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Abstract. The choice of C/C++ compiler significantly impacts the performance and energy consumption of multithreaded numerical algorithms
related to linear algebra. This study investigates the effects of the C/C++ compiler choice and processor frequency scaling (using dynamic voltage
frequency scaling) on the performance and energy consumption of the multithreaded WZ factorization on three different computing platforms,
two featuring Intel Xeon processors and one featuring AMD EPYC processor. The factorization is implemented both without optimization
techniques and with strip-mining. Based on time and energy tests, we have demonstrated that, for the WZ factorization (in both implementations),
each compiler reacts somewhat differently to frequency changes, thus affecting overall performance and energy consumption. The Intel compilers
achieved the best performance and energy savings in a multithreaded environment compared to the other compilers on each of the tested computing
platforms.
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1. INTRODUCTION
The choice of a C/C++ compiler and its associated configura-
tions holds a pivotal sway over the performance and energy con-
sumption characteristics of multithreaded numerical algorithms,
particularly those in the domain of linear algebra. A compiler
with a robust support for multithreading can produce the code
that effectively exploits parallelism, thereby enhancing perfor-
mance and reducing energy consumption on multicore systems.
Researchers and practitioners confront the imperative task of
meticulously evaluating and selecting compilers that align pre-
cisely with the characteristics and requirements of the targeted
multi-core architecture. This judicious selection emerges as a
significant contributing factor in achieving the desired equi-
librium between high-performance computing and energy effi-
ciency. This judicious selection emerges as a significant con-
tributing factor in achieving the desired balance between high-
performance computing and energy efficiency, which is a cru-
cial aspect of complex systems informatiks. As highlighted in
the article [1], energy efficiency and the proper choice of al-
gorithms play a fundamental role in the functioning of parallel
systems.

In today’s computing environment, which is characterized by
the proliferation of multi-core processors, the limitations of con-
ventional programming languages are evident. As a result, there
is a growing need for specialized frameworks and extensions
dedicated to high-performance computing (HPC) to bridge this
gap. Frameworks like OpenMP, utilized in the research under
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discussion, empower programmers to incorporate parallelism
into their codebases. Consequently, it is essential for compilers
to work in tandem with runtime libraries to effectively translate
parallel code into the complexities of processor architecture.
Many HPC applications heavily rely on such extensions, contin-
uously evolving through collaborative efforts between creators
of optimized computational algorithms, such as those in the
article [2], developers and hardware vendors. Thus, compilers
must remain updated with the evolving standards for language
extensions to ensure smooth adaptation to the ever-changing
landscape of parallel computing paradigms.

This article serves as a natural extension of our previous
work [3]. Previous study explored the impact of processor
frequency scaling using dynamic voltage frequency scaling
(DVFS) on the performance and energy consumption of the
WZ factorization, concentrating exclusively on the Intel C++
compiler. The conclusion from our tests was that the highest
frequency is not always the best in terms of time and energy con-
sumption. For the WZ factorization algorithm, it pays to reduce
the frequency to save energy without losing performance. Be-
cause the choice of compiler may prove to be a significant factor
in achieving the desired equilibrium between high-performance
computing and energy efficiency in this extended investigation,
our scope intentionally broadens to encompass compilers adher-
ing to the OpenMP standard, specifically GCC (GNU Compiler
Collection), and two versions of the Intel compiler – ICC and its
latest iteration, OneAPI. OpenMP support was systematically
enabled for each compiler during the compilation process using
the appropriate flags, resulting in the creation of a multithreaded
implementation on the CPU. Additionally, we extended our re-
search to three platforms: two computing platforms with Intel
Xeon processors – Intel Xeon Gold like in [3] and Intel Xeon
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Platinum—and one platform with an AMD EPYC processor.
This selection allows us to evaluate the impact of compilers
on the performance of the WZ algorithm code across a broad
spectrum of architectures, providing insights into how different
hardware setups influence the optimization results.

The WZ matrix factorization, also known as quadrant inter-
locking factorization (QIF), made its debut in 1979 courtesy
of Evans and Hatzopoulos [4]. Their primary objective was
to design a factorization method with superior parallelization
potential compared to the well-established LU factorization.
The distinctive feature of WZ factorization lies in its simulta-
neous zeroing of two columns/rows, contrasting with the LU
factorization, which zeros only one column/row. Since its intro-
duction, WZ factorization has garnered attention from various
researchers, as evidenced by the works of [5–10]. These stud-
ies contribute to the understanding of the applications of WZ
factorization in solving linear systems. As highlighted in the ar-
ticle [11], numerical algebra methods are crucial for optimizing
computations, particularly in robotics.

The WZ factorization algorithm is inherently complex and
particularly well-suited for studying the impact of compiler op-
timizations. Its inherent challenges, such as avoiding issues like
over-synchronization and memory bottlenecks, make it a rig-
orous test case for compilers. This allows for focused research
on maximizing the effectiveness of various optimizations, in-
cluding multithreading and frequency scaling, across different
architectures.

Publication [8] presented a detailed implementation of multi-
threaded WZ factorization using OpenMP on a multicore archi-
tecture, incorporating various nested loop transformation strate-
gies to optimize the program. The implementation of an algo-
rithm plays a crucial role in determining its performance. Hence,
this article examines two distinct multithreaded implementa-
tions of the WZ row algorithm. One implementation serves as
the baseline, while the other incorporates a loop optimization
technique and employs strip-mining. Through this comparative
analysis, we aim to explore how implementation choices, beyond
compilation, significantly impact algorithmic performance.

