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Abstract. A mobile ad hoc network (MANET) is a collection of mobile devices attached without infrastructure or central management. Network
size increases rapidly, resulting in congestion, network delay, data packet loss, and a drop in throughput, resulting in poor energy efficiency. Data
should be mitigated based on the prediction of congestion. To resolve the problem of congestion, a novel dragonfly optimized deep learning for
congestion elimination (DODGE) technique was proposed, which predicts the congested node effectively. Initially, the Transmission Control
Protocol (TCP), and User Datagram Protocol (UDP) packets from the MANET environment were pre-processed and the features were selected
using dragonfly optimization (DFO). The features that are selected from the DFO model were provided to the stacked convolutional neural
network combined with bidirectional long short-term memory (SCNN-BiLSTM). The deep learning network will predict the congested node and
if congestion is found, then the message will be displayed. The DODGE is simulated by using Network simulator2 (NS2) and a comparison is
made between proposed DODGE and traditional approaches such as hybrid gravitational fuzzy neural network (HGFNN), quality of service-aware
distributed congestion control (QoS-ADCC), and improved priority aware ad hoc on-demand distance vector (IPA-AODV) in terms of packet
delivery ratio (PDR), delay (DE), throughput (TP), energy consumption (EC), latency (L), detection rate (DR), and network lifetime (NL). The
proposed SCNN-BiLSTM improves the overall accuracy better than 10.05%, 6.59%, and 3.26% bidirectional long short-term memory (BiLSTM),
deep neural network (DNN), convolutional neural network (CNN) for predicting the congested node in the shortest time.

Keywords: MANET; congestion node; deep learning; dragonfly optimization; bidirectional long short-term memory.

1. INTRODUCTION

Mobile ad hoc networks (MANETs) are networks of mobile
nodes that communicate wirelessly and collaborate without
the need for a centralized infrastructure. MANET nodes can
function as transmitters, receivers, or routers. They are self-
configuring, multifunctional, and extremely dynamic [1, 2]. If
two hosts want to exchange data in such an environment, the in-
termediary nodes should be able to communicate between them
to send and receive the data, with the ability to utilize it anytime
and anywhere, as illustrated in Fig. 1 [3]. Nodes can travel at
random in any direction and at varied speeds. Because of node
mobility, topological changes occur often in MANETs [4, 5].
MANET has proven to be an excellent substitute for a wide
range of applications, such as the Internet of Things (IoT), rail-
road, military, environmental monitoring, and unmanned aerial
vehicles (UAVs) [6, 7]. As indicated in Fig. 1, they should be
able to communicate with each other and transmit and receive
data at any time and from any location [8].

Congestion control is one of the fundamental jobs that an ad
hoc network must complete, with the main purpose of reducing
the delay and buffer overflow caused by network congestion and
offering enhanced network performance [9]. Network conges-
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Fig. 1. Mobile ad hoc networks

tion arises when a deployment of network resources is not able
to handle the level of traffic [10,11]. Congestion, such as traffic
and data loss, can be minimized by compressing the process-
ing and capacity of intermediary nodes, reducing the number of
steps required to get resources.

Various issues in data transmission employing congestion are
packet loss estimation, estimating bandwidth availability, and
mobility management [12, 13].

MANETs suffer from much higher network congestion than
infrastructure networks, and MANETs have limited resources,
especially network bandwidth and energy supplies, at each mo-
bile node [14]. By retransmitting network packets that could not
be transmitted due to network congestion not only MANET traf-
fic throughput is affected but also energy is wasted [15]. Energy
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is wasted as a result of the high frequency of lost packet retrans-
missions caused by the high degree of congestion. MANETs face
considerable congestion and power control challenges at all lev-
els [16,17]. To address these issues, the suggested cross-layered
method involves many tiers of protocol stack communicating
with one another. Congestion has downsides such as extended
delays, costly overhead, and a greater rate of packet loss. The
main contribution is as follows:
• Initially, pre-processed TCP and UDP packets from the

MANET environment and the features are selected using
dragonfly optimization (DFO).

