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Research on image preprocessing algorithm based  
on mixed denoising and texture weakening of ore images

Introduction

Image preprocessing is a key step in the image processing process, in computer vision 
tasks such as image segmentation, target detection, image restoration, and super-resolution 
reconstruction, image preprocessing is used to realize the improvement of image quality, 
processing efficiency, and data enhancement (Fan et al. 2022). In the actual mining produc-
tion process, due to the impact of the site environment and mechanical equipment, the image 
acquisition and transmission caused by a variety of mixed noise makes the visual quality 
of the image worse, reducing the performance of the subsequent image recognition, im-
age segmentation, target detection and other tasks processing process (Liu 2021), seriously  
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affecting the accuracy of the image processing of advanced visual tasks, so denoising and 
enhancement of the image is often used as a pre-processing step in some image processing 
tasks. Therefore, image denoising and enhancement are often used as a preprocessing step 
in some image-processing tasks. Realising noise removal while preserving the image texture 
and edge structure is the key and difficulty of the image denoising problem (Guo 2024), so 
it is of great significance to perform fast and efficient image restoration on noisy images.

Traditional image denoising methods such as median filtering (Maheswari and Radha 
2010), mean filtering (Uğur 2019) non-local mean filtering (Zhang 2022) and other spatial 
domain denoising algorithms, and Fourier transform (Yan and Li 2023), wavelet transform 
filtering (lei et al. 2019), BM3D filtering (Dabov et al. 2007) and other transform domain 
denoising algorithms are mainly from the perspective of Bayesian algorithmic rules, and the 
use of the a priori information of the input image to achieve denoising purposes. Although 
they have achieved results to a certain extent, they may be limited in terms of algorithm 
optimisation to seek the optimal solution for image denoising and practical application sce-
narios.

In recent years, denoising algorithms based on convolutional neural networks (CNNs) 
have achieved significant visual denoising effects due to their ability to learn common a pri-
ori information about images by acquiring a large number of clear and noisy images to train 
the network model and reconstruct the noisy images.

Zhang et al. (2017) proposed a DnCNN network model to achieve multi-task noise re-
moval by optimising the network structure and using batch normalisation and residual learn-
ing strategies for the problem of effective removal of specific noise. However, due to the 
limited sensory field of the algorithm, it cannot remove noise effectively, resulting in poor 
visualisation. Jingwen He et al. (2019) proposed the ADAFM denoising algorithm, which 
utilises fractional order differentiation and fuzzy mean filtering to capture the long-range 
dependencies in the image, better preserving the image details and effectively suppressing 
the noise, with a better denoising effect. Shi Guo et al. (2019) used the idea of residual learn-
ing and blind denoising to propose a flexible denoising algorithm, CBDNet, which learns 
the noise distribution and denoising pattern of an image by learning the difference between 
noisy and noise-free images through cross-layer connections to achieve efficient denoising 
of common noises, such as Gaussian noises, but the model’s generalisation is weak and is not 
suitable for removing mixed and nonlinear noises. To improve the resolution of the denoised 
image and capture the detailed information of different scales in the image to improve the 
denoising effect, Yiyun Zhao et al. (2019) constructed a PRIDNet network using a pyramid 
structure adaptive mechanism to carry out feature extraction and integrate the features at 
different levels to capture the multi-scale information of the image at different levels, to im-
prove the robustness and accuracy of the denoising model, and to realize the efficient denois-
ing for real images. However, the processing ability for complex noise is limited, resulting in 
the blurring of some structures and details of the image. Yuzhi Wang et al. (2020) proposed 
a PMRID denoising model by combining residual learning and multiscale residual fusion 
strategy, which splits the input image into multiple overlapping image blocks, and performs 
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multiscale decomposition of each image block to capture the detail information of different 
scales in the image, and thus reconstructs the entire image after denoising. The model adopts 
a more complex network structure and inference algorithm, the parameter adjustment re-
quires a lot of experiments and tuning, and the processing efficiency of the model denoising 
is not high. Zongsheng Yue et al. (2020) proposed a VDNet denoising model combining var-
iational inference and CNN, which removes noise from an image by approximating the true 
noise-free image distribution and effectively removes the image noise by modeling the noise 
distribution and maximising the variational lower bound to preserve the detail information 
in the image.

In summary, it can be seen that the image-denoising algorithm based on the convolution-
al neural network can effectively remove the noise of a specific scene, but due to the locally 
limited receptive field of CNN, it cannot effectively capture the long-distance dependency 
between pixels in the image, which is not conducive to reconstructing the overall structure 
of the image. In addition, the CNN network model fails to achieve a good balance between 
the computational efficiency of up- and down-sampling and the detailed information of the 
image, which can easily lead to distortion of the image and cause edge blurring and texture 
loss.