Our current research utilized the GCC, Intel ICC, and Intel
OneAPI compilers, along with the Intel Xeon Gold, Intel Xeon
Platinum, and AMD EPYC platforms. GCC is an open-source
compiler known for its broad support across many architectures,
while Intel ICC and Intel OneAPI are optimized for Intel pro-
cessors, enabling full use of advanced features like AVX-512.
Intel Xeon Gold and Platinum were chosen due to differences
in core count and cache, allowing for performance comparison
across varying levels of computing power. AMD EPYC, with
its high core count, was included to assess the algorithm on a
platform with significant parallel processing potential.

Energy savings can be achieved through both hardware [12]
and software approaches [13–19]. The former involves inno-
vations in computer hardware, encompassing microarchitecture
advancements and integrated circuit design. On the software
front, energy optimization operates at both the operating system
and application levels. In this article, we concentrate on a hy-
brid approach, combining dynamic voltage and frequency scal-
ing (DVFS) at the operating system level with C/C++ compiler

selection for the program algorithm at both levels (hardware
and software).

The main contributions of this paper are the following.
• Evaluation of multithreaded implementations: We con-

ducted thorough testing and evaluation of two multithreaded
implementations (basic and strip-mining) of the WZ factor-
ization on multicore CPUs. This investigation spans the uti-
lization of three compilers—GCC, Intel Compiler ICC, and
its latest iteration, OneAPI. Additionally, it is conducted on
three different computing platforms: Intel Xeon Gold, Intel
Xeon Platinum, and AMD EPYC.

• Compiler sensitivity to frequency changes: Our analysis re-
veals nuanced variations in the reactions of each compiler to
frequency changes. These differences manifest in discernible
impacts on overall performance and energy consumption
during the execution of the WZ factorization algorithm.

The rest of the paper is organized as follows. Section 2
presents a literature review on the impact of C/C++ compilers on
performance and energy consumption. Section 3 describes the
WZ factorization algorithm using two versions of OpenMP pro-
gramming models. Section 4 presents the methodology we used
in our research. It presents the computational platforms, com-
pilers, the DVFS technique and the RAPL interface we used
to perform time and energy measurements. Sections 5 and 6
present a numerical experimental evaluation of the impact of
the choice of C/C++ compiler and processor frequency scaling
on the performance and energy consumption of WZ factoriza-
tion on multicore architectures. Finally, Section 7 concludes the
paper.

2. RELATED WORK

When examining the impact of C/C++ compiler selection on
the performance and energy consumption of multithreaded al-
gorithms, various approaches are discussed in the existing lit-
erature. The research focused on energy efficiency in multi-
threaded numerical algorithms, as highlighted in the works
of [13, 16, 18, 20], provides insights into compiler consider-
ations and runtime systems aiming to minimize energy con-
sumption and optimize computational performance for numeri-
cal computing. The studies conducted by [20] and [18] involve
an analysis of performance and energy consumption per CPU
for real-world scientific codes related to the solidification mod-
eling application. These applications utilize the phase-field (PF)
method and a generalized finite difference scheme for solving
governing partial differential equations (PDEs). Specifically, the
paper [20] focuses on various C/C++ compilers tailored for
AMD EPYC processors in the context of numerical modeling
of solidification. Moreover, the works presented in [13,16] delve
into the examination of performance and energy consumption
across four OpenMP runtime systems on a non-uniform memory
access (NUMA) platform. Those papers present experimental
studies characterizing OpenMP runtime systems for three fac-
torizations: Cholesky, LU, and QR. The goal is to gain a deeper
understanding of the behavior of these runtime systems in vari-
ous multithreaded scenarios. The works [3] and [10] focus on the
utilization of a specific multi-core algorithm, WZ factorization,
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to investigate performance and energy consumption. These stud-
ies employ the Intel compiler, specifically ICC. The publication
of such research allows for concluding in the context of specific
challenges related to numerical linear algebra algorithms. This
article serves as an extension of the content presented in arti-
cle [3], delving into the role of C/C++ compilers in influencing
the performance, computational efficiency, and energy aspects
of WZ factorization.

3. WZ FACTORIZATION
We present shortly the WZ factorization [4]. We transform a
square and nonsingular matrix A into a product of two matrices,
namely WZ. The matrix W is a matrix of the form of a butterfly
with units on its main diagonal, the matrix Z is a matrix of the
form of an hourglass. Both the matrices are complements of each
other in the sense of the structure of nontrivial elements (one
has nontrivial elements in places where the other has zeros/units
– and vice versa). The forms of these matrices can be seen in
Fig. 1.

We chose this numerical algorithm here because it is quite
complicated and difficult to optimize by the compiler. The
WZ factorization has been parallelized and vectorized using
OpenMP pragmas.

Figure 2 presents a basic algorithm for the WZ factorization
for an even size of the matrix (we only consider even sizes –
without loss of generality).

