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Highlights 
• Projected climate change scenarios reduced the future crop growing suitability in the EKSRB. 
• Greater yield loss of maize and soybean was recorded by the end of the century under RCP8.5. 
• Growing soybean over maize would be beneficial under future climate in the EKSRB.  

Abstract: Climate change significantly threatens food security and the agricultural economy, particularly under rainfed 
conditions. This study uses the Decision Support System for Agrotechnology Transfer (DSSAT) crop simulation model 
to evaluate the future suitability of growing maize and soybean in the Eastern Kansas River Basin (EKSRB) under two 
projected climate scenarios (RCP 4.5 and RCP 8.5) from 2006 to 2099. By comparing the baseline (1990–2019) and 
future climates, the yield gap percentage method is employed to quantify the discrepancy between actual and potential 
yields. This innovative approach integrates spatial soil variability and advanced climate projections from 18 global 
climate model (GCMs), enhancing the accuracy of crop suitability assessments. Results indicate yield losses ranging 
from 23% to 57% for maize and 20% to 36% for soybean, with maize experiencing a greater yield gap than soybean, 
highlighting soybean’s resilience under future climatic conditions. The study identifies critical regions within the 
EKSRB where adaptive strategies are most needed and provides insights for policymakers to develop targeted 
agricultural strategies, facilitate policy planning, and select mitigation strategies for vulnerable areas. This research 
underscores the necessity for adaptive agricultural practices to ensure food security and sustainability, offering a robust 
framework that can be adapted to similar regions globally. 

Keywords: agriculture, climate change, Decision Support System for Agrotechnology Transfer model, Representative 
Concentration Pathways, yield gap  
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INTRODUCTION 

Climate change is a global phenomenon marked by increases in 
the frequency and intensity of extreme events, considerably 
impacting agricultural production and introducing uncertainty in 
global food security (Joos et al., 2001; Steiner et al., 2018). Climate 
change strongly impacts agriculture, particularly through weather 
phenomena such as changes in temperature, precipitation levels, 
and soil moisture availability (Goyal, 2004). Maize and soybeans 
are the most important crops for U.S. agriculture, with their 
yields being highly sensitive to environmental conditions (Wang 
et al., 2020). This sensitivity necessitates irrigated agriculture to 
minimise yield loss, as 60–80% of these crops when grown under 
rainfed conditions, are vulnerable to unfavourable climatic events 
(Zhou et al., 2021). The Intergovernmental Panel on Climate 
Change (IPCC) sixth assessment report (AR6) provides evidence 
that global temperatures are predicted to rise by 3.6–5.7°C by the 
end of the century, compared to pre-industrial levels (Pörtner 
et al., 2022). 

The elevated atmospheric carbon dioxide (CO2) concentra-
tion, increased temperature, and changing precipitation patterns 
during the growing season directly affect the rainfed crop 
production system (Nan et al., 2016; Qin et al., 2023; Onyekwelu 
and Sharda, 2024b). The climatic variation observed at regional 
scales (Satta et al., 2017) and the sensitivity of rainfed crop 
production to climate (Yang et al., 2017) make it crucial to 
understand the present and future effects of climate change on 
U.S. maize and soybean production. 

Maize and soybean yields have been subjected to heat stress, 
and the detrimental impact of high temperatures on yields has 
been demonstrated in many studies (Prasad, Staggenborg and 
Ristic, 2008; Schlenker and Roberts, 2009; Lobell and Asseng, 
2017). The productivity of these crops has dropped due to the 
rising growing season temperatures in the U.S. (Ainsworth and 
Ort, 2010; Kucharik and Serbin, 2008; Onyekwelu and Sharda, 
2024b), indicating the sensitivity of maize and soybeans to 
a changing climate. The sensitivity of U.S. maize and soybean 
production to drought from 1958 to 2007 has been associated 
with a 13% yield loss due to extremely hot days during the 
growing season (Zipper, Qiu and Kucharik, 2016). 

Kansas is one of the largest producers of maize and soybean 
in the U.S. (Sassenrath et al., 2023) with the Eastern Kansas River 
Basin (EKSRB) being a vital agricultural region in the state due to 
its fertile soils, favourable climate, and abundant water resources, 
making it ideal for growing crops under rainfed conditions 
(McVay et al., 2006). An increasing number of heat waves and 
increasing heat wave severity have been observed in Kansas 
(Feddema et al., 2008), significantly impacting the rainfed crop 
production system. Therefore, it is important to determine the 
suitability of crops at a regional scale to understand how the 
cultivation of crops may change over time and to develop 
a region-specific agricultural strategy to ensure future food 
security. 