In this paper, based on the model structure of U-Net (Ronneberger et al. 2015), the Swin 
Transformer U-Net network denoising model is constructed to remove the mixed noise. The 
U-Net residual connection and the self-attention mechanism in the Swin Transformer mod-
ule (Fan et al. 2022) are used to move the window for feature extraction, to establish the 
information exchange and dependence between pixels between different windows, and to 
realize the feature fusion between different layers. The extracted feature module is input  
to the dual up-sampling module for image resolution reconstruction, which recovers the 
structure, texture, and edge information of the image and enhances the detail information of 
the image to improve the denoising performance of the network. Aiming at the complexity 
of the ore surface texture and the blurring of some edges of the hybrid denoising image, the 
ore image is processed with granular ore surface texture weakening and edge enhancement 
to improve the effect of the subsequent ore image segmentation.

1. Hybrid denoising methods

In the process of collecting ore images in the field, due to the complex field environment, 
poor lighting conditions, mechanical equipment operation of the violent vibration and sound 
interference, electronic equipment generated by the electronic noise and thermal noise in 
the environment caused by shot noise, Gaussian noise, pepper noise and image blurring and 
other composite situations. Existing denoising algorithms for a single noise have achieved 
very good results, but for the above multiple noise composite situation, the need for denois-
ing algorithms in the elimination of noise and retain the image details of the trade-offs be-
tween the composite noise as far as possible to eliminate the impact of the noise compound,  
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and at the same time to prevent the original image over-filtering, to avoid the decline in the 
quality of the ore image or loss of feature information.

Figure 1 shows the overall structure of the ore image denoising SUNet network used in 
this paper, through the inter-module coding-decoding structure for the basic architecture of 
the network, the coding part of the input noisy image feature extraction, the decoding part 
of the reconstruction of the image to recover the image, and the use of residual jump con-
nection splicing the feature information extracted by the coding part, which is more helpful 
for the decoding part of the combination of shallow pixel-level feature information to retain 
the detail information of the image. The network is mainly composed of three parts: shallow 
feature extraction, U-Net feature extraction and image reconstruction.

The input noisy image is first passed through the shallow feature extraction part of 
the 3×3 feature extraction convolutional layer Extracting low-resolution information such 
as color and texture, this feature extraction process can be expressed as shown in Equa-
tion (1).

	 Fshallow = MSFE(Y)� (1)

where C is the number of channels of the shallow feature extraction module, which is set 
to 96 in the network structure. The extracted shallow features are transmitted to the UNet 
feature extraction module Extract advanced and multi-scale deep feature information .

Swin Transformer 
block

Swin 
Transformer 

block

Swin Transformer 
block

Feature Map 3×3conv Swin Transformer 
block Patch merging Dual up-sample Skip Connection

 
Fig. 1. Structure of SUNet denoising network

Rys. 1. Struktura sieci odszumiającej SUNet
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	 Fdeep = MUFE(Fshallow)� (2)

Where is the UNet feature extraction structure of Swin Transformer Block (STB) replac-
ing the conventional convolutional layer. Finally, the feature map is double up-sampled and 
the convolutional layer is extracted by 3×3 features. The denoised image is reconstructed 
from the depth feature information.

	 Ŷ = MR(Fdeep)� (3)

1.1. U-Net feature extraction module

U-Net feature extraction module is made by Swin Transformer Block to replace the tra-
ditional convolutional layer to extract deeper information of the image, where the STB mod-
ule consists of eight STL layers in series, and every two STL layers are a group as shown 
in Figures 2 and 3. One STL layer is the Window Multi-head Self-Attention Mechanism 
(W-MSA), which divides the feature map into multiple non-intersecting regions in the win-
dow during the image down-sampling process. Compared with Vision Transformer’s direct 
self-attention processing of the entire input feature map, it can effectively reduce the amount 
of computation while retaining the characteristics of convolution when dealing with the in-
put shallow feature map. The other STL layer is the Window Transformer Multiple Attention 
Mechanism (SW-MSA), since the W-SMA module only performs self-attention computation 
within the divided window, and cannot communicate and transfer feature information be-
tween windows, the SW-MSA module is introduced to realize the window offset, and the 
corresponding query, key, and value are generated within the new window, and the resulting 
query, key, and value for each feature within the offset window is generated. The SW-MSA 
module is introduced to realize window shifting and generate the corresponding query, key, 
and value within the new window, so that the self-attention calculation is performed on each 
pixel within the shifted window, and the long-distance information exchange between mul-
tiple different windows is realised.

H×W×C H×W×C

...