Considering performance and energy consumption, it is im-
portant to have optimized algorithms and their implementation.
A general technique for improving performance is to take full ad-
vantage of multicore architecture features. A good example is the
use of loop optimization in the code as the most common critical
places are just the loops. One of the known loop optimization
techniques is strip-mining. A loop in the process of strip-mining
is divided into two loops, where the inner one hasBLOCK_SIZE
iterations and the outer one has n/BLOCK_SIZE iterations (n
being the number of iterations in the original loop). The strip-
mining alone can have some positive impact on the performance
(by easing the automatic vectorization process).

W1∗ = (1,0, . . . ,0︸  ︷︷  ︸
𝑛−1

)

W𝑖∗ = (𝑤𝑖1, . . . ,𝑤𝑖,𝑖−1,1,0, . . . ,0︸  ︷︷  ︸
𝑛−2𝑖+1

,𝑤𝑖,𝑛−𝑖+2, . . . ,𝑤𝑖𝑛) for 𝑖 = 2, . . . ,
𝑛

2
,

W𝑖∗ = (𝑤𝑖1, . . . ,𝑤𝑖,𝑛−𝑖 ,0, . . . ,0︸  ︷︷  ︸
2𝑖−𝑛−1

,1,𝑤𝑖,𝑖+1, . . . ,𝑤𝑖𝑛) for 𝑖 =
𝑛

2
+1, . . . , 𝑛−1,

W𝑛∗ = (0, . . . ,0︸  ︷︷  ︸
𝑛−1

,1)

Z𝑖∗ = (0, . . . ,0︸  ︷︷  ︸
𝑖−1

, 𝑧𝑖𝑖 , . . . , 𝑧𝑖,𝑛−𝑖+1,0, . . . ,0) for 𝑖 = 1, . . . ,
𝑛

2
,

Z𝑖∗ = (0, . . . ,0︸  ︷︷  ︸
𝑛−𝑖

, 𝑧𝑖,𝑛−𝑖+1, . . . , 𝑧𝑖𝑖 ,0, . . . ,0) for 𝑖 =
𝑛

2
+1, . . . , 𝑛.

Fig. 1. The output of the WZ factorization – rows of the matrices W and Z

for(k = 0; k < n/2-1; k++)
{

p = n-k-1;
akk = a[k][k];
akp = a[k][p];
apk = a[p][k];
app = a[p][p];
detinv = 1 / (apk*akp - akk*app);
#pragma omp parallel for
for(i = k+1; i < p; i++)
{
w[i][k] = (apk*a[i][p] - app*a[i][k])

* detinv;
w[i][p] = (akp*a[i][k] - akk*a[i][p])

* detinv;
#pragma omp simd
for(j = k+1; j < p; j++)
a[i][j] += - w[i][k]*a[k][j]

- w[i][p]*a[p][j];
}

}

Fig. 2. The basic algorithm for the multithreaded WZ factorization –
pseudocode

In Fig. 3, we present a strip-mining algorithm for the WZ
factorization with the parameter of this algorithm, namely
n/BLOCK_SIZE. We use the compiler clause __assume
which tells the compiler that a given condition is fulfilled – here,
we declare that ii and jj are multiples of the BLOCK_SIZE.

The number of floating-point operations for the WZ factor-
ization algorithm in both versions (basic and optimized for strip
mining technique) is the same and equals 2

3𝑛
3+𝑂 (𝑛2) [9]. How-

ever, the algorithm (in both implementations) is rather memory-
bound than compute-bound – that is, the amount of computa-
tions is relatively small compared to the amount of reads from
and writes to memory. Namely in Figs. 2 and 3, we can see
that in the inner-most loop (which has the most iterations), there
are 5 memory reads/writes for every 4 floating-point operations.
It is less cache-friendly and can impact both the speedup and
energy savings.
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for(k = 0; k < n/2-1; k++)
{

p = n-k-1;
akk = a[k][k];
akp = a[k][p];
apk = a[p][k];
app = a[p][p];
detinv = 1 / (apk*akp - akk*app);
#pragma omp parallel for
for(i = k+1; i < p; i++)
{

w[i][k] = (apk*a[i][p] - app*a[i][k])

* detinv;
w[i][p] = (akp*a[i][k] - akk*a[i][p])

* detinv;
start = RDTTNM(k+1, BLOCK_SIZE);
for(jj = start; jj < p; jj += BLOCK_SIZE)
{

__assume(jj % BLOCK_SIZE == 0);
#pragma omp simd
for(j = jj; j < jj+BLOCK_SIZE; ++j)

a[i][j] += - w[i][k]*a[k][j]
- w[i][p]*a[p][j];

}
}

}

Fig. 3. Strip-mining in the basic algorithm – pseudocode

4. METHODOLOGY

Similarly to [3], we consider two variants of the WZ factor-
ization algorithm: the basic version and block algorithms em-
ploying strip-mining. The dataset for our assessment comprises
a randomly generated square matrix containing 𝑛× 𝑛 double-
precision values, where 𝑛 equals 32 768. Consequently, our test
dataset encompasses 1073741824 cells, equivalent to 8 GB of
data. All algorithm versions adhere to a row-wise layout and are
coded in C++, with vectorization and parallel processing.