The Decision Support System for Agrotechnology Transfer 
(DSSAT) model is widely used in climate change studies to 
evaluate the impact of climate change on crop yields and food 
production (Jones et al., 2003; Hoogenboom et al., 2019). The 
DSSAT model simulates crop growth, development, and yield 
under varying environmental conditions, including changes in 
temperature, precipitation, and carbon dioxide concentrations 

(Thorp et al., 2008). The DSSAT sub-models – Cropping System 
Model (CSM)-CERES-Maize (Jones and Kiniry (eds.), 1986) and 
CROPGRO-Soybean (Wilkerson et al., 1983) have been success-
fully utilised in many studies for a variety of field conditions and 
management practices worldwide under different climate change 
scenarios (Bao et al., 2017; Liu et al., 2019; Richetti et al., 2019; 
Sen, 2023; Onyekwelu and Sharda, 2024b). Several of these 
studies have focused on the impact of high temperatures and 
elevated CO2 levels due to climate change on irrigated or rainfed 
maize and soybean production, indicating that using DSSAT to 
examine the impacts of future climate conditions on crop 
production is a well-accepted approach to understanding future 
agricultural sustainability. 

Crop suitability analysis involves assessing the suitability of 
growing different crops for a specific location or region under 
some environmental conditions. There is increasing recognition 
of the uncertainties in crop production and suitability under 
future climatic conditions (Biagini et al., 2014). The crop 
simulation models, such as Environmental Policy Integrated 
Climate (EPIC), Agricultural Production Systems Simulator 
(APSIM), have been used in addition to DSSAT to analyse crop 
suitability worldwide (Adejuwon, 2005). 

Recent studies (Estes et al., 2013; Eitzinger et al., 2017) using 
crop simulation models have shown that DSSAT often outper-
forms others, such as EPIC and APSIM, in projecting the 
suitability of maize and other crops in various regions. Estes et al. 
(2013) found DSSAT to provide the most accurate simulations of 
maize yields in the United States, while Eitzinger et al. (2017) 
reported DSSAT’s superior performance in capturing observed 
yield variability for maize in Europe. 

The ability to accurately predict crop suitability under 
present and future climates is an important tool that could help 
decide the right crop choice under climate transition to achieve 
sustainable crop production intensification. Conventional crop 
suitability assessments are usually based on yield gap analyses 
(Grassini et al., 2015), which compare the actual yield to its 
potential yield to assess the suitability of the crop growing 
conditions in response to climatic factors. The yield gap is 
a crucial idea in crop suitability studies that offers insightful 
information about the potential productivity of an area for 
a specific crop. The DSSAT model has been employed in several 
studies to study the climate change impacts on yield gaps under 
rainfed or irrigated field conditions (Southworth et al., 2000; 
Basak et al., 2010; Shin et al., 2020). These studies confirmed that 
DSSAT is a powerful tool for simulating crop growth and yield 
under different management scenarios and can help identify areas 
for potential yield improvements through yield gap analysis. Since 
most of the past studies for suitability analysis have been done at 
coarse resolutions/global scales (Metz, Rocchini and Neteler, 
2014; Croitoru et al., 2020), several gaps remain at local and 
regional scales, emphasising the need to conduct regional scale 
suitability analyses to understand the vulnerability associated with 
climate change at finer spatial scales and provide more site/ 
region-specific solutions. 

In this study, the DSSAT model was applied in the EKSRB 
with two specific objectives: (a) to assess the impact of future 
climate change on maize and soybean yields under two 
representative concentration pathways, RCP4.5 and RCP8.5 for 
near-century (2010–2039), mid-century (2040–2069), and end- 
century (2070–2099); and (b) provide a regional assessment of 
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maize and soybean growing suitability under baseline (1990– 
2019) and future (2010–2099) climate change scenarios by 
quantifying the yield gap. 

MATERIALS AND METHODS 

STUDY AREA 

The region of this study is the Eastern Kansas River Basin 
(EKSRB) – Figure 1, which is the watershed of the Kansas River 
between the confluence of the Smoky Hill and Republican rivers 
at Junction City and its terminus is at its confluence with the 
Missouri River (Onyekwelu and Sharda, 2024b). This region, 
between 39°N~40°N and 95°W~97°W, is a majority rainfed crop- 
growing area in Kansas, which consists of seventeen counties, 
with planted acreage of 1425 and 1659 km2 for maize and 
soybean, respectively (CSISS, 2019). The region mainly has 
a humid climate, with a long-term annual average precipitation of 
676 mm (1990–2019) and the maximum and minimum daily air 
temperatures during the growing season (May–October) of 21.2 
and 12.3°C, respectively. 