STL

Fig. 2. Swin Transformer Block (STB)

Rys. 2. Blok transformatora STB
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The feature information fL–1 from the shallow feature extraction module is input into the 
first layer of the structure in the STL module, Layer Normalization regularisation operation 
is performed, and then Window Multiple Self-Attention computation is carried out, and the 
feature L is obtained by summing the features fL–1 and the output of the computation at 
the element level through the residual connection.

	 f̂ L = W – MSA(LN( fL–1)) + fL–1� (4)

The feature L is continued to the regularisation operation, and the new feature fL 
is obtained by adding the residual network feature L through the fully connected layer  
MLP.

	 fL = MLP(LN( f̂ L)) + f̂ L� (5)

Similar to the above steps, the feature fL is transmitted to the second layer STL structure, 
but instead of computing the whole feature map of the input, the input feature map is divided 
into multiple small windows in the self-attention operation (SW-MSA) to obtain the feature 
f̂ L+1 within each small window. This establishes the linkage of the local information of 

the  feature map among different windows, and at the same time improves the efficiency 
of the self-attention computation.

	 f̂ L+1 = SW – MSA(LN( fL)) + fL� (6)

Layer norm

Window 
MSa

Layer norm

MLP

Layer norm

Shift-Window 
MSa

Layer norm

MLP

1Lf 

Lf

L̂f 1L̂f 

1Lf 

 
Fig. 3. Swin Transformer Layer (STL)

Rys. 3. Warstwa transformatora typu STL
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Finally, the features are again subjected to regularisation and feed-forward neural net-
work operations, and are summed with the input f̂ L+1 feature element level to obtain the 
new feature f̂ L+1.

	 fL+1 = MLP(LN( f̂ L+1)) + fL+1� (7)

The whole process is divided into four steps: regularisation, self-attention, regularisa-
tion, and fully-connected layer, which is carried out on a small window of the feature map by 
shifting operations and has direct references to the original features at each step by residual 
connections to improve the feature extraction and learning ability of the model.

1.2. Image reconstruction

Feature maps of different sizes of the input image are extracted through the U-Net fea-
ture extraction network, and the size of the feature maps needs to be further adjusted. In the 
down-sampling Swin Transformer Block process, firstly, the pixel-level image features are 
divided into multiple non-overlapping small block regions by window, and each small block 
region is flattened and converted into a fixed-length feature vector by linear transformation 
through the fully connected layer. The linear mapping matrix splices the adjacent input 
features and realises the size reshaping and the output features of the specified number of 
channels, integrates the results of all the windows, so that each window contains the global 
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PixelShuffle
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Fig. 4. Dual up-sampling structure

Rys. 4. Struktura podwójnego próbkowania w górę
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information of the image, and obtains the feature vector with the same length as the origi-
nal one which contains richer spatial information, and at the same time reduces the spatial 
dimensionality of the feature vector, and then carries out the adjustment of the window size, 
and reduces the size of the feature map to realize the down-sampling.

The patch expanding method, which is equivalent to transposed convolution, is used in 
the original Swin-unit model sampling module, but it is not possible to up-sample the feature 
map uniformly and continuously because transposed convolution may produce structures 
that look like checkerboards or blocks in the reconstructed image when up-sampling.

Therefore, the dual up-sampling operation is carried out by using a parallel combina-
tion of bilinear interpolation and sub-pixel convolution. Firstly, the image size is set to 
a predetermined size by bilinear interpolation to smooth the image content; at the same 
time, sub-pixel convolution enhances the details of the feature maps to improve the quality 
of the image, and the results of the two treatments are stacked in the channel dimension 
to complete the up-sampling operation. The architecture of the up-sampling module is 
shown in Figure 4.

2. Image enhancement algorithm

The texture details of an image characterize the quality of the image (Wang 2019), and 
for medical image segmentation, the more detailed information, the richer the image con-
tent, and the more detailed information of the segmented image the more accurate the di-
agnosis of the disease. However, in ore image segmentation, due to the existence of ore 
stacking and edge sticking in the ore image, coupled with the influence of ore surface texture 
features, the edge of the ore obtained by segmentation is incomplete, and at the same time, 
the ore surface texture is also segmented into the result, resulting in the existence of redun-
dant points and lines in the segmented region, which is easy to segment the texture into the 
edges of ore particles, which seriously affects the segmentation accuracy of the ore image. 
Therefore, to address the above problems, this paper performs texture weakening and edge 
enhancement on ore images through image preprocessing operations. The general flowchart 
of the algorithm in this paper is shown in Figure 5.

After the ore image is processed by wavelet transform and non-local mean algorithm, 
the low-frequency information part of the ore particle surface retains the smooth part of 
the original image, while most of the noise and texture in the image is maintained in the 
high-frequency part, and the low-frequency part of the information is processed by Can-
ny (1986) operator, which can effectively attenuate the influence of the texture on the ore 
surface on the edge extraction, and at the same time, make the surface of the ore particles 
smooth. The original image is segmented by the OTSU algorithm, and the binary image ob-
tained by segmentation is contour finding and Huff transforms edge fitting to the incomplete 
segmented region (Xu et al. 2022). The Canny operator is averaged and weighted with the 
fitted edge contour to obtain the ore edge contour and superimposed to the texture-weakened 
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image to enhance the edges of the ore particles, and then the resultant image is sharpened by 
Bilateral-USMR to obtain the final texture-weakened edge-enhanced ore image.