Our experimental setup comprises three computing plat-
forms: two featuring Intel Xeon processors and one featuring
an AMD EPYC processor. One platform, identical to that used
in [3], is equipped with a modern Intel Xeon Gold multi-core
processor. The second platform utilizes an Intel Xeon Platinum
processor. The third platform is equipped with a contemporary
AMD EPYC multi-core processor. Detailed information about
our computing platforms is presented in Table 1. It collects in-
formation about the clock frequency, number of cores, cache
size, and thermal design power (TDP) of the Intel Xeon Gold,
Intel Xeon Platinum, and AMD EPYC processors. These de-
tails are crucial because they affect the performance and energy
consumption of the WZ factoring algorithm. Differences in the

number of cores and clock speed affect, for example, parallel
processing capabilities, while TDP affects energy efficiency in
different workloads, which is crucial for focusing the study on
performance and energy consumption.

Intel Xeon Platinum offers higher performance, more cores,
better memory support, and more advanced features compared
to Intel Xeon Gold. This makes Platinum more efficient for
parallel computations. The higher core count allows for better
load balancing, especially for larger problems, which reduces
processing time. EPYC processors have a very large core count
and are optimized for high parallelism. AMD EPYC 9654, with
its more cores and higher maximum frequency (up to 3.7 GHz),
performs better for computations that can effectively use a large
number of cores.

Due to their higher TDP (thermal design power; although both
manufacturers understand this concept slightly differently), In-
tel Xeon Platinum and AMD EPYC processors can use more
power than Intel Xeon Gold processors. This is a result of their
increased performance capabilities, larger number of cores, and
more advanced architectural features, which require more en-
ergy to operate at peak efficiency. The higher TDP indicates that
these processors are designed to handle greater workloads but
at the cost of increased power consumption. Choosing between
them depends on balancing your performance needs with energy
efficiency, as higher TDP processors are better suited for more
demanding tasks but may result in higher operational costs due
to increased power usage.

We have many C++ code compilers available for Intel Xeon
and AMD EPYC processors. The role of the compiler is a key
element in the effective use of the hardware potential of the
system on which specific software runs. An effective compiler
should allow programmers to concentrate on building the code
rather than worrying about the limitations of the compiler. Its
ability to generate an optimal binary should cover even the most
abstract high-level code. Unfortunately, finding a compiler that
meets these criteria is often a challenge. Not all compilers are
able to produce optimal code. In some cases, they can generate
different sets of low-level instructions for the same piece of
high-level code.

For our tests we chose three of available for our processor
compilers, namely: GCC, Intel ICC and Intel OneAPI.

In this research, we select compiler options so that different
compilers can be compared with corresponding options. There-
fore, we give up various types of manual optimizations through
detailed options, because they can be different for different com-
pilers and work differently (like the ICC compiler options used
in [3]: -ipo -no-prec-div -fp-model fast-2).

Table 1
Specification of computing platforms

Processor Clock frequency Cores Cache TDP

Intel Xeon Gold 5218R 800 MHz – 2.1 GHz 2 x 20 cores L1i: 32KB, L1d: 32KB, L2: 1024KB, L3: 28MB 125 W
Intel Xeon Platinum 8358 800 MHz – 2.6 GHz 2 x 32 cores L1i: 32KB, L1d: 48KB, L2: 1280KB, L3: 48MB 270 W
AMD EPYC 9654 400 MHz – 3.7 GHz 96 cores L1i: 32KB, L1d: 32KB, L2: 1024KB, L3: 32MB 320 W
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The following software was used during the tests along with
the following compiler options:
• operating system: CentOS 7.5
• kernel: Linux 3.10.0
• GCC/G++ compiler v. 13.1.1 with the following compiler

options:
-fopenmp -O3

• Intel ICC compiler v. 2021.5.0 with the following compiler
options:
-qoenmp -O3

• Intel OneAPI DPC++/C++ compiler v. 2022.0.0 with the
following compiler options:
-qoenmp -O3

The G++ compiler (GCC), part of the GNU Compiler Col-
lection and developed by the Free Software Foundation [21],
is an open-source compiler known for its capability to produce
binaries for diverse target architectures. It is extensively accessi-
ble on Unix-like operating systems. The G++ compiler utilized
in this project offers default backing for the C++17 standard and
features support for up to the C++23 standard. Additionally, it
incorporates the OpenMP 5.0 standard.

The Intel C++ compiler (ICC) was crafted by the Intel Cor-
poration, specializing in optimization for Intel processor archi-
tectures. It is tailored to accommodate the latest generation of
Intel processors, encompassing support for C++2a and preced-
ing standards. In the context of this paper, the Intel C++ compiler
employed embraces the entirety of the OpenMP 4.5 standard,
along with a subset of functionalities from OpenMP 5.0 [22].
This compiler is open-source.

The Intel OneAPI DPC++/C++ Compiler [23] is the spe-
cific compiler provided by Intel as part of the OneAPI plat-
form. This compiler supports DPC++ and standard C++. It is
optimized to support heterogeneous platforms, which means it
allows programming on different types of processors such as
CPU, GPU, FPGA and others. The compiler used in this article
supports C++2a and preceding standards and covers the entire
OpenMP 4.5 standard along with a subset of the functionality
from OpenMP 5.0. This compiler is open-source.

Intel ICC and OneAPI typically offer better results on Intel
processors because they are optimized to take advantage of Intel-
specific architecture features such as AVX-512, advanced cache
management, and dynamically adjusting execution parameters
to the processor architecture. The -O3 option allows for more
aggressive optimization, which further improves performance.
They may not be as well optimized for AMD architectures. GCC
may perform better on AMD processors than Intel compilers
because it is more broadly optimized for different architectures
and can work better with AMD-specific instruction sets such as
AVX2, which are standard on AMD architectures.