CROP MODEL INPUTS 

Climate data 

The daily observed weather data, such as daily maximum and 
minimum temperatures, precipitation, solar radiation, wind 
speed, and relative humidity for the baseline period of 1990– 
2019, with a spatial resolution of approximately 4 km, were 
obtained from the Gridded Surface Meteorological (gridMET) 
dataset (Abatzoglou and Brown, 2012). The Coupled Model 
Intercomparison Project Phase 5 (CMIP5) report stated that 
climate models are used to comprehend the past and quantify the 
future uncertainty in the climate system (Taylor, Stouffer and 
Meehl, 2012). CMIP5 Climate models are critical for assessing 

future climate scenarios and managing uncertainties in projec-
tions, which is particularly important for sectors like agriculture 
(Hawkins and Sutton, 2011). The CMIP5 was chosen for its 
proven effectiveness in climate impact assessments, as demon-
strated by studies like Kumar and Kuttippurath (2024), who 
successfully projected pest generations in California, and various 
crop modeling studies that have utilised CMIP5 GCMs (Stella 
et al., 2023; Yang, Yang and Wang, 2023; Martre et al., 2024; 
Dahri et al., 2024). 

Therefore, to extract the future climate data (2006–2099) 
from a suite of climate models, the Multivariate Adaptive 
Constructed Analogs (MACAv2) methodology was used to 
statistically downscale the output of 18 global circulation models 
(GCM) of CMIP5 from >200 km native resolution to 4 km 
(Abatzoglou and Brown, 2012). The MACAv2 is a statistical 
downscaling technique that combines historical observations with 
global climate model data to create high-resolution climate 
projections. It preserves the relationships between multiple 
climate variables and uses constructed analogs by selecting 
historically observed days that are similar to the model-projected 
days, ensuring an accurate representation of climate patterns. The 
baseline and future climate from each GCM were converted to 
DSSAT weather file format for the model to assess climate change 
impact on crop production in the EKSRB. Two representative 
concentration pathways (RCP4.5 and RCP8.5) were considered to 
assess the impacts of climate change on crop production in the 
EKSRB. For predicting future greenhouse gas concentrations with 
the specified radiative forcing pathways under various scenarios 
of social, economic, and technological growth, RCPs are 
frequently utilised (Taylor, Stouffer and Meehl, 2012). Radiative 
forcing under RCP4.5 is anticipated to rise to about 4.5 W∙m–2 by 
2100, whereas RCP8.5 predicts radiative forcing to be 8.5 W∙m–2 

by 2100. Finally, to compare the changes with the baseline study 
period (1990–2019); the future study period was divided into 
three time periods – near-century (2010–2039), mid-century 
(2040–2069), and end-century (2070–2099). 

Fig. 1. Location of Eastern Kansas River Basin (EKSRB) in Kansas (with Kansas highlighted in the U.S.) and land use and crop cover 
(LUCC) map of EKSRB showing the distribution of different crops grown in the basin; source: own elaboration based on: Cropland 
Data Layer (CSISS (2019)) 
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Soil and crop management data 

The DSSAT model requires detailed information on soil proper-
ties, including soil layer information – depth and thickness, 
texture, bulk density, saturated hydraulic conductivity, etc., and 
soil surface information: albedo, runoff curve number, soil 
fertility factor, and drainage coefficient (Jones et al., 2003). To 
account for the spatial soil variability impact in the EKSRB, the 
Gridded Soil Survey Geographic (gSSURGO) soil dataset (USDA 
NRCS, 2021) was used. The gSSURGO soil data has a spatial 
resolution of 30 m and has sampled soil profile properties up to 
200 cm in depth. The procedure used for creating DSSAT- 
compatible soil files is reported in Sen, Zambreski and Sharda 
(2023). 

The DSSAT crop management data, such as plant popula-
tion, row spacing, and fertiliser application, were collected 
(Tab. 1) from the Kansas State Research and Extension 
(Sassenrath, Lingenfelser and Lin, 2023). For the study area, the 
planting dates for maize and soybean were set to April 20th and 
May 5th, respectively. To streamline our modelling approach and 
isolate the impacts of climate change on crop growth and yield, 
the study employed fixed planting dates and standardised 
fertiliser applications, which is followed by other climate change 
studies (Kassie et al., 2016; Mubeen et al., 2020). This 
methodological simplification, while not capturing the full 
spectrum of agronomic variability, provided a consistent frame-
work for evaluating the influence of climatic variables. 

DATA PREPARATION FOR THE DSSAT MODEL RUN 

Python (Python 3.8, 2009), a high-level programming language, 
was used to convert historical and future climate and soil datasets 
to DSSAT input files format. For the baseline study period, the 
Python programming code was used to (a) prepare the weather 
(.WTH) and soil (.SOL) input files for the EKSRB, (b) run the 
DSSAT model to simulate yields by linking all files, and (c) obtain 
the output files of the model run (.OSU,. OOV, and warning. 
OUT) for data analysis. The same process was used in future 
climate scenario runs where the DSSAT model was run for each 
soil type of the region and for each of the 18 GCMs for simulating 
yield, and the ensemble mean yield of 18 GCMs for each soil type 
was used for further analyses (Fig. 2). 

