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Analysis of observability and detectability
for CSTR model of biochemical processes

under uncertain system dynamics and various
sets of measured outputs

Rafał ŁANGOWSKIo and Mateusz CZYŻNIEWSKIo

An analysis of observability and detectability for continuous stirred tank reactor model of
selected biochemical processes has been addressed in this paper. In particular, properties of
observability or detectability of the considered system model have been proved under uncertain
system dynamics in view of various sets of system measured outputs. It is related to considering
system dynamics depending on initial conditions and the impact of inputs taking into account
a given measured output. The method of indistinguishable state trajectories (indistinguishable
dynamics) and tools based on the Lyapunov second method were used to investigate the ob-
servability and detectability properties. The analysis was performed for eight cases of different
sets of measured outputs with association to the realistic features of measuring devices. The
obtained research results are essential for system state estimation that involves the synthesis of
state observers. The proposed approach may be successfully applied to the complex biochemical
non-linear uncertain systems modelled as continuous stirred tank reactors.
Key words: biochemical system, indistinguishable dynamics, non-linear systems, observability,
process modeling
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1. Introduction

Currently, advanced algorithms are being developed in the area of control
theory to perform various tasks, e.g., monitoring, estimation, diagnostics, and
control which are needed for effective handling of majority of modern industrial
plants and processes. The proper operation of these algorithms is linked to the
problem of accessing information about the process variables, e.g., the current
state and control outputs of a given process. This information is provided by the
measuring devices installed in the plant (system) where the process occurs. In
operational practice, only a limited number of process variables are measurable.
This is due to the lack of physical measurement capacity, the lack of allocation of
the necessary number of sensors, or the quality of measurement information pro-
vided is not good enough [19, 33]. Thus, the missing information about process
variables needs to be recovered by employing their estimates for example. Typ-
ically, the estimation is based on mathematical model of the considered process
(system) and measurements of available process variables. In other words, in this
approach, the estimation process is premised on utilising direct measurements of
other available variables and combining them with the mathematical model of
the process given as a set of differential and algebraic equations [1,2,17]. In turn,
the tool used in the estimation (reconstruction) process is the state observer of
various types [1, 2, 16, 21].

It is well-known that the possibility of designing the state observer is strictly
related to the observability and detectability properties of the system model.
Formally, for the known input-output relationship of the system, observabil-
ity addresses the ability to fully and explicitly reconstruct (distinguish) its state
trajectories in a finite time horizon, whereas detectability (asymptotic observabil-
ity) allows only an asymptotic convergence to its state trajectories [11, 13, 23].
Specifically, observability invokes the situation, when utilisation of the algorithm
exploiting direct output measurements is associated with shaping the dynami-
cal response of the estimates of state variables, i.e., by the selection and tuning
values of observer parameters (gains). Whereas, in the case of detectability,
this particular choice cannot possibly be done, therefore the state reconstruction
is only dependent on the dynamic properties of the process indeed. Thus, the
proper investigation of this field asserts crucial information about the potential
possibility of using a particular structure of the observer. Moreover, it should
be noted that both properties are more difficult to investigate in non-linear sys-
tems [4, 5, 11, 13, 15, 20, 23, 25].

The system under consideration is part of a water resource recovery facility
(WRRF) and it is composed of two tanks [26]. The first one is a bioreactor
where biochemical processes appear, while the second is a settler where treated
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sewage is separated from the biomass. Two main approaches to modelling such
a system are known in the literature. These include activated sludge models
(ASMs) and balance models [1, 7, 12, 32]. In this paper, the second approach
is used, and the entire system is modelled as a continuous stirred tank reactor
(CSTR) with the microbial growth reaction and their mortality with aggregated
substrate and biomass concentrations [1, 7]. This is characterised by taking into
account the continuous flow of the biomass which is needed for maintaining the
appropriate conditions needed to perform biochemical reactions. Therefore, in
comparison to, e.g., [4, 25, 28–30], the considered system includes the essential
dynamic relationship between the two mentioned tanks. Hence, the performed
research provides the analysis of an interesting case study, where distinctive cross
interactions have occurred in the state dynamics. These interactions do not appear
in a single bioreactor, thus the analysis of observability and detectability must
be premised on the consideration of more complicated state relations. It is worth
adding that WRRFs are among the systems in which the estimation of process
variables is commonly used, e.g., [1,3,6,7,9,23,25,27]. Thus, the topic addressed
in the paper is timely and relevant to the development of control and monitoring
systems for WRRFs.