2.1. Texture feature weakening based  
on wavelet transform with fast nonlocal averaging

The discrete wavelet transform proposed by Mallat (1989) can be used to obtain the rela-
tionship between neighboring scale coefficients by decomposing and reconstructing the im-
age, and the decomposed low-pass approximation and high-pass detail components can be 

Canny operator extraction of 
ore edge contours

Texture weakening oTSU Threshold 
Segmentation

Edge Contour 
Finding

Huff Transform 
Fitting Edge 

Contours

average weighted 
sum

overlay with texture 
weakening map

Bilateral-USMr 
image sharpening

 
Fig. 5. Algorithm flowchart

Rys. 5. Schemat działania algorytmu
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fast inverse transformed to perform the discrete wavelet transform on the rows and columns 
of the image, respectively. The redundancy of each pixel in the image with its domain ap-
proximation pixels is processed using the Fast Non-Local Means (FNLM) algorithm while 
preserving the details and structural features of the original image. By setting the size of the 
search window and calculating the weights of the pixels within the window, the computa-
tional complexity is reduced and the speed of the operation is improved while maintaining 
high denoising and smoothing effects. Figure 6 shows the 2D first layer decomposition of the 
ore image obtained by discrete wavelet transform with fast nonlocal homogenisation, where 
LL represents the low-scale approximation information of the image, and LH, HH, and HL 
represent the image in the horizontal, diagonal, and vertical details, respectively, and it can 
be seen that the detail information in the low-frequency part of the image is smoother to 
show most of the non-texture information on the surface of the ore particles.

2.2. Edge enhancement

2.2.1. Hough transform edge fitting

In the results obtained by the Canny operator for edge detection of images, the effect 
of edge detection is not obvious for the weak edges of ore and adhesion in the image, and 
the edges of some ore particles can’t form a closed region so that it is not possible to obtain 
accurate and continuous edge detection results, the Hough transform algorithm is used to 
detect the image contour through global characteristics, and the straight lines and curves in 
the image are transformed from the image space to the Hough space. Through the property 

 

 

 
original image 

  
LL HH 

  
HL LH 

 

 

Fig. 6. Schematic diagram of image discrete wavelet transform with nonlocal mean decomposition

Rys. 6. Schemat ideowy dyskretnej transformaty falkowej obrazu z nielokalnym rozkładem średniej
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that points and lines can be converted to each other in different spaces, the feature infor-
mation in the image space can be converted to the parameter space, and the straight line in 
the image space is mapped to a point in the Hough space, where denotes the angle between 
the straight line and the -axis connecting the point and the origin, and denotes the distance 
from the origin to the straight line. This transforms the problem of detecting co-linear points 
into the problem of finding concurrent curves. The curve equation is shown in Equation (8).

	 y = Asin(ωx)� (8)

ªª the values of parameters A, 
ω 		  –	 are in the range of (0 < A ≤ m), (0 < A ≤ π), respectively; 
m × n 	–	 denotes the image pixels; 

The image space parameters are mapped to the parameter space expression as shown in 
Equation (9).

	
( )sin
yA

x
=

ω
� (9)

The parameter in the formula takes the value 0 < x < m, 0 < y < n; the binary map obtained 
by OTSU threshold segmentation algorithm is subjected to the Hough edge detection process, 
and according to the judgment conditions of the edge point, through the relationship between 
the point line and the equation, if the curve equation is satisfied, then it is judged to be an edge 
point; if the points in the direction of gradient in the point and the pixel point both satisfy the 
curve equation, then it is judged to be an edge point in the direction of gradient in the point; 
from this, we get an accurate and This results in an accurate and continuous edge of the ore.

2.2.2. Bilateral-USMR image sharpening

The traditional linear unsharpened mask algorithm creates a blurred version of the input 
image by Gaussian blurring the input image; subtracting the blurred image from the input 
image to obtain a “mask” to obtain an image that contains only the high-frequency details 
of the image, including the edges of the ore and the protruding edges of the surface; and 
finally superimposing the “mask” with the input image to achieve image sharpening and 
edge enhancement. Finally, the “mask” and the input image are superimposed to achieve 
image-sharpening edge enhancement. The formula is as follows in Equation (10).

	 Isharp(m,n) = I(m,n) + α · z(m,n)� (10)

ªª I(m,n) 	–	 denotes as the information of the input image; 
z(m,n) 	–	 is the output information of the high-pass filter; 
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α 		  –	 denotes the gain coefficient, and the magnitude of its value corresponds to the  
			   degree of image sharpening; 

Isharp 	 –	 is the output image after sharpening.

Since the USM algorithm acquires high-frequency information images there is a part of 
the edge information distortion in the image sharpening result due to the problem of over-
shooting. The bilateral filter can well retain the edge of the image in the process of image 
processing, therefore, by combining the bilateral filter (Tomasi and Manduchi 1998) with the 
USMR algorithm to smooth and sharpen the image, to ensure that the completeness of the 
edge information in the process of image sharpening. The calculation formula is as follows 
in Equation (11).

