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Abstract: This paper develops a novel approach for the state of charge (SOC) estima-
tion of Lithium-ion batteries in energy storage power stations, leveraging an improved
back-propagation (BP) neural network optimized by an immune genetic algorithm (IGA).
Addressing the paramount importance of accurate SOC estimation for enhancing battery
management systems, this work proposes a methodological enhancement aimed at refining
estimation precision and operational efficiency. First, the mechanisms of temperature, current,
and voltage impacts on SOC are revealed, which serve as the inputs of the neural network.
Second, the improved BP neural network’s structure and optimization through an IGA are
designed, emphasizing the mitigation of traditional BP neural networks’ limitations including
slow convergence speed and complex parameterization. Through an extensive experimental
setup, the proposed model is validated against standard BP neural networks across various
discharge experiments at different temperatures and discharge currents. Results prove that the
estimation accuracy of the proposed method reaches as high as 98.15% and faster converges
compared to the traditional BP network, thereby being valuable practically.
Key words: back-propagation neural network, energy storage, immune genetic algorithm,
lithium-ion battery, state of charge

1. Introduction

To address the energy crisis and environmental pollution caused by fossil fuels, renewable
energy generation, represented by wind and solar power, has rapidly developed, with its generation
capacity continually increasing [1, 2]. According to a study report by the Rocky Mountain
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Institute (RMI), by 2030, wind and solar projects are expected to account for over one-third of
global electricity [3]. However, renewable energy generation faces challenges of intermittency
and variability, which cannot meet the high-quality electricity demands of the grid and end-
users [4]. In this context, efficient regulation of renewable energy generation becomes significantly
important. Large-scale battery storage stations, which can regulate grid peak load and frequency
and effectively ensure electricity quality, have seen rapid development [5, 6]. As illustrated in
Fig. 1, the commonly-used large-scale storage stations’ battery packs are typically composed of
many lithium-ion battery cells connected in series and parallel [7]. During manufacturing and
use, lithium-ion batteries can exhibit variations in parameters such as self-discharge rate, internal
resistance, voltage, and capacity. These differences manifest as capacity or voltage inconsistencies
among series-connected cells in a battery pack when fully charged or discharged, leading to
overcharging or over-discharging in some modules. Over-discharging occurs when the battery
voltage is too low, enhancing the pack’s heterogeneity and creating a vicious cycle of increased
likelihood of overcharging and discharging in subsequent uses. Additionally, overheating issues
during charging and discharging can lead to premature failure or even danger. The effective
management of lithium-ion batteries is crucial for enhancing the safety and lifespan of both the
batteries and the storage station [8–10].

T3 T5

T6 T2

D1 D3

D4 D6

T1

T4

D5

D2Cdc

AC: alternating current, DC: direct current

DC/DC

AC/DC

D
C

 b
us

AC/DC
Tidal

Photovoltaic

Wind

Energy 
transmission

Local load

DC/AC Power grid

Energy storage 
station

 peak-valley 
& frequency 

regulation for grid
Battery 

management

Voltage 
Current 

Resistance
SOH, SOC
Differences
Temperature

Li-ion

Fig. 1. Battery arrays in battery arrays in energy storage stations connected with grid

The primary functions of a lithium-ion battery management system in a storage station include
controlling charging and discharging, measuring parameters like voltage, current, and temperature,
balancing among cells, estimating battery state of charge (SOC) and state of health (SOH),
and diagnosing faults in the battery pack [11]. Accurate SOC estimation, which represents the
degree of battery charging and discharging, can prevent excessive charging and discharging,
thereby increasing battery lifespan and reducing costs [12, 13]. Thus, accurate SOC estimation for
lithium-ion batteries in storage stations is a current hot topic.

The commonly-used methods for lithium-ion battery SOC estimation include the voltage
method, discharge test method, ampere-hour integration method, internal resistance method, fuzzy
logic method, and neural network method [14].



Vol. 73 (2024) State-of-charge estimation based on improved back- propagation 979

1. The voltage method relies on the known relationship between battery voltage and SOC to
estimate the SOC value by detecting the output voltage of the battery. It is simple and easy
to operate, but when the SOC of lithium-ion batteries is between 20% and 90%, the battery
voltage changes within a small range, thus requiring precise voltage measurements, which
places high demands on hardware [15].

2. The discharge test method involves discharging the battery at a constant current, and the
product of discharge time and current represents the remaining battery capacity. While
commonly used in laboratories, this method is less suitable for energy storage stations due
to the need for continuous measurements over long periods [16, 17].

3. The ampere-hour integration method requires to continuously measure the current flow,
calculates the power consumption of the battery using integration, and then subtracts
the initial SOC value to obtain the actual SOC. However, the introduction of integration
calculations can lead to integration errors [18].

4. The internal resistance method relies on the relationship between SOC and internal
resistance [19]. Accurate measurement and analysis of the internal impedance of the battery
are necessary, but the internal resistance varies continuously during battery operation,making
it difficult to measure precisely and thus challenging to estimate SOC using this method [20].