CALIBRATION AND EVALUATION OF CROP MODELS 

The DSSAT-CSM CERES-Maize (Jones and Kiniry (eds.), 1986) 
and CROPGRO-Soybean (Wilkerson et al., 1983) models were 
calibrated for the study area. The calibration of the CERES-Maize 
model for this location was meticulously executed following the 
methodology described by Sen, Zambreski and Sharda (2023). 

This process ensured that the chosen maize cultivar (PIO 3489) 
was accurately represented in the model, leading to a high degree 
of performance accuracy in simulating growth and yield under 
various environmental conditions. 

The CROPGRO-Soybean model was calibrated system-
atically for soybeans following the approach reported by Battisti, 
Sentelhas and Boote (2017). In the CROPGRO-Soybean model, 
eighteen genetic coefficients determine phenology and yield 
estimates. Calibration aims to obtain reasonable estimates of these 
coefficients by sequentially comparing the simulated results with 
the observed data (Sharda et al., 2021). The 2020 yield trial dataset 
used for calibration was obtained from six counties in the region: 
Riley, Republic, Franklin, Shawnee, Saline, and Pottawatomie, 
made available by Kansas State Research and Extension 
(Sassenrath, Lingenfelser and Lin, 2023). The genetic coefficients 
were adjusted using the GENCALC program to initiate a range of 
cultivar coefficients (Hunt and Pararajasingham, 1993). The 
GENCALC uses genetic coefficients of the default cultivar in 
the DSSAT.CUL file and iteratively compares the observed to the 
simulated data. Since only yield data were available for model 
calibration, it is essential to note that the GENCALC.RUL file for 
the CROPGRO-Soybean model was conditioned to iterate 
for only yield (HWAM). Once a range of cultivar coefficients 
was obtained from the GENCALC output file, the genetic 
coefficients of the trial soybean cultivar were manually adjusted 
until reasonable estimates were achieved. More details can be 
found in Onyekwelu and Sharda (2024a). 

For model evaluation, 2021 variety trial datasets obtained 
for Riley, Franklin, Shawnee, and Pottawatomie counties in the 
region were used. Test (p-value) and goodness of fit (index of 
agreement, d-statistics (Willmott, 1982), normalise root mean 
square error (NRMSE)) (Araya et al., 2017) were used as 
indicators to assess model accuracy for the intended application. 

Table 1. Crop management recommended practices for the 
Eastern Kansas River Basin 

Crop 
Plant 

population 
(plant per m2) 

Row spacing 
(m) 

Fertiliser 
(urea) 

(kg∙ha–1) 

Fertiliser 
application 

Maize 7.6 0.51 170 broadcasted 

Soybean 37 0.76 60 broadcasted  

Source: own elaboration. 

Fig. 2. Flowchart showing yield simulation from the Decision Support 
System for Agrotechnology Transfer (DSSAT) model; gridMET = 
Gridded Surface Meteorological; GCM = Global Climate Model; 
gSSURGO = Gridded Soil Survey Geographic; KSRE = Kansas State 
Research and Extension, YGpercentage = yield gap percentage; source: own 
elaboration 
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The NRMSE is the root mean square error (RMSE) (Eq. 2) 
multiplied by 100 and divided by observed mean (Eq. 1). 

NRMSE ¼
RMSE

�O
100 ð1Þ

where: �O = observed mean. 

RMSE ¼
� si � oið Þ

2

n

 !0:5

ð2Þ

where: n = the number of observations, si = the predicted value, and 
oi = the measured observation; NRMSE values for model evalua-
tion, as described by Soler, Sentelhas and Hoogenboom (2007) are 
classified as 0–10% excellent, 10–20% – good, 20–30% fair, and 
>30% – poor. Similarly, d-statistic (Eq. (3)) values as 0.7 – poor, 
0.7–0.8 – moderate, 0.8–0.9 – good, and 0.9–1.0 – excellent. 

d ¼ 1 �

Pn
i¼1 Pi � Oið Þ

2

Pn
i¼1 P

0

i

�
�
�
� O

0

i

�
�
�
�

� �2
ð3Þ

where: Pi = the predicted value, Oi = the measured observation, 
jP

0

i ¼j jPi � Mj, jO
0

i ¼j jOi � Mj, M = the mean of the observed 
variable (yield). 

To enhance regional model calibration and evaluation 
accuracy and possibly reduce model uncertainty and to assess 
how well the model simulated the variability in the observed end- 
of-season yield, the coefficient of variation (CV) was also 
calculated. The CV match of simulated and observed data was 
checked alongside other test and fitness statistics. The closer the 
simulated CV is to the observed CV, the better and more 
confident the calibrated and evaluated regional model (Onye-
kwelu and Sharda, 2024a). 