	 Isharp = I + α · (I – I · B) – ρ · R(I – I · B) � (11)

ªª I			   	 –	 is the input image; 
I · B		  	 –	 denotes the process of bilateral filtering of the input image; 
R(I – I · B)	 –	 is the regularisation function, which is used to measure the intensity  

					     and complexity of the high-frequency details; 
ρ				    –	 is the parameter that regulates the intensity of the regularisation. 

The flowchart of the improved algorithm is shown in Figure 7.

The input image is subjected to bilateral filtering process I · B to make difference with 
the input image to get the mask, the high-frequency edge information ∆I of the image, mul-
tiply ∆I by the weight and the regularisation process to make difference, respectively, to 
inhibit the intensity of excessive high-frequency details and prevent the loss of image edges 
and the amplification of the noise; and finally superimpose the result of the difference to the 
input image I to get the sharpened image Isharp.

––

�

�

�

�

Regularisation

-

Fig. 7. Flowchart of the improved USMR algorithm

Rys. 7. Schemat działania ulepszonego algorytmu USMR
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3. Experimental methods and results analysis

3.1 Ore image denoising dataset

The dataset used to train the model in this paper is a simulated collection of ore images 
on a conveyor belt using an industrial camera in a laboratory environment. The dataset is 
divided into training, validation, and test sets of 316 images in a ratio of 1:2:7, and the size of 
each image is 512 × 512. Each image is cropped into three image blocks of 256 × 256 pixels, 
and the training and validation sets are synthesised in the cropped image with varying de-
grees of Gaussian noise compounded with pretzel noise, where the training set 2,736 image 
groups of clean and noisy images and the validation set contains 63 image groups. The ore 
image part of the dataset for this paper is shown in Figure 8.

3.2. Experimental configuration and parameter setting

The experiment in this paper is to build the Pytorch framework to complete the training 
and performance testing of the denoising model under the Windows 11 system, the processor 
is 13th Gen Intel(R) Core(TM) i5-13490F 2.50 GHz, the RAM capacity is 16GB, the graphics 
card is NVIDIA GeForce RTX3070, the PyTorch environment is Pytorch-GPU1.10.0+cu113 
and the interpreter used is Python 3.8.

The input image is an RGB color ore image of 256 × 256 pixel size and the model is 
trained using randomly cropped image blocks for model training. The total number of iter-

   

   
 Fig. 8. Part of the dataset

Rys. 8. Część zbioru danych
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ations (epoch) during training was set to 200, the network parameters were optimised using 
the Adam optimizer, the initial learning rate (learning rate) was set to 2e-4, the batch size 
was set to 4, and the size of the moving window, WIN_SIZE, was set to 8 × 8.

3.3. Evaluation indicators

3.3.1. Denoising evaluation metrics

Peak signal-to-noise ratio (PSNR, denoted as PPSNR in the computation) and structural 
similarity (SSIM, denoted as SSIM in the computation) are commonly used in image-denois-
ing tasks to evaluate the effectiveness of image-denoising.

PSNR is a commonly used metric for evaluating the quality of a denoised image, which 
is defined by the root-mean-square error (MSE, denoted by MMSE in the calculations) be-
tween the reference image and the denoised image. PSNR is often expressed in logarithmic 
form in dB, and the larger the value is, the smaller the distortion of the denoised image is 
and the closer it is to the reference image. The formulae for calculating PSNR and MSE are 
as follows in Equation (12).

	
( ) ( )

1 1 2

0 0

1 , ,
m n

MSE
i j

M I i j K i j
mn

− −

= =

 = − ∑ ∑
� (12)

	 2

1010 log I
PSNR

MSE

MAXP
M

 
 = ⋅
 
 

� (13)

ªª MMSE	 	 –	 denotes the root mean square error between the denoised image I and the  
					     reference image K; 

m and n	 –	 denote the height and width of the image, respectively; 
MAXI

2	 –	 denotes the maximum pixel value in the color point of the image I. 

If each color point is represented by 8 bits, then MAXI
2 = 255. PSNR is a criterion for 

the detection of distortion of denoised images, but the sensitivity of human eyes to spatial 
frequency and luminance variations has not been taken into account in the process of calcu-
lation. Although PSNR is a criterion for detecting the degree of denoising image distortion, 
the sensitivity of human eyes to the change of spatial frequency and luminance is not consid-
ered in the calculation process, so when the PSNR value scores higher, it will be inconsistent 
with the visual perception of human eyes.

To evaluate the quality of the denoised image more comprehensively and to improve 
the perception of the image structure information by the visual system of the human eye, the 
structural similarity is introduced to evaluate the image quality, and SSIM is an index that 
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measures the similarity between the reference image and the resultant image by measuring 
the three aspects of brightness, contrast, and structure. For the denoised image I and the 
reference image K, the SSIM of the two images is calculated as follows in Equation (14).