5. The fuzzy logic algorithms mimic human thinking patterns through fuzzy reasoning. They
have the advantage of being versatile and not relying on precise battery mathematical models.
However, accurate cost functions and fuzzy relationships must be designed; otherwise, the
estimation accuracy may be low [21].

6. Neural networks can learn the internal laws of nonlinear systems through sample data
learning. Neural networks can approximate arbitrary complex nonlinear mappings with
arbitrary precision, thus enabling the establishment of neural networks for highly nonlinear
systems such as batteries to estimate SOC [22–24]. The advantage of neural network
methods is that they do not rely on precise battery models, are convenient, fast, and have
high accuracy. Among these methods, neural network methods have obvious advantages
in terms of estimation accuracy and thus deserve further research.

Neural networks used for battery SOC estimation include back-propagation (BP) neural
networks, recurrent neural networks (RNNs), convolutional neural networks (CNNs), and long
short-term memory (LSTM) networks, and so on [25,26]. These neural network (NN) methods are
capable of capturing temporal dependencies and spatial features within battery data, thus providing
more accurate and reliable SOC estimates. Among these neural networks, BP neural networks
excel in their versatility and high adaptability [27]. However, they also have the disadvantages of
slow convergence speed and high complexity in parameter design, which may affect the estimation
accuracy [28]. Currently, through algorithm optimization and appropriate network design, it is
possible to effectively mitigate these shortcomings of BP neural networks, enabling them to
perform powerful functions in the field of battery SOC estimation. In addition to the neural
networks used in SOC estimation, there are many advanced neural networks in the other fields.
Paper [29] presents a sophisticated approach to time series forecasting, emphasizing the importance
of accurate predictions in energy management. In [30], the use of deep learning is explored
for enhancing the reliability of state estimations in complex heating systems. Literature [31]
investigates reinforcement learning strategies in financial trading, highlighting the potential for
improved decision-making in low-reward scenarios. Paper [32] addresses the critical need for
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reliable verification methods in neural network applications, ensuring model robustness and
accuracy. Additionally, literature [33] showcases the use of optimized learning algorithms to
enhance predictive maintenance in automotive engineering. Paper [34] delves into the precision of
neural network approximations, pushing the boundaries of computational accuracy. Finally, [35]
illustrates the potential of hybrid neural networks in financial forecasting, combining the strengths
of different neural architectures to improve predictive performance. These studies underscore the
versatility and power of neural networks in addressing diverse and complex real-world problems.

This paper proposes a method that utilizes immune genetic algorithms (IGAs) to optimize
BP neural networks, addressing issues related to convergence speed and parameter design. This
approach simultaneously enhances the accuracy of estimating the SOC of lithium-ion batteries
in energy storage stations. By simulating the immune mechanism of biological organisms, the
algorithm achieves rapid convergence and global optimality, optimizing the weights and thresholds
of the BP neural network. Additionally, the IGA creates a dynamic feedback effect during network
training, accelerating the training process and improving the efficiency of network learning. The
main novelties and contributions of this paper are as follows:

1. The mechanisms of temperature, current, and voltage impacts on SOC are revealed, laying
the ground for determining the inputs of the proposed BP network. This can also provide
guidelines for the similar future studies.

2. An improved BP neural network based on the IGA has been designed for estimating the SOC
of lithium-ion batteries in energy storage stations. Compared with traditional BP neural net-
works, in this algorithm, the IGA is utilized to optimize the weights and thresholds of the BP
neural network, effectively addressing the issues of convergence speed and parameter design
associated with BP neural networks. This enhancement improves the accuracy of SOC esti-
mation. Comparative experimental results prove the superiority of the proposed BP network.

The remainder of this article is organized as follows. In Section 2, the measurable quantities
of lithium-ion batteries in energy storage stations are analyzed, including temperature, current,
and voltage, with their relationship with SOC explained. In Section 3, the improved BP neural
network based on the IGA will be introduced. In Section 4, experimental results will be presented
to validate the proposed method. Finally, Section 5 serves as the conclusion section.

2. Mechanisms of temperature, current, and voltage impacts on SOC

Designing a BP neural network to detect the SOC of lithium-ion batteries necessitates explicitly
defining both inputs and outputs. The SOC value itself constitutes the output. For inputs, it is
essential to select variables that have a direct relationship with SOC. In the context of energy
storage stations, temperature, current, and voltage are quantities that can be measured directly.
This section delves into the underlying mechanisms linking these quantities to SOC, demonstrating
their suitability as inputs for the neural network proposed in this study.