Hence, the main aim of this work is to investigate the observability and de-
tectability of a continuous stirred tank reactor model of selected biochemical
processes in the presence of uncertainty in the system dynamics. The method of
indistinguishable state trajectories (indistinguishable dynamics) is used to prove
these properties [8, 11, 13, 18]. Moreover, the approach based on the Lyapunov
second method is used to provide sufficient conditions for observability [15,17].
The analysis presented takes into account various configurations of system mea-
sured outputs. Therefore, the various combinations of biomass, substrate, and
dissolved oxygen concentrations measurements as physically and technologically
available in WRRF are considered [1,7,12]. Fundamentally, this research analysis
is necessary to determine whether it is possible to develop a particular state ob-
server depending on the available measured outputs of the system. To summarize,
the main contributions of this paper are as follows:

• analysis of observability and detectability of a CSTR model of selected
biochemical processes under uncertain system dynamics and various sets
of system measured outputs has been devised,

• method of indistinguishable dynamics in combination with an approach
based on the Lyapunov second method has been used in the research,

• analysis has been presented for eight cases covering a wide range of selec-
tion of system measured outputs, which are physically and technologically
available in WRRF.
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The paper is organized as follows. In Section 2 the background and problem
statement are presented. The considered CSTR model is described in Section 3.
Section 4 includes detailed observability and detectability analysis of the con-
sidered CSTR model. The paper is concluded in Section 5 and completed with
Appendix A.

2. Background

This section delivers the formulation of the considered observability and
detectability problem in terms of the method of indistinguishable dynamics and
fundamental assumptions associated with this investigation.

2.1. General form of affine dynamic system and its properties

The CSTR model of selected biochemical processes is a highly non-linear
dynamic system dependent on multiple inputs. Hence, it can be modelled as the
following multi-input multi-output (MIMO) affine system 𝚺 [15, 17]:

𝚺 :


¤𝒙(𝑡) = 𝒇 (𝒙(𝑡)) +

𝑝∑︁
𝑖p=1

𝒃𝑖p (𝒙(𝑡))𝑢𝑖p (𝑡) +
𝑚∑︁
𝑖m=1

𝒈𝑖m (𝒙(𝑡))𝑣𝑖m (𝑡),

𝒙(𝑡0) = 𝒙0 ,

𝒚(𝑡) = 𝒉(𝒙(𝑡)),

(1)

where: ¤(·) stands for the derivative with respect to 𝑡; 𝑡 ∈ T ⊂ R+ ∪ {0} ⊂ R is the
time instant, and R+ denotes the positive part of R; ∀𝑡 ∈ T : 𝒙(𝑡) ∈ Xn ⊂ Rn is
the 𝑛-dimensional vector of state variables, Xn is a C∞(·) manifold of dimension
𝑛, and 𝒙0 signifies the vector of initial conditions; ∀𝑡 ∈ T : 𝒖(𝑡) ∈ Up ⊂ Rp

is the 𝑝-dimensional vector of control inputs; ∀𝑡 ∈ T : 𝒗(𝑡) ∈ Vm ⊂ Rm is the
𝑚-dimensional vector of unknown (uncertain) inputs; ∀𝑡 ∈ T : 𝒚(𝑡) ∈ Yq ⊂ Rq is
the 𝑞-dimensional vector of measured outputs; ∀𝑡 ∈ T : 𝒃𝑖p , 𝒈𝑖m , 𝒇 : Xn → TXn,
∀𝑡 ∈ T : 𝒉 : Xn → Yq are smooth maps representing control and unknown inputs,
internal system dynamics, and measured outputs, respectively; T(·) stands for the
tangent bundle of vector field.
Assumption 1. System 𝚺 is claimed as complete, i.e., the trajectories of the
system state 𝒙(𝑡) are defined for every 𝑡 ∈ T, every initial condition 𝒙0, and for
all exogenous inputs which belong to their particular sets.
Assumption 2. A general solution of the system 𝚺 is simply denoted by 𝒙(𝑡)
whereas the flow indication, i.e., 𝒙(𝑡) ≡ 𝒙 (𝒙0, 𝒖(·), 𝒗(·), 𝑡) is used only if nec-
essary. Analogously, the output signal is simply denoted by 𝒚(𝑡) instead of
𝒚 (𝒙 (𝒙0, 𝒖(·), 𝒗(·), 𝑡)) or 𝒉 (𝒙 (𝒙0, 𝒖(·), 𝒗(·), 𝑡)).
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Assumption 3. In the operational conditions all signals and parameters in the
system 𝚺 are non-negative and uniformly bounded, i.e., ∀𝑡 ∈ T holds:

0(n×1) ⪯ 𝒙 ⪯ 𝒙(𝑡) ⪯ 𝒙, 0(p×1) ⪯ 𝒖 ⪯ 𝒖(𝑡) ⪯ 𝒖, 0(m×1) ⪯ 𝒗 ⪯ 𝒗(𝑡) ⪯ 𝒗,

where: 0((·)×1) is the zero vector of appropriate dimension; (·) and (·) signify the
real and positive lower and upper bounds on the particular variable; ⪯ denotes
element-wise operation between particular elements of a given vector or matrix.