• The features that are selected from the DFO model are pro-
vided to the stacked CNN combined with Bi-LSTM (SCNN-
BiLSTM). It predicts the congested node for reliable trans-
mission and packet delivery with high stability, energy level,
network lifetime, and low energy consumption, and then the
message is displayed.

• The effectiveness of the DODGE approach is assessed using
evaluation criteria such as PDR, DE, TP, EC, L, DR, and NL.

The remaining portion is organized as follows. The literature
survey is covered in Section 2, and the DODGE approach is
defined in Section 3. The results and conclusion are presented
in Sections 4 and 5, respectively. The list of acronyms for the
proposed DODGE approach is included in Table 1.

Table 1
List of acronyms

No Acronyms Meaning

1. MANET Mobile ad hoc network

2. DODGE Dragonfly optimized deep learning for congestion
elimination

3. TCP Transmission control protocol
4. UDP User datagram protocol
5. DFO Dragonfly optimization
6. SCNN Stacked convolutional neural network
7. BiLSTM Bidirectional long short-term memory
8. DL Deep learning
9. NS2 Network simulator 2

10. HGFNN Hybrid gravitational fuzzy neural network

11. QoS-ADCC Quality of service-aware distributed congestion
control

12. IPA-AODV Improved priority-aware ad hoc on-demand dis-
tance vector

13. PDR Packet delivery ratio
14. DE Delay
15. TP Throughput
16. EC Energy consumption
17. L Latency
18. DR Detection rate
19. NL Network lifetime
20. CNN Convolutional neural network

Table 1 [cont.]

No Acronyms Meaning

21. DNN Deep neural network
22. ACO Ant colony optimization
23. CH Cluster head

24. AIACOAR Artificial intelligence ant colony optimization
aware routing

25. PA-AODV Priority-aware ad hoc on-demand distance vector
26. ACOLBR Ant colony optimization load balancing routing
27. OMNET++ Objective modular network testbed in C++
28. ACEAMR Ant colony efficient adaptive multipath routing
29. C-EWA Clustering-energy weighted algorithm

2. LITERATURE SURVEY

Several studies utilized techniques to predict the congested node
in MANET. The following section covers a few of the current
evaluation approaches along with their disadvantages.

In 2020, Krishnamoorthy et al. [18] suggested a link matrix
method for MANETs that reduces crowded lines and boosts
system capacity by maximizing the use of each transmission
node range before distortion. The efficiency of the traffic matrix
approach is assessed using the coefficient of congestion opti-
mization (COCO). Findings for the COCO technique in terms
of EC is 60%, TP is 41%, L is 28%, PDR is 5% and overhead
is 48%.

In 2022, Saraswathi et al. [19] introduced a hybrid gravita-
tional fuzzy neural network (HGFNN) used to identify cross-
layer congestion and execute an energy-efficient routing mech-
anism. It minimizes energy consumption, and transmission de-
lays, and improves packet delivery ratios, hence improving
throughput.

In 2021, Kanthimathi and JhansiRani [20] designed an ideal
routing-centered CC scheme using the modified ad hoc on-
demand distances vector (MAODV) in MANET. The stochastic
gradient descent deep learning neural network (SGD-DLNN)
determines the congestion status (CS) of each node along the
selected paths. The Levy flight-based butterfly optimization
(LF-BWO) method selects the most efficient yet least crowded
routing circuits.

In 2024, Muthulakshmi et al. [21] developed a quality
of service-aware distributed congestion control (QoS-ADCC)
method that combines passive and preventative aspects to con-
struct and sustain data packet routing. As discussed above, the
QoS-ADCC approach achieves outstanding results by deliver-
ing packets at a rate of 1.2% and reducing routing overhead by
one with a throughput of 31 000 Mbps.