2.1. Mechanism of temperature impacts on SOC
a) Impact of temperature on battery internal resistance
The influence of temperature on batteries is complex and variable, making it challenging to

track effectively. Temperature affects the battery’s internal resistance, capacity, and open-circuit
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voltage. When the temperature is too high, rapid chemical reactions within the battery can
cause permanent damage to the internal materials, leading to a decrease in battery capacity [36].
Conversely, at low temperatures, the activity of the battery’s internal materials is significantly
reduced. Lithium ions cannot move normally through the separator, preventing the formation of
electric current due to the lack of electron movement in the external circuit, thereby influencing
the internal resistance.

Analyzing the relationship between lithium-ion battery internal resistance and temperature is
essential for exploring the basic principles of internal reactions in lithium-ion batteries. Lithium-ion
battery internal resistance is influenced by temperature and battery aging. To explore the impact
of internal resistance and temperature, experiments are conducted with the same battery under
different temperatures without involving multiple discharge cycles, to ensure the battery’s aging
level remains constant. The main reason for internal resistance in lithium-ion batteries is the
obstruction faced by electrons moving between anodes and cathodes and the transfer of lithium
ions between anodes and cathodes. The curve of lithium-ion battery internal resistance changes
under different temperatures is shown in Fig. 2(a). The results are independently obtained from
the battery pack given in Section 4. A programmable temperature control chamber HG-T-P-80J
is utilized to adjust the ambient temperature surrounding the battery. By employing theDC resistance
measurementmethod, the battery’s internal resistance is tested under various temperature conditions.
It can be noted that temperature significantly affects battery internal resistance, increasing as the
temperature decreases. The basic principle is that lowering the temperature reduces the detachment
and intercalation of lithium ions at the anodes and cathodes, slowing down the internal chemical
reactions of the battery. This slows down electron movement, resulting in a rise in the internal
resistance.
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Fig. 2. Mechanism of temperature impacts on SOC: lithium-ion battery internal resistance under different
temperatures (a); lithium-ion battery capacity under different temperatures (b)

b) Relationship between temperature and capacity
The rated capacity of lithium batteries varies with temperature. The activity of lithium

ions increases with temperature, accelerating their movement and enhancing the anode and
cathode materials’ ability to accommodate lithium ions, thereby reducing resistance [37]. Higher
temperatures increase the activity of anode and cathode materials, speeding up the detachment of
lithium ions from the anode, moving quickly through the electrolyte to the cathode, and increasing
the quantity of absorbed lithium ions, which boosts the lithium battery’s capacity. During discharge,
the speed at which lithium ions detach from the cathode increases, quickly accumulating at the
anode, increasing external circuit current, balancing the internal charge, and thus increasing the
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battery’s capacity. The opposite occurs at lower temperatures. Temperature has a non-negligible
impact on the capacity of lithium-ion batteries, making it essential to consider temperature effects
when estimating the SOC and energy state of lithium-ion batteries. The capacity characteristic
of lithium-ion batteries in our lab considering temperature impact is shown in Fig. 2(b). It
indicates that temperature is a critical factor affecting battery capacity, yet the relationship between
temperature and capacity is not linear. As temperature approaches the lower limit of the battery’s
allowable range, a similar change in temperature results in a more significant change in capacity.
Conversely, as temperature approaches the upper limit, the battery’s capacity change is minimal
or very slight. As temperature gradually increases, its impact on battery capacity diminishes.
Based on the relationship between lithium-ion batteries and temperature, to maximize the battery’s
utilization rate and capacity, it should operate within an appropriate temperature range. At higher
temperatures, maximizing the battery’s charge storage capability is paramount.

Overall, under low-temperature conditions, the battery exhibits high internal resistance and
low capacity, preventing it from storing the same amount of electricity as possible under high-
temperature conditions, resulting in a lower initial SOC. During operation, due to faster energy con-
sumption, SOC decreases more rapidly. Therefore, temperature is a significant factor affecting SOC.

2.2. Mechanism of charging/discharging current impacts on SOC

The magnitude of charging and discharging currents fundamentally affects how quickly lithium-
ion batteries can charge and discharge, influencing SOC fluctuations. A high charging current can
swiftly elevate the battery’s SOC, but too high currents risk causing uneven lithium deposition, lead-
ing to the formation of lithium dendrites. This can negatively affect battery performance and safety.
On the flip side, a high discharging current can rapidly decrease SOC but may also lead to battery
overheating. Intuitively, this accelerates energy consumption, causing SOC to decline more rapidly.