SUITABILITY ANALYSIS 

To assess crop suitability in the EKSRB region, the yield gap 
percentage (YGpercentage) was calculated as shown in equation in 
Figure 2. 

YGpercentage is calculated as the percentage difference between 
the potential and actual yield and divided by the potential yield. 
Both yields were simulated by the DSSAT model where potential 
yield is the yield achievable with optimal water and nutrient levels, 
i.e the crop experiences no nitrogen or water stress. Potential and 
actual yield (i.e., rainfed yield considering water and nitrogen- 
limited conditions) was simulated for maize and soybean using 
DSSAT-CSM CERES-Maize and CROPGRO-Soybean models, 
respectively under baseline and future climate change scenarios. 

The national average yield gap percentage (NAYG) quan-
tifies the disparity between potential and actual crop yields at 
a national level, serving as a benchmark for evaluating 
agricultural productivity. In the present study, the classification 
of crop suitability in the EKSRB was based on the NAYG for 
maize and soybean. The NAYG values for rainfed maize (26%) 
and rainfed soybean (22%) (Wart van et al., 2013; Grassini et al., 
2015) were used as thresholds to determine suitability. Areas with 
yield gap percentages less than the national average were 
considered highly suitable for growing the respective crops, while 
those with greater percentages were deemed unsuitable. The study 
categorised suitability into highly suitable, moderately suitable, 
and unsuitable based on these NAYG thresholds. 

Highly suitable: highly suitable areas were identified where 
the yield gap percentage was below or equal to the NAYG. These 
areas exhibited climatic conditions conducive to supporting 
greater yields of maize and soybean. 

Moderately suitable: several studies showed that a 25% 
increase in the NAYG would be expected under extreme future 
climate change scenarios, and a proper adaptive plan could 
mitigate the negative impacts of climate change (Schmidhuber 
and Tubiello, 2007; Pörtner et al., 2022). Hence, this study 
classifies the moderately suitable area as having yield gap 
percentages greater than the NAYG but less than a 25% increase 
in NAYG. Therefore, the upper limit of yield gap percentage for 
the moderately suitable area of maize and soybean would be 32.5 
and 27.5%, respectively. 

Unsuitable: unsuitable areas were considered when the 
yield gap percentage was greater than 25% increase in NAYG. 

RESULTS AND DISCUSSION 

CALIBRATION AND EVALUATION OF DSSAT MODELS 

The genotype coefficients adjusted for an ASGROW maturity 
group III soybean cultivar during the CROPGRO-Soybean model 
calibration for the EKSRB region are presented in Table 2. 

The adjustment of 18 CROPGRO-Soybean coefficients 
(Tab. 2) related to phenology and crop development resulted in 
a close agreement between simulated and observed yield values. 
Model performance was highly satisfactory during calibration 
with NRSME = 8% (334 kg∙ha−1), p-value = 0.62, d-statistics = 0.88, 
and observed and simulated CV of 12% each. The mean observed 

Table 2. Genotype coefficients adjusted during CROPGRO- 
Soybean regional model calibration 

Coefficient Definition Calibrated 
value 

CSDL 
critical short-day length below which repro-
ductive development progresses with no day 
length effect (for short-day plants) (h) 

14.14 

PPSEN 
slope of the relative response of development 
to photoperiod with time (positive for short- 
day plants) (1∙h–1) 

0.340 

EM-FL time between plant emergence and flower 
appearance (R1) (photothermal days) 22.50 

FL-SH time between first flower and first pod (R3) 
(photothermal days) 9.00 

FL-SD time between first flower and first seed (R5) 
(photothermal days) 10.00 

SD-PM 
time between the first seed (R5) and 
physiological maturity (R7) (photothermal 
days) 

38.60 

FL-LF time between first flower (R1) and end of leaf 
expansion (photothermal days) 27.0 

LFMAX 
maximum leaf photosynthesis rate at 30 C, 
350 ppm CO2, and high light  
((mg CO2)∙m–2∙s–1) 

1.35 

SLAVR specific leaf area of cultivar under standard 
growth conditions (cm2∙g–1) 375.00 
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and simulated yield during calibration were 3,999 and 
4,158 kg∙ha−1, respectively. Yield overestimation in this study 
may have resulted from an underestimation of water stress. 
According to Kothari et al. (2019), the overestimation of dryland 
wheat yield in Texas High Plains using the CERES-Wheat model 
resulted from an underestimation of water stress. Model structure 
simplification could be another factor accounting for the 
overestimation. However, model performance based on yield 
calibration ranges from good to excellent following the recom-
mendations of Soler, Sentelhas and Hoogenboom (2007), thus 
confirming the fitness of our model for the intended use. 