In 2020, Rajendran and Naganathan [22] developed an effi-
cient hybrid clustering algorithm using the ant colony optimiza-
tion (ACO) technique. The comparative findings demonstrate
that the suggested method has excellent network stability, NT,
cluster formation, EC, PDR, and TP. This strategy leads to wast-
ing valuable resources and produces overheads in the nodes.
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In 2023, Mohan and Vimala [23] developed a rate-aware
neuro-fuzzy-based congestion control approach for detecting
congestion using baseline parameters. After congestion is con-
trolled, the ideal routes for packets are proposed using an arti-
ficial intelligence ant colony optimization aware routing (AIA-
COAR) algorithm. The suggested approach has a PDR value
of around 99%, creates a very short delay, and requires greater
energy consumption.

In 2022, Nallayam Perumal and Selvi [24] developed the
improved priority aware ad hoc on-demand distance vector, or
IPA-AODV, protocol to improve the quality of service (QoS) of
the MANET. The IPA-AODV performs better in QoS metrics
than the current protocols, AODV and PA-AODV, suggesting a
high mobility environment.

In 2022, Dholey and Sinha [25] developed an ant colony
optimization load balancing routing (ACOLBR) approach for
managing congestion and balancing load over many channels.
ACOLBR efficiently performs load balancing along the path for
data transfer from source to destination, according to the results
obtained with the objective modular network testbed in C++
(OMNET++).

In 2023, Arun and Jayanthi [26] suggested an ant colony effi-
cient adaptive multipath routing (ACEAMR) strategy for man-
aging congestion and balancing load over several channels. Sev-
eral network parameters like bandwidth, energy consumption
(EC), mobility, etc., are taken into consideration when picking
red/blue ants for packet transfers. OMNET++ results reveal that
ACOLBR effectively balances the load for data transfer from
source to destination when using the route for data transfer.

In 2020, Devika and Sudha [27] designed the clustering-
energy weighted algorithm (C-EWA), which efficiently clusters
data and modifies power and energy parameters via topology
management. Once the optimal cluster head (CH) is found, the
Gabriel graph is designed to reduce the transmission power of
the nodes. With their respective values of 21.960 J, 0.729, 0.713,
0.295, and 5.256, the proposed approach is highly efficient for
battery power, mobility, TP, L, and connection.

The literature review shows that the existing method does
not concentrate on congestion control. Since the channel is
shared by several nodes, unfortunately, its status or condition
is not taken into account during transmission. Lack of availabil-
ity causes higher latency and lower network performance. Thus,
the DODGE method was introduced to reduce congestion, high
network performance, and data security.

3. DODGE METHODOLOGY

In this section, a novel dragonfly optimized deep learning for
congestion elimination (DODGE) technique is proposed, which
effectively predicts the congested node. Initially, the TCP and
UDP packets from the MANET environment are pre-processed
and the features are selected using dragonfly optimization
(DFO) [28, 29]. The features that are selected from the DFO
model are provided to the stacked convolutional neural network
(SCNN) combined with Bi-LSTM named SCNN-BiLSTM. The
deep learning network will predict the congested node and if
congestion is found, then the message will be displayed. The
system architecture is shown in Fig. 2.

Fig. 2. The overall workflow of DODGE methodology
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3.1. Pre-processing
To improve the performance and accuracy, pre-processing is a
crucial step that must be taken to use the gathered raw TCP and
UDP packets for the analysis process. Pre-processing techniques
such as normalization, and handling missing values are used to
convert the raw node data to standard form and delete the rows
or columns with null from the data.

3.1.1. Handling missing value
Handling missing values is critical to ensuring that machine
learning models can use all available data to provide accu-
rate predictions. To handle missing values, remove the rows
or columns that contain null values. If a column contains more
than 50% null records, it can be eliminated.