We used the RAPL (Running Average Power Limit) inter-
face [24] to measure the power and energy consumption of
CPU-level components. We access RAPL energy meters via
machine-specific registers (MSR). Counters are 32-bit registers
that indicate the amount of energy used since the processor was
started, they are updated approximately once every 1 ms (or
1000 Hz). Since its introduction, RAPL has been widely used
in energy measurement and modeling. The results presented in
the work [24] suggest that RAPL can be a very useful tool for

measuring and monitoring energy consumption on multicore
computers without the need to implement complicated power
meters. The experience of the authors of the works [10, 18, 25]
with RAPL confirms the results from the literature. RAPL is
able to measure the energy consumption of a complex scientific
application with acceptable accuracy and detail.

We carry out 5 iterations of each version of the algorithm for
each tested frequency, and then average the results to obtain a
statistically correct result. As the results from [10] show, HT
does not provide any speedup benefits for the tested versions
of the WZ factorization algorithm. During the tests, we use
all hardware in terms of the number of processors and test for
the number of threads of 40 on Intel Xeon Gold, 64 on Intel
Xeon Platinum, and 96 on AMD EPYC, respectively, without
HT. In this paper, we only consider the energy consumed by the
processor, we ignore the energy consumed by memory because
it is small and does not change significantly.

Using the technique of dynamic voltage frequency scaling,
we adjusted the clock frequencies through CPU frequency scal-
ing. By default, the intel_pstate driver is used to control
the performance of processors on GNU/Linux systems. In our
case, we did not obtain a satisfactory clock frequency forcing
effect and we used the acpi_cpufreq driver. By default, the
acpi_cpufreq driver follows governor conservative,
which increases or decreases the clock frequency depending
on the load on the core by selecting one of several available
frequencies from the minimum to the maximum supported by
the processor. Each core is independently adjustable. Using the
cpupower program, we changed the minimum and maximum
values of the processor frequency limit at a given level. The fre-
quency setting has been made for all cores of the whole machine.
We used the commands:

cpupower frequency-set -d 1400000
cpupower frequency-set -u 1400000

for setting the minimum and maximum frequency limits at
1.4 GHz. Using this setting means that the clock speed on all
cores does not exceed 1.4 GHz, although this setting may result
in a drop in clock speeds depending on the load on the cores.

We conducted our tests on each platform for 8 selected fre-
quencies from the minimum to the maximum supported by the
processors, making changes as evenly as possible and taking
into account the limitations of the allowable frequency settings
for each processor. On Intel Xeon platforms, only some clock
frequencies can be set, the AMD EPYC platform is much more
flexible in this respect, enabling an almost smooth change of the
clock frequency. For Intel Xeon Gold the frequencies for which
we performed the tests were: 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 and
2.1, for Intel Xeon Platinum they were: 0.8, 1.1, 1.4, 1.6, 1.8,
2.0, 2.3 and 2.6, and for AMD EPYC they were: 0.4, 0.9, 1.4,
1.9, 2.4, 2.9, 3.4 and 3.7.

5. THE PERFORMANCE AND ENERGY CONSUMPTION
FOR BASIC WZ FACTORIZATION ALGORITHM

Similarly to [3], we start by measuring the runtime of thebasic
version of the WZ factorization algorithm for different clock
frequencies. We perform tests for three compilers (ICC, GCC
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and OneAPI) and three different platforms like in Table 1. The
test results are shown in Fig. 4.

As expected, the results presented in Fig. 4 indicate that the In-
tel Xeon Platinum platform provides better overall performance
than the Intel Xeon Gold platform, with the greatest time and
energy savings achieved on the AMD EPYC platform.

Analysis of the impact of compiler and clock frequency on
performance (Fig. 4) revealed irregular variations in execution
times for all three compilers when changing the frequency. The

largest variations were observed on the Intel Xeon Gold plat-
form, especially for the GCC compiler (20% increase in ex-
ecution time when reducing the frequency from 2.1 GHz to
0.8 GHz). For the Intel Xeon Platinum and AMD EPYC plat-
forms, these differences were much smaller (maximum 8% and
2%, respectively).

In terms of execution time, the GCC compiler performed
worse than ICC and OneAPI on both Intel Xeon platforms,
especially at lower frequencies. These differences for Intel Xeon
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Fig. 4. Runtime and energy consumption of basic for data size 32 768 on three computing platforms
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Gold reached 18% and 20%, respectively and about 6% for Intel
Xeon Platinum at 0.8 GHz. On the AMD EPYC platform, the
differences between the compilers were minor.

The energy consumption analysis showed that the GCC com-
piler was the least energy efficient on all platforms, with differ-
ences of up to 18% on 0.8 GHz clock frequency to the detriment
of GCC on the Intel Xeon Gold. For the Intel Xeon Platinum and
AMD EPYC platforms, these differences were 11% on 1.8 GHz
clock frequency and 9% on 0.8 GHz clock frequency, respec-
tively. Furthermore, the increase in clock frequency led to an
increase in energy consumption on all platforms, regardless of
the compiler used.