During the model validation, observed and simulated yields 
matched closely (Fig. 3) as indicated by NRMSE = 11% 
(RMSE = 480 kg∙ha−1), p-value = 0.78, d-statistic = 0.75, and 
observed and simulated CV of 14% and 9%, respectively. 
Simulated and observed yield values during model validation 
were 4,308 and 4,432 kg∙ha−1, respectively. Overall, the variety of 
trial datasets employed in this study for model calibration and 
validation proved very satisfactory and should be recommended 
in the absence of detailed in-season data. 

IMPACTS OF CLIMATE CHANGE ON YIELD VARIABILITY  
IN THE EASTERN KANSAS RIVER BASIN 

The changes in the mean crop yields and inter-annual variability 
(CV) for maize and soybean were calculated for the two long- 
term climate change emission scenarios (RCP4.5 and RCP8.5) – 
Figure 4. Maize yield loss was observed under both RCPs with an 
increasing CV. Under the baseline study period (1990–2019), the 
mean yield for the entire EKSRB was 8978 kg∙ha−1 with a CV of 
35%. Under RCP4.5 and RCP8.5, the mean yield for near, mid, 

and end-century was 7,995 kg∙ha−1 (CV = 36%), 6,532 kg∙ha−1 

(CV = 39%), 5,092 kg∙ha−1 (CV = 37%), and 6,874 kg∙ha−1 (37%), 
5,665 kg∙ha−1 (37%), 3,834 kg∙ha−1 (36%), respectively (Fig. 4a). 
Similarly, under the baseline study period for soybeans, the mean 
yield was 3,712 kg∙ha−1 with a CV of 32%. Unlike maize, soybean 
yield under RCP4.5 (near-century) was 3,917 kg∙ha−1 (CV = 34%), 
6% greater than the baseline yield. This increase can be attributed 
to soybean’s resilience to high temperatures and elevated CO2 

levels, which are conditions expected under RCP4.5 near-century 
scenarios. However, under RCP4.5, the projected mean yield for 
mid-century and end-century was 3,248 kg∙ha−1 (CV = 38%) and 
2,504 kg∙ha−1 (34%), respectively (Fig. 4b).  

The projected soybean yield declined under RCP8.5; the 
mean yield for the near, mid, and end centuries was 3,002 kg∙ha−1, 
2,044 kg∙ha−1, and 1,831 kg∙ha−1, with a CV of 35%, 36%, and 
34%, respectively. This decline under RCP8.5 aligns with findings 
by Jin et al. (2018), who noted that while elevated CO2 enhances 
soybean growth, this benefit is diminished by increased drought 
stress. Projections indicate that rising drought frequency in the 
U.S. Midwest will significantly undermine these positive effects by 
2050. The results showed that changes in average climate 
conditions cause alterations in crop yield levels and variability. 
This study strongly reinforces the conclusions drawn by Sen, 
Zambreski and Sharda (2023), which highlighted a concerning 
trend of rising mean air temperatures and declining precipitation 
levels in northeastern Kansas. These trends, particularly pro-
nounced towards the end of the century under RCP4.5 and RCP8.5 

Coefficient Definition Calibrated 
value 

SIZLF maximum size of the full leaf (three leaflets) 
(cm2) 180.00 

XFRT maximum fraction of daily growth that is 
partitioned to seed + shell 1.00 

WTPSD maximum weight per seed (g) 0.195 

SFDUR 
seed filling duration for pod cohort at 
standard growth conditions (photothermal 
days) 

29.90 

SDPDV average seed per pod under standard growing 
conditions (pcs.∙pod–1) 2.20 

PODUR 
time required for cultivar to reach final pod 
load under optimal conditions (photothermal 
days) 

13.00 

THRSH 

threshing percentage; the maximum ratio of 
(seed:(seed + shell)) at maturity; causes seeds 
to stop growing as their dry weight increases 
until shells are filled in a cohort 

79.00 

SDPRO fraction protein in seeds expressed in gram of 
protein per gram of seed 0.405 

SDLIP fraction oil in seeds expressed in gram of oil 
per gram of seed 0.205  

Source: own study. 