Additionally, like temperature, the magnitude of charging and discharging currents affects
the battery’s internal resistance, which in turn impacts the SOC. Resistance, indicative of the
internal conductive path’s resistance, is determined mainly by the electrolyte and electrode
materials’ conductivity. High current conditions increase the concentration gradient of ions in
the electrolyte, leading to heightened resistance. Polarization resistance is associated with the
electrochemical reactions during charging and discharging, encompassing both activation and
concentration polarization on the electrodes’ surface. High charging and discharging currents
can accelerate these electrochemical reactions, potentially increasing both activation polarization
and concentration polarization, and thus, polarization resistance. Moreover, high currents can
amplify heat generation within the battery, influencing its temperature and, consequently, its
internal resistance. Typically, a rise in temperature enhances the electrolyte’s conductivity, reducing
resistance. However, excessively high temperatures may compromise the battery’s internal structure,
increasing interface impedance. Figure 3 illustrates the trend of changing charging resistance
across various discharging rates at the temperature of 20◦. The results are independently obtained
from the battery pack given in Section 4 as well. During test, the battery’s charge is first discharged
to the required SOC level. Then, the current is adjusted by manipulating the load (using a sliding
rheostat), and the internal resistance of the battery is tested through the DC resistance measurement
method. The results highlight the significant impacts of the charging rate on battery internal
resistance. Generally, internal resistance exhibits an upward trend with increasing charging rates.
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resistance under different SOC

2.3. Relationship of voltage and SOC
The voltage of a battery has a close relationship with its SOC, a relationship that forms the

basis for SOC estimation in battery management systems. Unlike the direct impacts of temperature
and current, voltage serves as a fundamental characteristic of the battery. Its variations reflect
changes in the battery’s internal chemical reactions and charge state. Although changes in voltage
do not directly alter the SOC value, voltage plays a crucial role in characterizing the battery’s state
and is instrumental in SOC estimation.

The relationship between battery voltage and SOC typically exhibits nonlinear characteristics,
reflecting the battery’s chemical properties and charge distribution at various SOC levels. As
the SOC gradually decreases during the discharge process, the battery voltage also decreases;
conversely, during charging, the battery voltage increases as the SOC rises. This trend may vary in
slope at different charging and discharging stages, determined by the electrochemical properties of
the battery’s internal materials and the battery design itself. Given the clear relationship between
battery voltage and SOC, voltage is often used as an intuitive method for estimating SOC. Although
the accuracy of this method can be influenced by multiple factors, such as battery temperature and
charging/discharging currents, a reasonable SOC estimate can still be obtained from the battery
voltage under certain conditions. To enhance estimation accuracy, integrating additional methods
such as neural networks can lead to more precise SOC predictions.

3. IGA-based BP neural network

This section introduces the design of an improved BP neural network based on the IGA,
specifically tailored for estimating the SOC of lithium-ion batteries in energy storage stations.
Initially, the basic structure of the BP neural network is established. Subsequently, the IGA is
employed to enhance the parameter setting method of the BP neural network, thereby improving
the estimation accuracy of the neural network.

3.1. Structure and mathematical model of BP neural network
The structure of the BP neural network for lithium-ion battery SOC estimation comprises three

main parts: the input layer, the hidden layer, and the output layer, as shown in Fig. 4. The input
layer receives three variables: temperature (T ), current (I), and voltage (U), and the output is the
estimated battery SOC value. For clarity, let’s define the input vector as X = (x1, x2, x3, x4), where
x1 = −1, which represents the weight coefficient for each neuron in the hidden layer. As Section 2
thoroughly considers the variables that affect the accuracy of battery SOC estimation, and selects
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battery voltage, temperature, and current as the input variables, that is, x2 = T , x3 = I, x4 = U. The
output vector of the hidden layer is Y = (y1, y2, . . . , ym), where m represents the number of neurons
in the hidden layer. In theory, the more neurons in the hidden layer, the higher the estimation
accuracy of the BP neural network. However, in practical applications, as the number of neurons
in the hidden layer increases, the network’s accuracy improves initially. But once the number of
nodes in the hidden layer exceeds a certain threshold, the change in estimation accuracy becomes
insignificant, and the estimation time actually increases, reducing the efficiency of the network.
In this study, the hidden layer is designed with 20 neurons. The output layer vector is Out = (out),
where out represents the estimated battery SOC value. Additionally, we define the desired output
vector as D = (d). The weights corresponding to each neuron in the hidden layer and the input
variables are represented by the matrix V = (v1i, . . . , vki, . . . , vmi), where i = 1, 2, 3, 4. The weights
between the output layer and the input variables are represented by the vector W = (wj).

x1 y1

y2

y3

ym-1

ym

wj

out

Input layer Hidden layer Output layer

x2

x3

x4

v1i

vmi

Fig. 4. Structure of the BP neural network
for SOC estimation

The mathematical model of the output layer in a BP neural network is as follows:
out = f (No)

No =

m∑
j=1

wj yj
, (1)

where f (No) represents the activation function, j = 1, 2, . . . ,m, and m is the number of neurons in
the hidden layer.