The energy consumption profile depending on the clock fre-
quency shows significant differences between the Intel and
AMD platforms. While on the Intel platforms, the increase
in clock frequency translates linearly into an increase in en-
ergy consumption which is consistent with typical CPU power
consumption patterns, where higher frequencies require more
power, on the AMD platform we observe an unusual phe-
nomenon. Energy consumption remains at a constant, minimum
level for frequencies from 0.4 to 1.9 GHz, and increases only
occur above this value to a frequency of 3.4 GHz after which it
stays at the same high level. We observe these results regardless
of the compiler used. The AMD EPYC platform stable power
consumption at lower frequencies may be due to its ability to
manage power more efficiently within the cores.

Table 2 presents the optimal clock frequency settings for the
tested algorithm and indicates the most efficient and energy-
efficient compiler for this settings. The best results in terms of
both performance and energy efficiency on all platforms were
achieved by Intel compilers. On both Intel Xeon platforms,
OneApi performed better, while for AMD EPYC platform, a
better result was achieved using the ICC compiler. The last two
columns of Table 2 describe the percentage time loss and energy
gain relative to the change observed when reducing the clock

frequency from the maximum for a given platform to the value
at which we observed the best energy result on each platform,
i.e. 0.8 GHz for the Intel Xeon platforms and 1.9 GHz for the
AMD EPYC platform, respectively.

6. THE PERFORMANCE AND ENERGY CONSUMPTION
FOR BASIC-SM VERSIONS OF WZ FACTORIZATION

In this part, similarly to [3], we will present test results for
block versions of the WZ factorization algorithm with strip-
mining (abbreviated sm). We consider three block sizes: 128,
256, 512, so we have the following versions: basic-sm-128,
basic-sm-256, basic-sm-512. We omitted the tests of
block 64, which performed the worst in the tests, the results of
which are presented in [3]. Our goal is to answer the question
how optimization of sm and additional clock frequency scaling
for the sm version affect performance and energy consumption
depending on the compiler used.

6.1. Analysis across platforms and block sizes

Intel Xeon and AMD EPYC processors differ in terms of cache
configuration (L1, L2, L3) and the number of cores, which
affects how data is stored and processed. Different block sizes
can optimize the use of these resources to varying degrees. In
this section, we examine which block size performs better on
each of the computing platforms.

Figure 5 presents the results for all three platforms and various
block sizes using the ICC compiler. The results for the remaining
compilers confirm the general trends observed in Fig. 5 for each
platform, with a detailed comparison between the compilers to
be discussed in the next section.

Figure 5 shows that the Intel Xeon Platinum platform gen-
erally provides better performance than the Intel Xeon Gold,
while the greatest time and energy savings were achieved on the

Table 2
Energy efficiency for basic (32768)

Compiler Runtime Total energy Performance Energy efficiency Time loss Energy gain
[s] [J] [Gflops/s] [Gflops/J]

Intel Xeon Gold 5218R for frequency 0.8 GHz

GCC 748.93 130 569.40 31.32 0.180 20.8% 5.4%
ICC 613.19 111 111.65 38.25 0.211 4.4% 15.1%
OneAPI 597.08 106 933.86 39.28 0.219 –0.3% 21.3%

Intel Xeon Platinum 8358 for frequency 0.8 GHz
GCC 551.30 93 636.21 42.55 0.251 6.3% 19.2%
ICC 520.62 87 052.95 45.05 0.269 1.0% 24.0%
OneAPI 516.31 86 985.09 45.43 0.270 3.2% 22.1%

AMD EPYC 9654 for frequency 1.9 GHz
GCC 256.62 60 275.65 90.70 0.389 1.0% 21.9%
ICC 253.81 55 021.94 92.42 0.426 0.2% 25.4%
OneAPI 254.43 55 597.97 92.19 0.422 0.5% 24.7%
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Fig. 5. Runtime and energy consumption of basic-sm for ICC compiler on three computing platforms

AMD EPYC platform, consistent with earlier observations for
the basic version of the WZ factorization algorithm.

As before, we observe fluctuations in execution times with
changes in clock frequency, which are more pronounced on
the Intel Xeon platforms and significantly smaller on the AMD
EPYC platform. The energy consumption profile with varying
clock frequency also confirms previous observations—on the
Intel Xeon platforms, there is a regular increase in energy con-
sumption, whereas on the AMD EPYC platform, it remains sta-
ble at a minimal level for frequencies from 0.4 GHz to 1.9 GHz,

with an increase beyond this range up to 3.4 GHz, where it then
stabilizes at a high level.

Analyzing the results in Fig. 5, we can observe slightly better
performance and energy efficiency for a block size of 512 on
the Intel Xeon Gold platform and for a block size of 128 on the
other platforms (see Table 3). The tests showed that this trend is
also consistent for the other two compilers.

The results of tests conducted on the Intel Xeon Gold platform
in the context of WZ factorization with strip-mining indicate that
the optimal block size depends on the clock frequency. How-
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Table 3
Percentage advantage in terms of energy savings for the best block in the context of WZ factorization

using strip-mining, across platforms and compilers

Platform (compared blocks) GCC ICC OneAPI

Intel Xeon Gold (512 vs 128 and 256) 0%−10% 0%−10% 0%−7%
Intel Xeon Platinum (128 vs 256 and 512) 5%−20% 3%−19% 6%−16%
AMD EPYC (128 vs 256 and 512) 0.1%−2% 0.4%−1.9% 0.8%−1.4%

ever, for most clock settings, a block size of 512 proves to be the
most efficient in terms of performance and energy consumption,
regardless of the compiler used (first row in Table 3). The ad-
vantage of the 512 block over other blocks does not exceed 10%.
In situations where this advantage is zero (Table 3), it indicates
that for some frequency settings, there is no noticeable advan-
tage, and there may even be a slight decrease. Nevertheless, for
most frequency settings, the 512 block demonstrates an advan-
tage. Therefore, further comparisons of compiler efficiency on
this platform will be limited to the analysis of results for the
512 block.