3.1.2. Normalization
Normalization requires the simultaneous completion of multiple
tasks. All text must be converted to uppercase or lowercase,
punctuation must be removed, and numerals must be changed
to words. As a result, every text will undergo more consistent
pre-processing.

3.2. Feature selection via dragonfly optimization (DFO)
In dragonfly optimization (DFO) based intrusion detection (ID),
the optimization process aims to identify the most relevant sub-
set of network information. The ID system is to be optimized by
selecting the subset of features that are most discriminative and
informative for distinguishing between normal and pathologi-
cal network data. Figure 3 demonstrates dragonfly behaviour in
both static and dynamic swarms. Five weights determine the
moving direction of an artificial dragonfly:

A. Separation
The method separates the search agents in the neighborhood.
Equation (1) mathematically models the separation behaviour:

𝑆𝑖 = −
𝑁∑︁
𝑗=1

(
𝑋𝑖 − 𝑋 𝑗

)
, (1)

where 𝑁 is the number of neighborhoods, 𝑋𝑖 is the individual’s
location, 𝑆𝑖 is the individual’s distance from themselves, and 𝑋 𝑗

is the neighboring agent’s position.

Fig. 3. Dragonfly characteristics: desire for food, diversion from
challenger

B. Alignment

It is the matching of the person’s velocity with that of the neigh-
boring individual. It is the agent’s velocity setting concerning the
velocity vectors of the neighboring dragonflies. It is computed
as in (2):

𝐴𝑖 =

𝑁∑︁
𝑗=1

𝑉 𝑗

𝑁
, (2)

where 𝑉 𝑗 represents the surrounding individual’s velocity, and
𝐴𝑖 represents the individual’s alignment.

C. Cohesion

It is the distance an individual travels to the center of their
neighborhood. It is denoted as (3):

𝐶𝑖 =

𝑁∑︁
𝑗=1

𝑋 𝑗

𝑁
− 𝑋 . (3)

The 𝑖-th individual’s position is denoted by 𝑋 , the 𝑗-th neighbor
by 𝑋 𝑗 , and the total number of nearby individuals in the swarm
by 𝑁 . Furthermore, 𝐶𝑖 demonstrates the consistency of the ith
individual.

D. Attraction towards food

Equation (4) represents the dragonfly’s journey towards the lure
of food:

𝐹𝑖 = 𝑋+− 𝑋. (4)

The current position of the 𝑖-th individual is represented by 𝑋 ,
and its attraction to the food is indicated by 𝐹𝑖 , and the location
of the food supply is indicated by 𝑋+.

E. Distraction from enemies

The dragonflies are staying away from enemies, as shown in (5):

𝐸𝑖 = 𝑋− − 𝑋, (5)

where the opponent’s position is shown by 𝑋− and its separate
adversary distraction motion is indicated by 𝐸𝑖 . Inside a search
zone, the step vector (Δ𝑋) and position vector (𝑋), which imitate
the movements of dragonflies, are updated. The step vector,
which has the following definition, represents the direction in
which dragonflies move:

Δ𝑋 𝑡+1
𝑖 = (𝑠𝑆𝑖 + 𝑎𝐴𝑖 + 𝑐𝐶𝑖 + 𝑓 𝐹𝑖 + 𝑒𝐸𝑖)𝜔Δ𝑋 𝑡

𝑖 . (6)

In this instance, 𝑐 stands for weight cohesion, 𝐴 for alignment
weight, and 𝑆 is for separation weight. The food factor, the oppo-
nent factor, the weight of inertia, and the number of repetitions
are represented by the variables 𝑓 , 𝐹𝑖 , 𝑒, 𝜔, and 𝑡. The DFO al-
gorithm selects the features including PDR, DE, TP, EC, L, DR,
and NL that are crucial for network performance and congestion
prediction. The best feature is obtained by selecting the proper
inertia weight with the lowest number of repetitions.
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3.3. Congestion node prediction using stacked
CNN-BiLSTM

In this phase, a subset of characteristics is learned and cate-
gorized using stacked CNN-BiLSTM to forecast the congested
node. The congestion node is forecasted based on features such
as PDR, DE, TP, EC, L, DR, and NL which are selected by the
DFO algorithm. The stacked CNN-BiLSTM classifies the given
input features into time-series data and raw network data based
on their characteristics.