Fig. 3. Decision Support System for Agrotechnology Transfer CROP-
GRO-Soybean model for selected counties in Eastern Kansas River Basin: 
a) calibration – 2020 experiment, b) validation – 2021 experiment; source: 
own study 

cont. Tab. 2 
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scenarios, significantly and negatively impacted maize yields in the 
region.  Several studies found that the sensitivity of growing crops 
under future climate change scenarios reduced the maize and 
soybean yields in the Midwestern U.S. (Cai, Wang and Laurent, 
2009; Lobell and Asseng, 2017; Zhou et al., 2021) due to increased 
CO2 concentration induced heat extremes, and the changing 
precipitation patterns. Greater maize yield loss was observed as 
compared to soybean in the study area under both RCP scenarios, 
which could be attributed to the fact that maize production is 
more sensitive to extremely high temperatures than soybean due 
to the growth behaviour (Deryng et al., 2014; Mera, Lizana and 
Calderini, 2015; Petersen, 2019). Those studies found increased 
inter-annual yield variability under future climate change 
scenarios due to climatic variability, which supported this study’s 
outcome of increased maize and soybean yield loss along with 
increased inter-annual variability in yield in the EKSRB region. 

CONSEQUENCES OF CLIMATE CHANGE ON THE COUNTY 
LEVEL MAIZE AND SOYBEAN YIELDS 

The results of change in yield, expressed as percent difference for 
the seventeen counties of EKSRB calculated by comparing the 
future projected maize and soybean yields to the baseline yields, 
are shown in Figure 5. 

The maize yield loss under RCP4.5 and RCP8.5 in the near- 
century, mid-century, and end-century ranged between 4–11%, 
11–22%, and 23–34%, and 12–20%, 22–38%, and 36–57%, 
respectively. Soybean yield increased under RCP4.5 in the near- 

century by 6%, whereas in the mid and end-century, the yield loss 
ranged from 11–22% and 20–25%, respectively. Under RCP8.5, in 
the near-century, mid-century, and end-century, the soybean 
yield loss was recorded as 3–8%, 16–22%, and 24–36%, 
respectively. The three counties of the northeastern part of 
EKSRB (Atchison, Brown, and Nemaha) exhibited less yield loss 
than other counties in the study region under all climate change 
scenarios. On the other hand, five counties of the southwestern 
part of EKSRB, such as Geary, Wabaunsee, Riley, Pottawatomie, 
and Shawnee counties, were considered hot spots of greater yield 
loss under all climate change scenarios. 

It must be noted that the maize yield loss was greater than 
soybean under all climate change scenarios explored. This study’s 
findings are similar to those of some of the other studies that have 
focused on the climate change impact on maize and soybean 
yields (Kucharik and Serbin, 2008; Deryng et al., 2014; McGrath 
et al., 2015). Since maize is more sensitive to water and nutrients 
to support its growth, particularly during the reproductive stages; 
therefore, the shortage of precipitation and extremely high 
temperatures could cause a greater reduction in maize yields 
than soybean (Wang et al., 2020). 

YIELD GAP TREND UNDER CHANGING CLIMATE 

The long-term yield gap analysis for maize and soybean under 
baseline and future climate change scenarios (RCP4.5 and 
RCP8.5) was conducted, and an increasing yield gap trend was 
observed in both crops (Fig. 6). 

Fig. 4. Comparison of two crops yield variation under present and future climate change scenarios under RCP4.5 and RCP8.5: 
a) maize, b) soybean; study periods: baseline = 1990–2019, near-century = 2010–2039, mid-century = 2040–2069, and end- 
century = 2070–2099; the coloured boxes indicate the interquartile range of simulated yields, while the whiskers indicate the 95% 
confidence limit; horizontal dashed lines show the average yield in the Eastern Kansas River Basin under the baseline study 
period; source: own study 
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Fig. 5. Projected yield change (a), b) and c) for maize and d), e) and f) for soybean) for seventeen counties of the Eastern Kansas River Basin under 
RCP4.5 and RCP8.5 compared to the baseline study period; 1 = Atchison, 2 = Brown, 3 = Nemaha, 4 = Douglas, 5 = Geary, 6 = Jackson, 7 = Jefferson, 
8 = Johnson, 9 = Leavenworth, 10 = Marshall, 11 = Morris, 12 = Osage, 13 = Pottawatomie, 14 = Riley, 15 = Shawnee, 16 = Wabaunsee, and 
17 = Wyandotte; source: own study 

Fig. 6. Temporal evaluation of average yield gap percentage trend for maize and soybean in the Eastern Kansas River Basin under climate change 
scenarios (RCP4.5 and RCP8.5); source: own study 
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In particular, a greater yield gap percentage trend was 
observed under RCP8.5 as compared to RCP4.5. During the 
baseline period, the highest yield gap for maize was 30%, while for 
the future projection under RCP4.5 and RCP8.5, it was 43 and 
52%, respectively, by the end of the century. Similarly, the highest 
yield gap in soybean was observed at 27% under the baseline 
study period; however, under RCP4.5 and RCP8.5 scenarios, the 
yield gap increased to 29 and 36%, respectively. 