The mathematical model of the hidden layer is:
yk = f (Nhk)

Nhk =

4∑
i=1

vki xi
, (2)

where k = 1, 2, . . . ,m. Activation functions are crucial for neural networks. According to
reference [38], the sigmoid function exhibits several notable characteristics. Firstly, its smooth
nature allows it to provide continuous gradient feedback during the learning process of the neural
network, facilitating smooth adjustments to network parameters. Secondly, the S-shaped curve of
the sigmoid function ensures effective gradient transmission within its activation range, particularly
when the input values are close to 0, thereby promoting network learning. These advantages have
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led to the widespread application of the sigmoid function in BP neural networks. In this study, the
mathematical expression of the sigmoid function with respect to the variable N is as follows:

f (N) =
1

1 + e−N
. (3)

For the BP neural network depicted in Fig. 4, the mean squared error of its output is:

E =
1
2
(d − out)2. (4)

By substituting (1) and (2) into (4), it can be obtained as:

E =
1
2

©­«d − f ©­«
m∑
j=1

wj f

( 4∑
i=1

vki xi

)ª®¬ª®¬
2

. (5)

When adjusting the weight parameters of the neural network, they will be updated in the
direction of the negative gradient, that is,


∆wj = −η

∂E
∂wj

= −η
∂E
∂No

∂No

∂wj
= −η

∂E
∂No

yj

∆vki = −η
∂E
∂vki

= −η
∂E
∂Nhk

∂Nhk

∂vki
= −η

∂E
∂Nhk

xi

, (6)

where ∆wj and ∆vki represent the gradients of the output layer and the hidden layer, respectively.
The negative sign indicates that the adjustment direction of the weights is in the opposite direction
of the gradient. η ∈ (0, 1) represents the learning rate of the neural network.

From the above formulas, it can be seen that the estimation error of the network can be
expressed as a function related to the weights of the hidden layer and the input layer. Therefore,
adjusting the weights of the network can change its estimation error. The principle of the BP
neural network is based on this fact. Through continuous iterations of the network, the weights
and thresholds are adjusted to ensure that the error meets the required accuracy.

3.2. BP neural network optimized by IGA

The IGA is a method developed by simulating the immune mechanism based on immunological
theory. Its advantage lies in the ability to utilize the diversity of the immune system and maintain
extreme values, thereby ensuring the diversity of the population. This overcomes the "premature
convergence" phenomenon commonly encountered in general function optimization processes,
ultimately ensuring the global nature of the optimization results. In the training process of BP
neural networks, the IGA can be utilized to optimize key parameters, including the weight factors
vki and wj of each neuron, as well as the thresholds a and b of the hidden layer and output layer,
which are used to determine whether the neural network operates with high accuracy. This chapter
will design an improved BP neural network optimized by the IGA.
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3.2.1. Development of IGA
The first step in the IGA is to simulate the biological immunemechanism for antigen recognition.

In the context of the IGA, antigen recognition represents the objective function to be optimized, and
the corresponding solution set is represented as antibodies. The IGA algorithm initially generates
a number of antibodies in the initial population and evaluates the quality of the solution set through
a fitness function. The fitness function, also known as affinity, indicates the closeness between
the solution and the objective function. Then, new antibodies are produced in the population
through crossover and mutation to update the population. Moreover, to enhance the diversity of the
antibody population, mutation processing can be used in the population. The execution steps of the
IGA are shown in Fig. 5. Below, the three key steps of the IGA are detailed: antigen recognition,
affinity evaluation, and population update.

Antigen recognition

Initial antibody

Fitness calculation

Affinity < 
f0 ?

Promotion & suppression 
of antibody generation

Population update (selection, 
crossover, mutation)

End

Start

Fig. 5. Implementations of IGA

a) Antigen recognition
The first step of the IGA is to effectively identify the antigen. Simply put, this involves

abstracting the problem of parameter optimization into a target function that needs to be
solved. Subsequently, a certain number of random solution sets, corresponding to antibod-
ies, are generated. During this process, the variables to be optimized need to be encoded. Denote
gi1 = (g1, g2, g3, g4) = (vki,wj, a, b), where i1 = 1, 2, 3, 4. The range of gi1 is defined as [ci1, di1],
and the corresponding real-valued encoding can be represented as:

gi1 = ai1 + λ(di1 − ci1), (7)

where λ is the regulation coefficient, and it ranges from 0 to 1.
b) Affinity evaluation
Before performing parameter optimization, it is essential to design an affinity function or

fitness function to evaluate the performance of the antibodies, or the accuracy of the solutions. In
this chapter, the affinity function used in the immune genetic algorithm is represented based on the
accuracy of the BP neural network in estimating the SOC of lithium-ion batteries. The calculation
formula is as follows:

f =
|Sr − Se |

Se
× 100%, (8)

where Sr represents the true SOC value of the battery, while Se is the SOC value estimated by the
neural network. In practice, a constant value f0 needs to be defined to judge whether f is less than
it, which is the termination condition of the algorithms. Subsequently, a concentration function is
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used to represent the similarity between each antibody in the population. During the continuous
evolution and iteration of the population, it is usually necessary to promote and suppress the
concentration of antibodies.

The calculation method for the concentration function of antibodies is as follows:
c(x, y) =

1
1 + s(x, y)

× 100%

s(x, y) =
1
n
×

n∑
i=1
|xi − yi |

, (9)

where c represents the concentration of antibodies, x and y refer to different antibodies, s is the
similarity between different antibodies, and n is the number of antibodies.