3.3.1. Stacked CNN
Convolutional layers in this standard CNN design are continu-
ously layered between ReLus, going through the pooling layer
before passing between one or more fully linked ReLus. The five
main layers of the CNN are input, pooling, convolutional, fully
connected, and output. The ReLU function is often used after it,
which causes the network to become non-linear. The application
of 3×3 filters is controlled by the four convolutional layers. The
filters are modified automatically to activate the most pertinent
features. Rectified linear units (ReLU) layers use an activation
function. The function of ReLU is illustrated in equation (7):

𝑓 (𝑦) = max(0, 𝑦). (7)

After the convolution layers, there are pooling layers. Use the
max(0, 𝑦) function in the pooling layers with a 2×2 window to
obtain the highest values for each region.

3.3.2. Bi-directional LSTM
The forward and backward LSTM are combined into BiLSTM.
To accomplish it, three structures are used: input gate, forget
gate, and output gate. The operational process can be expressed
as follows:

𝑓𝑡 = sigmoid (𝑤𝑡ℎ𝑡−1 +𝑢𝑡𝑥𝑡 + 𝑏𝑡 ) , (8)

𝑖𝑡 = sigmoid (𝑤𝑖ℎ𝑡−1 +𝑢𝑖𝑥𝑡 + 𝑏𝑖) , (9)

𝑔𝑡 = tanh
(
𝑤𝑔ℎ𝑡−1 +𝑢𝑔𝑥𝑡 + 𝑏𝑔

)
, (10)

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑔𝑡 , (11)

𝑝𝑡 = sigmoid (𝑤𝑜ℎ𝑡−1 +𝑢𝑜𝑥𝑡 + 𝑏𝑜) , (12)

ℎ𝑡 = 𝑝𝑡 × tanh (𝑐𝑡 ) . (13)

The input and output of the current feature vector are denoted
by 𝑤 𝑓 , 𝑤𝑖 , 𝑤𝑔, and 𝑤𝑜, respectively, and 𝑢 𝑓 , 𝑢𝑖 , 𝑢𝑔, and 𝑢𝑜,
depending on the weight of each control gate.

Bias terms including 𝑏𝑡 , 𝑏𝑖 , 𝑏𝑔, and 𝑏𝑜 are transmitted via
the control gate. The amount of data lost after the forget gate is
calculated using equation (8). Next, utilizing the input gate state
update rate 𝑖𝑡 , forgot gate 𝑓𝑡 , and state update vector 𝑔𝑡 in steps
LSTM unit through (11), the update value 𝑐𝑡 of 𝑐𝑡−1 is computed.
It is decided by equations (12) and (13), whose portion of the
unit state is sent via the output gate. The structural diagram of
SCNN-BiLSTM is depicted in Fig. 4 and the hyperparameter
settings for the architecture are illustrated in Table 2.

Table 2
Hyperparameter setting in SCNN-BiLSTM

Parameter Value

Batch size 64
Learning rate 0.001
Optimizer Adam
Filter size 3x3
Number of filters (Conv layer 1) 64
Number of filters (Conv layer 2) 128
Dropout rate 0.4
LSTM units 128
Activation function ReLU
Dense layer neurons 256
Epochs 50
Optimizer Adam

Fig. 4. Structural diagram of stacked CNN-BiLSTM
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𝑥𝑡 represents deep features retrieved from the occluded images
to create a feature vector; 𝑤𝑖 (𝑖 = 1, . . . ,6) represents the weight
of a stack of units stacked on top of one another through the
VGG layer; ℎ′ and ℎ are the LSTM units of the input feature
sequences; 𝑜𝑡 indicates the output, which follows the feature
vector. The operational procedure is written as follows:

ℎ𝑡 = sigmoid
(
𝑤1𝑥𝑡 +𝑤2ℎ𝑡−1 + 𝑏 (1)

𝑡

)
, (14)

ℎ′𝑡 = sigmoid
(
𝑤3𝑥𝑡 +𝑤5ℎ

′
𝑡+1 + 𝑏

(2)
𝑡

)
, (15)

𝑜′𝑡 = tanh
(
𝑤4ℎ𝑡 + 𝑏 (3)

𝑡

)
, (16)

𝑜′′𝑡 = tanh
(
𝑤6ℎ𝑡 + 𝑏 (4)

𝑡

)
, (17)

𝑜𝑡 =
(𝑜′𝑡 + 𝑜′′𝑡 )

2
. (18)

The values of 𝑏
(1)
𝑡 , 𝑏 (2)

𝑡 , 𝑏 (3)
𝑡 , and 𝑏

(4)
𝑡 reflect the biases in

the Bi-LSTM at time 𝑡, while 𝑜′𝑡 and 𝑜′′𝑡 are the outputs of
the two LSTM units handling the feature vectors. In equation
(18), the output feature vector is equal to the average of the
two vectors at the relevant instant. Finally, the stacked CNN-
BiLSTM provides the congestion status based on the processed
features and if congestion is detected, an alert or message is
generated. This output helps in identifying congested nodes in
real-time and improves the network efficiency which secures the
data from the attacks in the network.

4. RESULT AND DISCUSSION
This section presents an in-depth analysis and description of
the DODGE method outcomes. The efficacy and efficiency of
this effort are compared to those of other currently employed
techniques. The DODGE data collection method was created
in Network Simulator2. After simulation using the produced
trace files, the network performance under various assault situ-
ations is assessed and compared. To facilitate experimentation
and effective performance research, the number of nodes dur-
ing simulations is increased, and the experimental findings are
arranged in the next section. The simulation result for the con-
gestion detection is shown in Fig. 5.

Fig. 5. Congestion detection

4.1. Dataset description

The NS-3 dataset is generated through simulations using the
NS-3 network simulator, often used in MANET and wireless
network research. It provides a rich set of data capturing vari-
ous network parameters, such as packet loss, delay, throughput,
and congestion metrics. The total number of data samples in the
NS-3 dataset depends on the simulation setup, which includes
node count, traffic scenarios, and simulation time. Typically, the
total dataset has around 100 000 records, the training set would
contain approximately 80 000 records. For machine learning
tasks, this dataset is often split into training and testing sets,
with common ratios like 80% for training and 20% for testing.
The dataset contains features useful for predicting network con-
gestion, including timestamps, node ID, and traffic metrics like
queue lengths and packet drops.

The accuracy curve for both vectors and epochs is displayed
in Fig. 6. As epochs improve, the model loss reduces, as shown
by the epoch versus loss curve in Fig. 7.

Fig. 6. Accuracy curve of the DODGE model

Fig. 7. Loss curve of the DODGE model

The effectiveness of the DODGE approach is measured by
the following performance criteria.
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4.2. Performance analysis

The proposed DODGE technology was compared with state-of-
art technologies such as HGFNN [19], QoS-ADCC [21], and
IPA-AODV [24] in terms of PDR, DE, TP, EC, L, DR, and NL.

Packet delivery ratio =
total delivered packets

total sent packets
, (19)

Delay =

𝑛∑︁
𝑖=1

(Dest time (𝑖) −Src time (𝑖))
𝑛

, (20)

Throughput =
No. of successfully received packets

Stop time−Start time
, (21)

𝐸𝑐 =

𝑁∑︁
𝑥=1

𝐸𝑥,𝑃 , (22)

where 𝐸𝑥,𝑃 represents Network 𝑋 total energy usage after 𝑃

rounds of data collection, and 𝑁 denotes the number of net-
works. The PDR represents the number of packets successfully
delivered to the target computer. In Fig. 8, the PDR overall
performance ratings are displayed.