On the Intel Xeon Platinum and AMD EPYC platforms, test
results showed better performance and energy efficiency for the
128 block, regardless of clock frequency, with the advantage on
the Intel Xeon Platinum platform reaching up to 20% (second
row in Table 3). On the AMD EPYC platform, the differences
between blocks are minimal, not exceeding 2%, but the 128
block still appears to be more optimal (third row in Table 3).
Consequently, further analyses on these platforms will focus on
the 128 block.

The Intel Xeon Gold processor, with fewer cores and smaller
cache compared to Intel Xeon Platinum and AMD EPYC, bene-
fits more from larger block sizes (512). Larger blocks make bet-
ter use of the available processing resources and cache, minimiz-
ing the overhead associated with context switching and improv-
ing performance. This approach allows for longer operations on
a single core, reducing the costs of memory management and
synchronization between cores.

In contrast, Intel Xeon Platinum and AMD EPYC, with signif-
icantly more cores and larger, more advanced cache structures,
perform better with smaller block sizes (128). Smaller blocks
allow for more efficient parallel data processing across multi-
ple cores, improving overall performance by enabling each core
to operate more effectively. Larger blocks on these platforms,
however, could overwhelm the cache or lead to delays in data
access between cores.

Thus, for the Intel Xeon Gold processor, larger blocks are
more beneficial as they make better use of the limited cores
and cache. On the other hand, Intel Xeon Platinum and AMD
EPYC perform more efficiently with smaller blocks, as tasks
are distributed more evenly across cores, minimizing memory
access delays and enhancing parallelism.

6.2. Platform-specific analysis of compiler impact
on WZ factorization with strip-mining

In this section, we will analyze the impact of the compiler on
the time and energy optimization of the WZ factorization algo-

rithm using strip-mining on various platforms. To this end, we
focus on analyzing the basic-sm version of the WZ factorization
algorithm for the best block sizes for a given platform according
to the results in Table 3.

Figure 6 presents the runtime (left column) and energy con-
sumption (right column) of selected basic-sm versions of the
WZ factorization algorithm across different platforms, from top
to bottom: Intel Xeon Gold, Intel Xeon Platinum, and AMD
EPYC. The green bars represent the runtime and energy con-
sumption for the GCC compiler, the blue bars for the ICC com-
piler, and the orange bars for the OneAPI compiler. All charts use
the same scale, which highlights the difference in bar heights,
demonstrating the performance advantage of the more power-
ful machines. The scale does not start at 0 to better highlight
differences between individual compilers.

Let us now note the differences between the compilers used.
In Fig. 6, we observe that the GCC compiler performs worse
on Intel platforms compared to the ICC and OneAPI compilers,
which are specifically designed for these platforms. Addition-
ally, GCC also underperforms on the AMD platform, despite
having a broader spectrum than the Intel-dedicated ICC and
OneAPI compilers. GCC was the least efficient compiler on all
platforms. This is probably because GCC, while versatile, is not
as well-tuned for specific hardware as ICC and OneAPI are for
Intel processors.

The ICC and OneAPI compilers perform well across all three
tested platforms. However, identifying the superior compiler
reveals a dependency on clock frequency settings. More signif-
icant differences between them are observed on the Intel Xeon
platforms than on the AMD EPYC. On the Intel Xeon Gold
platform, the ICC compiler outperforms OneAPI in 5 out of 8
considered frequencies; for instance, at 2.1 GHz, the advantage
is about 9% in energy and in time. However, at 1.2 GHz, OneAPI
surpasses ICC with a 13% and 9% advantage in time and en-
ergy, respectively. Similar frequency-dependent differences are
observed on the Intel Xeon Platinum platform, where OneAPI
more frequently has the upper hand (in 4 out of 8 frequencies).
For example, at 2.0 GHz, OneAPI shows a 5% and 7% advan-
tage in time and energy, respectively, whereas at 2.3 GHz, ICC
surpasses OneAPI by approximately 4% in both time and energy.

On the AMD EPYC platform, ICC generally outperforms
OneAPI at most tested frequencies, but the differences are mini-
mal, not exceeding 1% and 3% in time and energy consumption,
respectively.