For a given antibody, the probability p of being selected under the influence of both concentration
and affinity is calculated as follows:

p =
f × e−βc

n∑
i=1

f × e−βc
, (10)

where β is a regulating parameter.
c) Population update
Population update involves two processes: crossover and mutation, of which block diagrams are

shown in Fig. 6. Crossover operation refers to the selection of two individuals from the population,
followed by the exchange of randomly selected one or multiple chromosome positions between
their different chromosomes. This process aims to generate more superior individuals.

1 1 0 1 0 1

1 01 0 1 0 0 1

1 0
crossover

1 0 1 0

1 1 0 1 1 1 0 1 0 1

1 01 0 1 0

mutation

1 1 0 1 01

1 1 0 1 0 0

(a) (b)

Fig. 6. Mechanisms of crossover and mutation: cross (a); mutation (b)

Randomly select two antibodies x and y from the population as the antibodies to be crossed
and exchange parts of the antibody strings, performing a crossover operation between the two
selected antibodies, which can be described as:{

x ′ = (1 − r)x + r · y
y′ = (1 − r)y + r · x

, (11)

where x ′ and y′ are the crossover variables, r is a random variable, ranging from 0 to 1. It needs to
be mentioned that one selected antibody undergoes mutation at a fixed probability pm. Taking x ′

as an example, its mutation can be described as:

x ′′ =
{

x ′ + (b′ − x ′)pm r > 0.5
x ′ + (x ′ − a′)pm r ≤ 0.5 , (12)

where x ′′ is the mutation variable, a′ and b′ are the lower and upper bounds, respectively.
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3.2.2. Implementation of BP neural network optimized by IGA
Before estimating the SOC of lithium-ion batteries using a BP neural network, it is necessary

to first train the network and construct a neural network model that can be used for battery SOC
estimation. This process involves optimizing the BP neural network using the IGA. The training
process of the new BP neural network is mainly divided into eleven stages, and the details are
shown in Table 1, and the flowchart of algorithms implementation steps is shown in Fig. 7.

Table 1. BP neural network training process optimized based on IGA

Stages Operations Descriptions of the stages

1 Network
initialization

Initialize the weights of each neuron in the BP neural network, vki and
wj , as well as the threshold of the hidden layer and the threshold of
the output layer as a and b, respectively. In addition, the number of
neurons in the input layer is 4, the number of neurons in the hidden
layer (m) is 20, and the number of neurons in the output layer is 1.

2 Antigen
recognition

Perform antigen recognition on the weight factors vki , wj , and thresh-
olds a, b that need to be optimized in the BP neural network. Ad-
ditionally, initialize the IGA by setting the termination condition f0,
population size, maximum number of evolutions, crossover probability,
and mutation probability.

3 Population
initialization

Randomly generate a certain number of initial individuals to form the
initial population.

4 Fitness evaluation of
individuals:

Calculate the fitness value of each current individual, which represents
the correlation between the solution set and the objective function.

5 Termination criteria for
optimization algorithm

If the training requirements are met or the maximum number of evolu-
tion generations is reached, the loop is terminated. If the termination
conditions are not met, the next step is executed.

6 Repeated optimization
Crossover, mutation, and other operations are performed according
to the probabilities set for the initial network, and the population
information is updated.

7 Updating
population

The population reproduced through crossover and mutation operations
is taken as the current population, and Sage 4 is continued until the
termination conditions are met. The optimal solution set after searching
for network parameters is recorded, and new network weights vki , wj ,
and thresholds a, b are obtained.

8 Calculation of hidden
layer output

Using (2), the output of the hidden layer y1, y2, ..., ym is calculated
based on the input variables x1, x2, x3, x4 and the optimized connection
weights vki between the input layer and the hidden layer.

9 Calculation of output
layer

Using (1), the network output out is calculated based on the output of
the hidden layer y1, y2, ..., ym, the optimized connection weights wj

between the hidden layer and the output layer, and the threshold of the
output layer.

10 Estimation error
calculation of network

Using (4), based on the output result out and expected value d, calculate
the estimation error E .

11 Termination criteria for
network

Judge whether E satisfies the termination condition. If it is satisfied,
stop the algorithms. Otherwise, move to Stage 4.
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Fig. 7. Implementation steps of
training algorithms

The overall structure of the proposed IGA-based BP neural network is depicted in Fig. 8.