	 ( )( )
( )( )

1 2
2 2 2 2

1 2
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ªª μI, μK		  –	 denote the mean value of I, K respectively,
μI

2, μK
2	 –	 denote the variance of I, K respectively, 

σIK			  –	 denotes the covariance of I, K,
c1, c2		  –	 denote the constants to maintain the stability, c1 = (k1L)2, c2 = (k2L)2,  

				    k1 = 0.01, k2 = 0.03, 
L		  	 –	 denotes the range of the pixel values of the image, range of the image  

				    pixel values. 

The degree of similarity between the two images is reflected by calculating the size of 
the SSIM value, the value of SSIM is in the range of 0~1, the closer the value is to 1 indicates 
that the error between the two images is smaller, i.e., the higher the similarity between the 
denoised image and the reference image.

3.3.2. Texture weakening evaluation indicators

The size of the texture entropy (Jia 2015) value reflects the texture complexity or non-uni-
formity in the image: if the texture is complex, the corresponding entropy value is larger; 
conversely, if the image is uniform in the gray level, the entropy value is smaller. Because 
of the complex texture features of the ore surface, it is necessary to obtain all the texture 
information, while the first-order local texture entropy can only reflect the statistical distri-
bution law of individual pixel gray level, and cannot capture the global texture information 
of the image. Each local binary pattern in the histogram of Local Binary Pattern (Zhu 2017) 
(LBP) corresponds to a specific local texture, which can represent the change of texture, and 
by combining the histogram of Local Binary Pattern and the second-order texture entropy 
as the evaluation index of texture weakening, the effect of texture weakening is comprehen-
sively evaluated.

LBP calculates the texture entropy mainly on the probability distribution of the local 
binary patterns of the image and obtains the texture information of the image by comparing 
the relative grayscale of the pixels and their domains, in which the probability distribution 
reflects the distribution of the texture of the image, and each column in the histogram rep-
resents the frequency of the occurrence of a particular local binary pattern across the entire 
image. The formula for the computation of the LBP is as follows in Equation (15) and Equa-
tion (16).
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ªª 3		  –	 is the order; 
R 		  –	 is the radius of the neighborhood centered on the circle at pixel point c; 
p = 0	 –	 is the index value indicating the first pixel point on the circle; 
lp		  –	 denotes the luminance of the pth pixel point on the circle, lc and is the pixel  

			   point luminance value; 
s(x)	 –	 the function is a symbolic function, and the return value of s(x) is 1 if lp ≥ lc,  

			   and 0 otherwise.

Second-order texture entropy is calculated from the entropy value of an image using 
a gray-level Co-occurrence Matrix (GLCM) in the image space. The GLCM starts from 
a pixel point (x,y) in the image of a certain gray level i, and counts the probability of the 
simultaneous occurrence of the two points of the pixel point (x + Δx,y + Δy) of a gray level j 
at a distance δ from the point, P(i,j,δ,θ).
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ªª gray value at pixel point i,j = 0.1, ..., G – 1, 
G		  –	 denotes the gray level of the image,
Nx, Ny	–	 denotes the number of rows and columns of the image. 
θ		  –	 denotes the angular direction between two pixels of the GLCM,  

			   and the directions of 0°, 45°, 90° and 135° are used. 

By extracting the quadratic statistics for the spatially dependent GLCM, the formula for 
the second order texture entropy of the image is obtained as follows in Equation (18).
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3.4. Denoising comparison experiment results and analysis

In this paper, the model is trained using a homemade ore image dataset, and the model 
performance is tested by a test set. To visualize the performance metrics of the denoising 
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algorithms proposed in this paper, the PSNR and SSIM of different denoising algorithms 
on the ore image dataset are shown in Table 1, with bold denoting the optimal data. The 
representative algorithms include five blind denoising models PRIDNet, ADaFM, CBDNet, 
PMRID, VDNet, and the non-blind denoising model BM3D. The PSNR of SUNet proposed 
in this paper on ore image dataset can be up to 38.87 dB, which exceeds that of the VDNet 
algorithm by 8.08 dB, and the test results show that it has superior denoising performance, 
which outperforms that of other advanced algorithms.