The increase in yield gap under future climate change 
scenarios indicated several factors that limited crop growth and 
reduced yields, including changes in temperature, rainfall patterns, 
extreme weather events, soil moisture availability, and pest and 
disease pressures (Challinor et al., 2014; Lobell and Asseng, 2017). 
Since the study was conducted under rainfed conditions, the 
greater greenhouse gas emissions scenario under RCP8.5 leads to 
more severe climate change impacts, like high-temperature days, 
and exacerbates the factors that contribute to the yield gap, 
resulting in a greater increase in the yield gap compared to RCP4.5. 

CROP AREA SUITABILITY FOR MAIZE  
AND SOYBEAN UNDER FUTURE CLIMATE 

The shifting pattern of the areas suitable for growing maize under 
climate change scenarios in the EKSRB is given in Figure 7. 

Similarly, under the RCP8.5, near-century, the area suitable 
for growing maize was mainly concentrated in the northeastern 

EKSRB, and the suitable area decreased in the near-century, mid- 
century, and end-century to 69, 39, and 10%, respectively, of the 
original maize planted acreage of the EKSRB. The comparison 
between the RCP scenarios showed a lesser maize-suitable 
growing area with a greater yield gap percentage under RCP8.5 
as compared to RCP4.5 scenarios. 

In the case of soybean, the suitable area under the baseline 
study period was 91% (Fig. 8). Most counties were found suitable 
for growing soybean except for three southwest counties 
(Wabaunsee, Geary, and Riley). 

The soybean-suitable growing area under RCP4.5 in the 
near, mid, and end centuries was 92, 82, and 60% of the original 
soybean planted acreage of the EKSRB. Similarly, under RCP8.5, 
the suitable soybean-growing area was concentrated on the 
northeast side of the EKSRB and was found to be 58%, 51%, and 
38% in the near, mid, and end centuries, respectively. 

Several studies have shown a significant decline in crop 
suitability recorded at the end of the century under RCP8.5 
scenarios due to abrupt climate change issues (Chhogyel, Kumar 
and Bajgai, 2020; Lyon et al., 2022). A study conducted by 
Rosenzweig et al. (2013) to determine the suitability of major 
crops on a global scale showed that the basic patterns of rainfed 
crops depend on climatic conditions, regional temperatures, 
precipitation patterns, atmospheric carbon dioxide concentra-
tions (CO2), and latitudes. This is similar to our study, which 
found that greater warming and less precipitation under future 

Fig. 7. Area suitable for growing maize in the Eastern Kansas River Basin under baseline (1990–2019), near-century (2010–2039), 
mid-century (2040–2069), and end-century (2070–2099) under the two representative concentration pathway scenarios (RCP4.5 and 
RCP8.5); source: own study 
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climate change scenarios for a rainfed agricultural system resulted 
in fewer suitable areas for growing maize and soybeans. The 
outcome from two climate change scenarios showed that fewer 
suitable areas existed for soybeans at the end of the century under 
the RCP4.5 and RCP8.5 compared to the baseline study period. 
However, based on the overall suitability analysis of the two 
crops, it can be concluded that relatively more areas would be 
suitable for growing soybean than maize in the EKSRB under 
future climate scenarios studied. 

CONCLUSIONS 

This study calibrated and validated Decision Support System for 
Agrotechnology Transfer (DSSAT) CERES-Maize and CROP-
GRO-Soybean models in seventeen rainfed maize-producing 
counties in the Eastern Kansas River Basin (EKSRB). The 
seasonal analysis feature of DSSAT was used to simulate maize 
and soybean yields for the 30-year baseline study period and for 
future climate scenarios using forecasted climate from 18 GCMs 
and under two CO2 emission scenarios, RCP4.5 and RCP8.5. The 
suitability of growing maize and soybean in the EKSRB under 
future climate change scenarios was assessed by determining the 
yield gap percentage using DSSAT simulated historical and future 
yields. Key findings indicate substantial yield losses for both 
maize and soybean, particularly by the end of the century under 

RCP8.5, with maize showing a higher yield gap and greater 
sensitivity to climate changes. The suitability analysis revealed 
a consistent shift in crop growing areas, with soybeans 
demonstrating higher suitability percentages, suggesting it is 
a more resilient crop choice. Regional variability in yield losses 
underscores the need for region-specific adaptation strategies. 

Policymakers can use these insights to develop targeted 
agricultural strategies, transitioning to more climate-resilient 
crops like soybean, and help to facilitate agricultural policy 
planning and the selection of mitigation strategies for vulnerable 
regions. Future research should enhance model calibration with 
detailed in-season data, explore drought-resistant varieties, 
diverse irrigation and nutrient management practices, and 
integrate socio-economic variables to develop holistic approaches 
to agricultural planning. This study underscores the urgent need 
for adaptive agricultural practices to enhance food security and 
sustainability in the EKSRB and similar regions. 
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