Training of IGA-
based BP network

Trained BP network

Training 
data

Measured 
data

Estimated SOC

Fig. 8. Overall structure of proposed IGA-based BP neural network

4. Experimental verifications

To verify that the proposed BP neural network optimized by the IGA can effectively estimate
the SOC of lithium-ion batteries, an experiment is conducted on a lithium-ion battery testing
platform. The hardware of the test bench is shown in Fig. 9. The parameters of the lithium-ion
battery are as follows. The rated capacity Qrated is 20 Ah, open-circuit voltage Ebat is 60 V, and
nominal internal resistance Rbat is 75 mΩ. Through a large number of tests, data for the training
and validation of the BP neural network are collected. In the experiment, the battery current is
controlled by adjusting the load resistance, and the voltage and current are measured by the voltage
sensor LV25-P and the current sensor ACS712, respectively, and recorded on a host computer. For
the sake of comparison, the SOC of the battery will also be measured and recorded by using the
BTS-2002 battery tester. The battery is subjected to discharge experiments at 0.1 C, 0.4 C, 1 C,
and 1.5 C under environmental temperatures of 15◦C, 25◦C, 35◦C, and 50◦C.
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Relay Fig. 9. Test bench used for verifying pro-
posed SOC estimation algorithms

4.1. Construction of BP neural networks

Utilizing data obtained from testing under different temperatures and currents, both traditional
BP neural networks and neural networks optimized with an IGA are trained using 10 000 samples.
Figure 10 depicts the training convergence process of the two neural networks. When the output
threshold is set to a = b = 0.03 (see Table 2), for both the traditional and the novel neural
networks, the mean square error falls below the desired target after 1 033 and 864 iterations
(decreasing by around 16.4%), respectively. This demonstrates that utilizing the IGA can achieve
rapid convergence of the network.
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Fig. 10. Training convergence process of
traditional and improved neural networks

Table 2. Parameters of BP neural networks

Parameters Values Parameters Values
Number of neurons for input later 4 Termination condition f0 3%
Number of neurons for hidden later m 20 Desired output d Tested
Number of neurons for output later 1 Threshold of hidden layer b 0.03
Threshold of hidden layer a 0.03 Weight factors vki and wj 0.65
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To further demonstrate the superiority of the novel neural network in terms of training speed,
the networks were trained using 30 000 and 50 000 data points, respectively. As shown in Table 3,
when the mean square error is less than 0.03, the traditional BP neural network required 2 344
iterations and 4 889 seconds, respectively, for training. Comparatively, the new neural network
required 1 840 iterations and 3 766 seconds, respectively, for training. These comparative results
indicate that both the number of iterations and the training time for the new BP neural network are
significantly reduced, demonstrating that the IGA accelerates the construction process of the BP
neural network. When the number of training data increases to 50 000, a similar trend is observed.

Table 3. Comparative training processes of traditional and proposed BP neural networks

Algorithms Number of
data Iterations Training

time (s)

Mean
square

error (p.u.)

Traditional BP network
10 000 1 033 1 885 0.029
30 000 2 344 4 889 0.029
50 000 4 765 8 453 0.03

Proposed BP network
10 000 864 1 320 0.027
30 000 1 840 3 766 0.027
50 000 3 522 6 866 0.028

4.2. SOC estimation results
By using the improved BP neural networks presented in Section 3, SOC estimation is carried

out on batteries under 1 C discharge experiments at a temperature of 25◦C, with the findings
detailed in Fig. 11. Figure 11(a) illustrates the correlation between the voltage and the SOC of the
battery, whereas Fig. 11(b) highlights the discrepancy between the estimated results and those
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obtained through the BTS-2002 battery tester. Initially, across the entire testing framework, it’s
notable that the refined neural network approach exhibits superior estimation precision. When
comparing with actual test outcomes, the peak estimation error registers at 1.65% when the
SOC reaches 100%. Besides, the average error throughout the test period is around 0.35%. The
improved BP neural network’s ability to closely match the SOC values verified by the BTS-2002
tester indicates its potential for real-world applications. It suggests that with further refinement and
calibration, such neural networks could become indispensable tools in the development of smart
battery management systems that enhance the performance, safety, and longevity of battery packs.

For the sake of comparison, Fig. 12 presents the SOC estimation results of the traditional BP
neural network. Figure 12 indicates that the traditional neural network also has high estimation
accuracy. Compared to the results measured by the BTS-2002 battery tester, the estimation error
is 1.96% when the SOC is at 100%, increasing by 18.8% compared to the proposed BP neural
network. When the battery is at other SOC values, the estimation error is also slightly higher than
that of the improved method, and the average value is about 0.68%. This demonstrates that the
estimation error of the improved neural network is slightly lower than that of the traditional neural
network, and its accuracy is improved, thereby enabling more accurate SOC estimation. This is
consistent with the results shown in Table 3.
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To further illustrate the accuracy of the new neural network, SOC estimation is performed on
batteries subjected to 0.1 C, 0.4 C, 1 C, and 1.5 C discharge experiments at temperature of 35◦C.
The maximum SOC estimation errors during the testing process are shown in Table 4. For the
traditional BP network, the estimation accuracy is 97.4% when the discharge current is 1 C, while
it is 98.15% for the proposed BP network. This represents that the accuracy of the new strategy
is around 1% higher than the traditional method. Besides, it can be seen that under any working
condition, the estimation accuracy of the new neural network is slightly higher than that of the
traditional neural network, which proves the effectiveness of the newmethod. Overall, the improved
network’s enhanced accuracy underlines the significance of integrating advanced neural network
techniques for precise SOC estimations. This methodology not only reduces the training time but
also minimizes SOC estimation errors, which represents the superiority of the proposed strategy.
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Table 4. Maximum SOC estimation errors of traditional and improved BP neural networks