Figure 9 visualises and compares the denoising effect of some algorithms with this pa-
per’s algorithm on the ore image dataset. As can be seen from Figure 9, this paper’s algo-
rithm can effectively remove the mixed noise in the real scene, and the recovered image 
obtained does not introduce additional artifacts while ensuring that the detailed information 
is not lost, which proves the effectiveness of this paper’s algorithm. In contrast, other algo-
rithms have problems such as noise residue, texture loss, and edge blurring when dealing 
with mixed noise.

   
reference image mixed noise image BM3D 

   
ADAFM CBDNet PRIDNet 

   
PMRID VDNet SUNet 

 

 
Fig. 9. Denoising visualisation results of different algorithms on ore image dataset

Rys. 9. Odszumianie wyników wizualizacji różnych algorytmów na zbiorze danych obrazu rudy



124 Luo et al. 2024 / Gospodarka Surowcami Mineralnymi – Mineral Resources Management 40(4), 107–130

Table 1.	 PSNR and SSIM of different models on ore image dataset

Tabela 1.	 PSNR i SSIM różnych modeli zbioru danych obrazu rudy

Method PSNR/dB SSIM

BM3D 17.05 0.4429

PRIDNet 26.13 0.8655

ADaFM 28.18 0.8141

CBDNet 28.47 0.8946

PMRID 29.58 0.8619

VDNet 30.79 0.8964

SUNet 38.87 0.9816

 
3.5. Analysis of texture weakening experiment results

To verify the effectiveness of the proposed algorithm, three groups of experiments are 
conducted to show the effect of ore image after texture weakening respectively, calculate 
the evaluation index of texture weakening, and compare the effect of segmentation before 
and after preprocessing. The input ore image and the texture weakened image are shown in 
Figure 10, the calculation results of LBP histogram and second-order texture entropy of the 
corresponding experiments are shown in Figure 11, and the segmentation results before and 
after preprocessing are shown in Figure 12.

 Image 1 Image 2 Image 3 

 
original 

image 

   
Texture 

weakened 

image 

   

 
Fig. 10. Experimental original image and texture weakened image

Rys. 10. Eksperymentalny obraz oryginalny i obraz z osłabioną teksturą

Orginal 
image

Texture 
weakened 

image
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From the comparison of the results before and after the texture weakening of the ore im-
age in Figure 10, it can be seen that the texture weakening algorithm proposed in this paper 
can effectively weaken the texture on the surface of the ore particles and enhance the edges 
of the ore, and at the same time improve the contrast between the target and the background. 
Comparing the LBP histogram and texture entropy before and after texture weakening in 
Figure 11, it can be seen that the decrease in the texture entropy value indicates that the 
texture information in the image is simpler, more regular, and centralised, which suggests 
that the texture features on the ore surface are weakened and smoothed, corresponding to 
the decrease in the number of local low-frequency texture patterns in the LBP histogram. 
With edge enhancement processing, the detailed information of the ore edges corresponding 

 LBP histogram of the original image Histogram of LBP after texture 

weakening 

 

 

Image 1 

  
Texture 

entropy  

6.8736 6.5844 

 

 

Image 2 

  
Texture 

entropy 
7.6170 7.3640 

 

 

Image 3 

  
Texture 

entropy 
7.7065 7.4760 

 

 
Fig. 11. LBP histogram and texture entropy calculation results 

Rys. 11. Histogram LBP i wyniki obliczeń entropii tekstury
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to high-frequency texture patterns increases, and the number of high-frequency texture pat-
terns in the LBP histogram increases.

Comparing the segmentation results before and after preprocessing of the ore image 
in Figure 11, it can be seen that after the weakening of the ore surface texture and edge 
enhancement, the interference of the ore surface texture on the segmentation results is ef-
fectively removed, and the problem of the existence of redundant points and lines in the seg-
mentation region is solved; at the same time, more accurate segmentation can be realised for 
the ore particles that are blocked and the edges are sticky, and the incomplete segmentation 
of the ore edges is solved, which further It also solves the problem of incomplete segmenta-
tion of ore edges and further improves the segmentation accuracy.

In this paper, through the study of mixed noise removal algorithm of ore image and the 
study of texture weakening algorithm of ore surface, the removal of mixed noise is realised, 
and compared with the current advanced algorithms, the detailed information and the over-
all structure of the image are better restored; through the weakening of texture features of 
the ore surface to reduce the impact of local low-frequency information, increase the prob-
ability of the appearance of the edge information, and realize the texture weakening and at 
the same time enhance the edges of the ore particles.

 Image  pretreatment after pretreatment 

 

Image 1 

   

 

Image 2 

   

 

Image 3 

   

Fig. 12 Ore image segmentation results before and after preprocessing 

 
Fig. 12. Ore image segmentation results before and after preprocessing 

Rys. 12. Wyniki segmentacji obrazu rudy przed i po obróbce wstępnej
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Conclusions

1.	 This paper proposes a deep learning image denoising method based on U-Net model ar-
chitecture. The Swin Transformer Block module is introduced in the coding part, which 
carries out self-attention computation in different area windows through the self-attention 
mechanism, increases the sensory field of the model, realises the information exchange 
between pixels of multiple windows, and improves the feature extraction ability and 
learning ability of the model; in the image reconstruction stage, the dual up-sampling 
module and the residual jump connection structure are introduced, which integrates the 
extracted Local and global features are introduced in the image reconstruction stage to 
combine the extracted local and global features, realize the smooth processing and detail 
enhancement of the image content, reconstruct the structure, texture, edges and other 
detail information of the image, and improve the denoising performance of the model. 
Experiments show that the denoising algorithm in this paper can realize good denoising 
performance while maintaining the original detail information, and effectively improv-
ing the visual quality of images in mixed noise scenes.

