to find the
optimal control that minimises the following objective function

J(u) =
1
2

∫ ∞

0
(xTQx + uTRu) dt, (21)

where: Q is the symmetric, positive semi-definite weighting matrix for states, R is the symmetric,
positive definite weighting matrix for control inputs, u is the vector of input voltages and x is the
motor state vector.

Consider the nonlinear dynamic affine system

Ûx = F(x) + Bu. (22)

In this case, the control problem formulation is stated as in classic SDRE form, (21) and (22),
but the SDC parameterised form of (22) uses the separated form of matrix C(x):

Ûx = C(x)x + Bu = (C1 + C2 (x))x + Bu, (23)
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As in the previous case of checking the controllability of the affine system (23), the pair of
components {C1, B} should be controllable. It means that the controllability matrix

M(x) =
[
B C1B . . . Cn−1

1 B
]

(24)

should have a full rank. Using Hamiltonian theory

H =
1
2

(
xTQx + uTRu + pT ((C1 + C2(x))x + Bu)

)
, (25)

and considering the Pontryagin minimum principle, the necessary optimality condition ∂H/∂u = 0
with p = ((K1 + K2(x))x, results in a control law as

u = −R−1BT (K1 + K2 (x)) x. (26)

The control law in (26) includes two feedback compensators. The first is constant and the second
is state-dependent. Employing the optimality condition and control law in (26), the nonlinear
system is described by the state-space equation

Ûx = (C1 + C2 (x)) x − BR−1BT p, (27)

and adjoints the differential equation

Ûp = −

(
C1 +

∂ (C2 (x) x)

∂x

)T
p − Qx, (28)

where
∂ (C2 (x) x)

∂x
= C2 (x) +

∂C2 (x)

∂x
x. (29)

Substituting p = (K1 + K2(x))x into (27) the closed-loop state-space nonlinear equation can
be written as

Ûx =
(
C1 − BR−1BTK1

)
x +

(
C2 (x) − BR−1BTK2 (x)

)
x. (30)

The first bracket of Eq. (14) is state-independent, the second one is state-dependent, thus there
is a possibility to linearise it and solve the state-dependent gain matrix K2(x)

K2 (x) =
[
BR−1BT

]†
C2 (x) , (31)

employing the Moore–Penrose pseudoinverse [19]. Then closed-loop system (14) takes the form

Ûx =
(
C1 − BR−1BTK1

)
x, (32)

because

lim
‖x‖→0



C2 (x) − BR−1BTK2 (x)


 ‖x‖

‖x‖
= 0. (33)

From the above it can be seen that the compensator gain K (x) = K1 + K2(x) can be obtained
from (31) for K2(x) and from the algebraic Riccati equation ARE for K1

CT
1 K1 + K1C1 − K1BR

−1BTK1 + Q = 0. (34)
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The control schema for the induction motor, including a surrogate state simulator and feedback
compensator, is shown in Fig. 1.

Fig. 1. Schema of an optimal control system

It is worthy to note that Eq. (34) is time-independent and needs to be solved only once in the
control process. The same situation applies to operation (31). So, in comparison to the classic
SDRE approach [7], the computational effort is strongly reduced. Then the implementation of the
control law becomes much easier in a real control system.

4. Numerical experiments

The numerical model of the considered squirrel-cage asynchronous motor has been based
on a general-purpose 3 kW, 4-pole asynchronous motor (ASM) of type SGL-100-4b. Due to the
symmetry of the magnetic circuit, the geometry has been reduced – see the cross-section of
the electromagnetic active part shown in Fig. 2.

(a) (b)

Fig. 2. Applied FE mesh (a); magnetic circuit cross section (b)
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The discretised model of a slice of the motor is presented in Fig. 2(a). Its discretisation grid
has about 20 700 triangular elements. The time discretisation was set parametrically according to
the controlled supply frequency by assuming the constant number of time steps for the period of
supply voltage nT is equal to 180. To examine the proposed control strategy, the phase voltages
have been determined for three values of the reference frequency fs equal to 10, 25 and 50 Hz,
respectively. The optimal problem control is realised for finding motor state dynamics and SDRE
control for the mentioned frequencies. In association with motor surrogate dynamics, the quadratic
cost functional weighting matrices in (15) are chosen as

Q =


R 0 0 0 0
0 R 0 0 0
0 0 R 0 0
0 0 0 R 0
0 0 0 0 b


, R =


1/R 0 0

0 1/R 0
0 0 1/R

 . (35)

Firstly, the optimal control is obtained by employing a surrogate motor model and next, the
obtained control signals are applied to the FEM model. The determined phase voltage waveforms
have been described by means of the amplitude coefficient and sine functions. The calculated
amplitude coefficients for the examined reference frequencies are shown in Fig. 3(a) to Fig. 3(c).

Computed control signals for the considered frequencies give a linear relationship between fre-
quency and voltage amplitude in a steady state. Very interesting is also the fact that the peak voltage
generated at motor starting is also linear. It proves that the designed optimal controller works per-
fectly. The rotor speed andmotor torque waveforms are shown in Fig. 4(a) and Fig. 4(b), respectively.

(a)

(b)
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(c)

Fig. 3. Calculated amplitude coefficients of the motor phase voltages for fs , equal to (a) 10 Hz; (b) 25 Hz
and (c) 50 Hz

(a)

(b)

Fig. 4. Calculated speed (a) and torque (b) waveforms
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As shown in Fig. 4(a), the relationship between the considered frequencies and obtained motor
speeds is also linear, as expected. Frequency 50 Hz runs the motor on its nominal speed level, i.e.
1445 rpm with a small slip of 55 rpm. Lower frequencies enable controlling speed linearly. The
analysis of torque waveforms presented in Fig. 4(b) gives the same remarks. The torque amplitude
in a steady state can also be successively controlled by frequency in a linear way. The obtained
phase currents from the FEM model of the motor are presented in Fig. 5. Their optimal amplitudes
minimise the objective function value, (15), and are free of possible overshoots.

(a)

(b)

(c)

Fig. 5. Phase current waveforms calculated by means of the FEM model for fs equal to (a) 10 Hz, (b) 25 Hz
and (c) 50 Hz
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5. Conclusions

The paper deals with numerical studies related to the optimal control of a 3-phase induction
motor. Since the best approach to define optimal speed and current control is to use the finite
element method (FEM) in magnetic field modelling to accurately determine energy distribution,
optimal control theory with a nonlinear state-dependent current controller was used, in which the
integral of the performance index includes energy supplied to the system and energy lost internally.
The designed AC motor control system allows optimal control of speed, torque or phase currents
with a linear dependence of the applied frequency. This makes control systems user-friendly and
convenient. What is more, the optimisation function saves or minimizes energy expenses, also
minimising control overshoot.

References

[1] Aghili F., Adaptive reshaping of excitation currents for accurate torque control of brushless motors,
in IEEE Transactions on Control Systems Technology, vol. 16, no. 2, pp. 356–364 (2008), DOI:
10.1109/TCST.2007.908213.

[2] Brock S., Sliding mode control of a permanent magnet direct drive under non-linear friction, COMPEL
- The international journal for computation and mathematics in electrical and electronic engineering,
vol. 30, no. 3, pp. 853–863 (2011), DOI: 10.1108/03321641111110825.

[3] Allihalli H., Bayindir M.I., Time-energy optimal control of vector controlled induction motor, COMPEL
- The international journal for computation and mathematics in electrical and electronic engineering,
vol. 21, no. 2, pp. 235–251 (2002), DOI: 10.1108/03321640210416331.
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