Algorithms

Current
0.1 C 0.4 C 1 C 1.5 C

Traditional BP network 4.6% 4.15% 2.6% 4.8%

Proposed BP network 3.5% 3.6% 1.85% 3.9%

5. Limitation and discussion

While the proposed method for optimizing BP neural networks using an immune genetic IGA
shows significant improvements in the accuracy and efficiency of SOC estimation for lithium-ion
batteries, several limitations and challenges need to be acknowledged.

The effectiveness of the proposed method heavily depends on the quality and quantity of the
training data. In real-world applications, obtaining a comprehensive dataset that encompasses
all possible operating conditions, such as varying temperatures, currents, and battery aging, can
be challenging. Insufficient or unrepresentative data can lead to inaccuracies in SOC estimation.
Although the IGA-optimized BP neural network converges faster than traditional BP neural
networks, the computational complexity of implementing IGAs is still relatively high. This can be
a limiting factor in scenarios where real-time SOC estimation is required, particularly in embedded
systems with limited computational resources.

Furthermore, the study focuses specifically on lithium-ion batteries used in large-scale energy
storage systems. Different battery chemistries (e.g., lead-acid, nickel-metal hydride) exhibit
different behaviors and characteristics, meaning the proposed model might require significant
adjustments or re-training to generalize across different battery types. Additionally, factors such as
extreme environmental conditions, mechanical stress, and battery manufacturing inconsistencies
can affect battery performance. While the proposed model accounts for temperature, current, and
voltage, other environmental and operational factors could also impact SOC estimation accuracy.

Integrating the proposed method into existing battery management systems (BMS) on a large
scale could be complex. Ensuring compatibility with various BMS architectures and protocols, as
well as maintaining system stability and reliability, poses additional challenges. There is room
for further optimization of the IGA parameters to balance convergence speed and computational
efficiency. Advanced techniques such as adaptive genetic algorithms or hybrid methods combining
IGAs with other optimization algorithms could be explored to enhance performance.

Future work should focus on the real-time implementation of the proposed method. Developing
lightweight, efficient versions of the IGA-optimized BP neural network that can be deployed on
embedded systems will be crucial for practical applications in BMS. To ensure the robustness
of the proposed method, extensive cross-validation using diverse datasets is essential. This
includes testing the model under various operating conditions and stress scenarios to evaluate its
generalization capability and reliability.

The accurate SOC estimation provided by the proposed method can be integrated with
predictive maintenance strategies. By monitoring battery health indicators and predicting potential
failures, the method can contribute to extending battery life and reducing maintenance costs.
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The adoption of advanced SOC estimation methods can have significant policy and economic
implications. Accurate SOC estimation improves the efficiency and reliability of energy storage
systems, supporting the broader integration of renewable energy sources into the grid. This, in turn,
can contribute to achieving energy sustainability goals and reducing dependence on fossil fuels.

In conclusion, while the proposed IGA-optimized BP neural network method offers promising
improvements in SOC estimation for lithium-ion batteries, addressing the identified limitations
through further research and development will be critical for its successful real-world deployment.

6. Conclusions

This paper introduces a pioneering approach for estimating the SOC of lithium-ion batteries
in energy storage power stations, utilizing an improved BP neural network optimized by an IGA.
The research meticulously analyzes the effects of temperature, current, and voltage on the SOC,
establishing a solid foundation for the neural network’s input parameters. By employing the
IGA to refine the BP neural network, the study overcomes common challenges associated with
traditional BP networks, including slow convergence and complex parameterization, thereby
improving the accuracy of SOC estimations and, consequently, the reliability of energy storage
systems. The contributions of this paper are twofold. First, it reveals the mechanisms by which
temperature, current, and voltage impact SOC, offering valuable insights for future research in
battery management. Second, the design and implementation of an improved BP neural network
optimized by the IGA represent a notable advancement in SOC estimation techniques. This approach
not only addresses the limitations of traditional neural networks but also establishes a new standard
for accuracy and operational efficiency in SOC estimation. Experimental results prove that the
accuracy of the new method reaches 98.15%, which is about 1% higher than the traditional method.
Overall, the proposed IGA-based BP network has enhanced accuracy and faster convergence in
estimating the SOC of energy storage power stations, thereby being useful in practice.

Future work should focus on developing lightweight, efficient versions of the IGA-optimized
BP neural network for real-time implementation in embedded systems. This includes extensive
cross-validation using diverse datasets to ensure the model’s robustness and generalization across
various operating conditions. Additionally, integrating SOC estimation with predictive maintenance
strategies can help extend battery life and reduce maintenance costs.
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