2.	 The proposed texture weakening and edge enhancement method is based on the combi-
nation of wavelet transform and non-local averaging. The texture features are weakened 
by smoothing the surface of the ore, and the edge profile extracted by combining the Haff 
edge fitting and canny operator is averaged and weighted to obtain the complete edge 
profile, which is then sharpened by the Bilateral-USMR to emphasize the edge portion 
of the ore. Experiments show that the local low-frequency information on the ore surface 
is effectively reduced, and the number of high-frequency texture patterns corresponding 
to the ore edges is increased, realising the purpose of texture weakening and edge en-
hancement.
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Research on Image Preprocessing Algorithm Based  
on Mixed Denoising and Texture Weakening of Ore Images

K e y w o r d s

image hybrid denoising, texture feature weakening, edge enhancement, texture entropy

A b s t r a c t

Ore particle size information is an important basis for mining enterprises to regulate crushing 
parameters, due to the complex and harsh environment during the acquisition of ore images on the 
conveyor belt, resulting in the existence of a variety of composite noise interference in the motion tar-
get image, the surface texture characteristics of the ore and the edge of the fuzzy and other problems, 
thus affecting the effective acquisition of ore particle size information. To address the above issues, 
an image-denoising network based on global and local feature extraction and an edge enhancement 
algorithm for texture feature weakening is proposed. The denoising network consists of a shallow lo-
cal feature extraction module and a Transformer-based U-Net global feature extraction module, which 
aims to combine the powerful global modeling capability of the Transformer with the local modeling 
advantage of convolutional network, and reconstructs the image resolution through the dual up-sam-
pling structure, to realize the accurate output of contextual detail information. A texture weakening 
method based on wavelet transform and fast non-local averaging is proposed to smooth the image and 
weaken the texture characteristics of the ore surface, and edge sharpening is combined with Bilater-
al-USMR to enhance the edges of the ore particles to realize the preprocessing of the ore image. The 
preprocessing results were objectively evaluated and experimentally verified. The results show that 
the image preprocessing method improves the accuracy of image segmentation and the applicability 
of the ore particle size measurement technology in complex environments.

Badania nad algorytmem wstępnego przetwarzania obrazu  
opartym na mieszanym odszumianiu i osłabianiu tekstury obrazów rudy

S ł o w a  k l u c z o w e

hybrydowe odszumianie obrazu, osłabienie cech tekstur, wzmocnienie krawędzi, entropia tekstur

S t r e s z c z e n i e

Informacje o wielkości cząstek rudy stanowią dla przedsiębiorstw wydobywczych ważną pod-
stawę do regulowania parametrów kruszenia ze względu na złożone i  trudne środowisko podczas 
akwizycji obrazów rudy na przenośniku taśmowym, co skutkuje występowaniem różnorodnych za-
kłóceń szumu złożonego w ruchomym obrazie docelowym, właściwości tekstury powierzchni rudy 
i krawędzi rozmytej oraz inne problemów, wpływających w ten sposób na skuteczne pozyskiwanie 
informacji o wielkości cząstek rudy. Aby rozwiązać powyższe kwestie, zaproponowano sieć odszu-
miającą obraz opartą na globalnej i  lokalnej ekstrakcji cech oraz algorytm wzmacniania krawędzi 
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w celu osłabienia cech tekstury. Sieć odszumiająca składa się z płytkiego modułu ekstrakcji cech 
lokalnych i modułu globalnej ekstrakcji cech U-Net opartego na transformatorze, którego celem jest 
połączenie potężnych możliwości globalnego modelowania transformatora z przewagą lokalnego mo-
delowania sieci splotowej i  rekonstrukcja rozdzielczości obrazu poprzez podwójną strukturę prób-
kowania w górę, aby uzyskać dokładne dane wyjściowe szczegółowych informacji kontekstowych. 
Zaproponowano metodę osłabiania tekstury opartą na transformacji falkowej i szybkim uśrednianiu 
nielokalnym w celu wygładzenia obrazu i osłabienia właściwości tekstury powierzchni rudy, a wy-
ostrzanie krawędzi wiązało się z dwustronnym-USMR w celu uwydatnienia krawędzi cząstek rudy 
w celu realizacji wstępnej obróbki obrazu rudy. Jej wyniki zostały obiektywnie ocenione i zweryfi-
kowane eksperymentalnie. Pokazują one, że metoda wstępnego przetwarzania obrazu poprawia do-
kładność segmentacji obrazu i możliwość zastosowania technologii pomiaru wielkości cząstek rudy 
w złożonych środowiskach.
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