Table 4 provides a summary of the WZ factorization algo-
rithms with strip-mining, along with the most optimal compiler
for each and the frequency at which the best energy consumption
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Fig. 6. Runtime and energy consumption of across platforms and compilers for selected block size

Table 4
Best compiler choice for performance and energy efficiency for selected platform and block size in WZ Factorization with strip-mining

Platform/algorithm Compiler Clock
settings Runtime Total

energy Performance Energy
efficiency

Time
loss

Energy
gain

[GHz] [s] [J] [Gflops/s] [Gflops/J]

Intel Xeon Gold/basic-sm-512 ICC 1.0 666.18 121274.95 35.21 0.193 2.9% 15.4%

Intel Xeon Platinum/basic-sm-128 ICC 0.8 529.88 87694.96 44.27 0.267 4.5% 22.2%

AMD EPYC/basic-sm-128 ICC 1.9 255.52 55287.29 91.80 0.424 0.2% 25.7%

result was achieved. Across all three platforms, the best results
were obtained using the ICC compiler. The last two columns of
Table 4 describe the percentage time loss and energy gain rela-

tive to the change observed when reducing the clock frequency
from the maximum for a given platform to the value indicated
in the third column of the table.
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7. CONCLUSIONS
The subject of our research was to investigate the impact of the
choice of C/C++ compilers when scaling the clock frequency
using the DVFS technique on the performance and energy effi-
ciency of the WZ factorization algorithm in two versions: basic
and optimized using strip-mining. We conducted this analysis
on three different computing platforms: Intel Xeon Gold, Intel
Xeon Platinum and AMD EPYC, to identify the optimal config-
urations for each hardware environment. The goal of this study
was to determine which C/C++ compilers, for different hard-
ware configurations, provide the best performance in terms of
execution time and energy consumption.

In terms of computing platforms, the best performance results
were obtained for the AMD EPYC processor with the largest
number of cores and the widest clock range, despite the largest
TDP that this processor has. In terms of energy efficiency, the
advantage is about 35% over Intel Xeon Platinum, which in turn
shows an advantage of about 20% over Intel Xeon Gold.

Our tests show that Intel ICC and OneAPI compilers outper-
form GCC in terms of execution time optimization and energy
efficiency (Fig. 7). Note the slightly different scales on the X-axis
of the graphs representing the different platforms. The perfor-
mance differences between the compilers were more pronounced
on Intel platforms, where ICC and OneAPI showed a significant
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Fig. 7. Percentage advantage of Intel compiler (ICC) over GCC for WZ factorization algorithm with strip-mining optimization.
The left column concerns the runtime of the energy consumption law

Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 2, p. e153226, 2025 11



B. Bylina, M. Piekarz, and J. Bylina

advantage over GCC. However, there were exceptional cases
where GCC performed better in terms of execution time on In-
tel Xeon platforms. One such case was observed on Intel Xeon
Gold at 2.0 GHz, where GCC outperformed the Intel compiler
for the basic WZ factoring algorithm by 3% in execution time.
On Intel Xeon Platinum, these cases were more frequent (Fig. 7
– middle line), where GCC outperformed in execution time for
the three frequencies tested, although the advantage did not ex-
ceed 8% (Fig. 7). These frequencies – 1.1 GHz, 2.0 GHz, and
2.6 GHz – showed a GCC advantage for the algorithm optimized
for bandwidth mining with smaller block sizes. This advantage
also held when taking into account energy efficiency, but did
not exceed 5% and is observed at 1.1 GHz and 2.6 GHz only for
a block size of 256.

On the AMD EPYC platform, GCC performed relatively bet-
ter compared to Intel platforms, although ICC and OneAPI still
consistently delivered better results, with a smaller advantage of
about 2% in execution time and up to 13% in power consump-
tion.

Both ICC and OneAPI performed well on all platforms tested,
but their relative performance depended on the clock speed
settings. On Intel Xeon platforms, ICC more often outperformed
OneAPI at higher frequencies, while OneAPI showed better
performance at lower frequencies. On AMD EPYC processors,
ICC maintained a small advantage with minimal differences
(Fig. 6).

Figure 7 illustrates the percentage advantage of ICC over
GCC. We can see that this advantage decreases with increasing
hardware capabilities – more cores and higher clock speeds
lead to decreasing performance differences, as shown by the
trend lines (dashed lines – represent polynomial trend lines) that
decrease with increasing clock speed (Fig. 7). It appears that on
more advanced hardware, where computations are more parallel
(due to more cores) and clock speeds are higher, the impact
of specific compiler optimizations becomes less significant on
overall performance. This suggests that on modern hardware,
differences in compiler choice may be less critical, and hardware
quality and capabilities play a more dominant role. However, as
our tests show, especially when energy efficiency is a priority, it
can still be beneficial to reduce the clock speed (to 0.8–1.0 GHz
for Intel Xeon platforms and 1.9 GHz for AMD EPYC). As
shown in Tables 2 and 4, choosing the right compiler also plays
a significant role.

Our tests covered two versions of the WZ factoring algorithm,
the basic version and the one with strip-mining optimization.
The tests showed (see Table 2 and Table 4) that the basic ver-
sion of the algorithm performed slightly better with a minimal
advantage on AMD EPYC and Intel Xeon Platinum platforms
and with a slightly larger advantage of about 10% and 12%,
respectively, in terms of performance and energy efficiency on
the Intel Xeon Gold platform.

In our upcoming research, we aim to explore the nuanced cor-
relations between compiler selections and how they influence the
efficiency and energy consumption of algorithms like the WZ
factorization, along with pivotal ones such as Cholesky, LU, and
QR decomposition in dense linear algebra. Specifically, we will
scrutinize how these influences may vary across diverse hard-

ware architectures, encompassing traditional central processing
units (CPUs), graphics processing units (GPUs), hybrid multi-
processor systems, and emerging architectures like RISC-V.

Data from all conducted experiments are available in the
public repository at https://github.com/mdpiekarz/time-energy-
compiler-choice-article.
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