Fig. 8. Comparison of PDR

Figure 9 categorically shows how the proposed strategy finds
the intermediate node with the smallest latency and keeps trying
to transmit the data packet there to achieve the greatest perfor-
mance. The proposed technique has a lower end-to-end latency
than the present method.

Fig. 9. Comparison of delay rate

Figure10 shows the comparison of throughput with existing
techniques. Network TP is the average rate at which a message
is successfully delivered via a communication link.

Fig. 10. Comparison of throughput

According to the observations of results in regular MANET
during different assaults, throughput reduces dramatically; nev-
ertheless, network performance in the proposed network is un-
affected by the attack.

The proposed DODGE has a substantially lower power con-
sumption than the HGFNN, QoS-ADCC, and IPA-AODV that
are currently in use, as shown in Fig. 11. As a result, the proposed
DODGE uses less network power than the existing method. DR
is used to identify the attacker’s IP address, detect vulnerable
activity, and contact the coordinator to check further features.

Fig. 11. Comparison of energy consumption

Figure 12 depicts the average time needed to uncover a single
assault. When compared to existing approaches, DODGE has
the fastest attack detection time and is 87% more effective than
HGFNN, QoS-ADCC, and IPA-AODV.

Figure 13 compares network lifetime with existing ap-
proaches. It is defined as the amount of time that sensor networks
in a MANET dedicate to sensing.

Figure 14 displays a box plot that displays the maximum
latency, first quartile, median, third quartile, and lowest latency
for each of the servers 1, 3, 7, and 15. The test will run for 600
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Fig. 12. Comparison of detection rate

Fig. 13. Comparison of network lifetime

seconds for each node that is, 20, 40, 60, 80, and 100 during
each update. For a given user count, all nodes incur roughly the
same delay.

Fig. 14. Latency vs no. of nodes

4.3. Comparison analysis

The proposed SCNN-BiLSTM is compared with current DL
models such as BiLSTM, DNN, and CNN for congested node
prediction. Table 3 compares the various algorithms such as
BiLSTM, DNN, and CNN and it predicts the congested node in
the shortest time.

The proposed SCNN-BiLSTM improves the overall accuracy
of BiLSTM, DNN, and CNN by 10.05%, 6.59%, and 3.26%,
respectively. And it indicates that the SCNN-BiLSTM achieved
better results than existing techniques.

Table 3
Comparative analysis of existing DL networks and SCNN-BiLSTM

Network AC PR RE SP

BiLSTM 89.26 87.11 78.69 82.38

DNN 92.72 90.35 86.29 89.94

CNN 96.05 94.93 90.56 87.42

SCNN-BiLSTM
(Proposed) 99.31 98.37 96.05 93.52

5. CONCLUSION

This paper, a novel DODGE technique to predict the congested
node effectively. The DODGE scheme is simulated by using
NS2. In terms of PDR, DE, TP, EC, L, DR, and NL. The DODGE
is compared to more established techniques like HGFNN, QoS-
ADCC, and IPA-AODV. The DODGE model increases the TP,
PDR, and reduces DE, and DR, with lower packet loss and
considerably lower computational complexity. Moreover, the
findings show that the SCNN-BiLSTM model is compared with
existing techniques such as BiLSTM, DNN, and CNN. The
proposed SCNN-BiLSTM improves the overall accuracy better
than 10.05%, 6.59%, and 3.26% for BiLSTM, DNN, and CNN,
respectively, in predicting the congested node in the shortest
time. Soon, the system will be improved to identify more types
of network assaults by adding new parameters.
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