Assumption 4. The control inputs to the system 𝚺 are defined as 𝒖(𝑡) ∈ Up ⊂ Rp.
Vector 𝒖(𝑡) is the vector of time-dependent functions which are at least 𝒖(𝑡) ∈
C1 (T,Up

)
uniformly bounded Lipschitz continuous functions. Let us denote ∥ · ∥∞

as the supremum norm [31], then ∀𝑡 ∈ T : ∥𝑢𝑖p (𝑡)∥∞ = sup
{
| 𝑢𝑖p | : 𝑡 ∈ T

}
¬

𝑢𝑖p < ∞. Moreover, due to the physical properties of the considered system, it
is assumed that all control inputs are the permanent excited positive signals,
thus [17]:

𝛼u𝑰p×p ¬

𝑇+𝑡∫
𝑡

𝒖(𝜏)𝒖T(𝜏)d𝜏 ¬ 𝛼u𝑰p×p,

where: 𝛼u ∈ R+, 𝛼u ∈ R+ are the lower and upper bounds of the permanently
excited inputs; 𝑇 ∈ T is the selected time period; 𝑰p×p is the identity matrix.

Assumption 5. In the context of observer synthesis, the vector of the measured
outputs is understood as the following vector of state variables 𝒚(𝑡) = 𝒉(𝒙(𝑡)) =
𝑪𝒙(𝑡), where 𝑪 ∈ Rq×n is the output matrix.

2.2. Tools for analyzing observability and detectability

In this paper, two main notions are used, i.e., observability and detectability.
The classic approach to investigating these properties is based on differential
geometry tools [10,13,15]. However, this approach is not always easily applicable.
This issue arises due to complicated calculations and problems with checking
the injectivity of the observability map [30]. To deal with these problems, the
method of indistinguishable state trajectories (indistinguishable dynamics) may
be used [2, 8, 10, 13, 15].

Formally, considering the solution 𝒙 (𝒙0, 𝒖(·), 𝒗(·), 𝑡) of the system𝚺 evolving
over time 𝑡 ∈ T, the following concepts are formulated [2, 13, 22, 23, 25]:

Definition 1. If there exist two distinct initial conditions 𝒙0, �̌�0 ∈ Xn which
under the same control input vector 𝒖(·) and two distinct unknown input vectors
𝒗(·) and �̌�(·) cause the same output behavior, i.e., 𝒚 (𝒙 (𝒙0, 𝒖(·), 𝒗(·), 𝑡)) =

𝒚 (𝒙 (�̌�0, 𝒖(·), �̌�(·), 𝑡)) ∀𝑡 ∈ T, then �̌�0 is strongly u–indistinguishable from 𝒙0.
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𝑰UI
(𝒙,𝒖,𝒗) denotes the set of all strongly u–indistinguishable states from 𝒙0 and

‘strongly’ means that the property of indistinguishability is associated with the
impact of unknown inputs.

Definition 2. The system 𝚺 is strongly u–observable if for any initial condition
𝒙0 ∈ Xn, any control input vector 𝒖(·), and two distinct unknown input vectors
𝒗(·) and �̌�(·), the following relation holds: 𝑰UI

(𝒙,𝒖,𝒗) = {𝒙0}. It means that for each
particular initial condition, 𝒙0 is only indistinguishable from ‘himself’, i.e., all
of the distinct state trajectories are distinguishable from each other.

Definition 3. The system 𝚺 is strongly u–detectable if for any initial condition
𝒙0 ∈ Xn, all initial conditions meeting the precondition of �̌�0 ∈ 𝑰UI

(𝒙,𝒖,𝒗) , any
control input vector 𝒖(·), and two distinct unknown input vectors 𝒗(·) and �̌�(·)
which cause state indistinguishability, all indistinguishable states (integral curves
of its trajectories) mutually converge to each other, i.e.,
lim𝑡→∞ ∥𝒙 (𝒙0, 𝒖(·), 𝒗(·), 𝑡) − 𝒙 (�̌�0, 𝒖(·), �̌�(·), 𝑡)∥2 = 0, where ∥(·)∥2 denotes
the Euclidean norm. It means that indistinguishable trajectories asymptotically
converge to the ‘common curve’ imposed by particular relation between control
inputs, unknown inputs, and measured outputs.

Remark 1. The prefix ‘u–(·)’ is associated with the statement that the exogenous
signals do not affect the observability property of the system. In the literature,
this phenomenon is called uniform observability [2, 10].

The method of indistinguishable dynamics is premised on the straight in-
terpretation of state trajectory indistinguishability, where particular notions are
based on the possibility of unique or asymptotic reconstruction of both state and
unknown input trajectories. Several features of this approach are worth highlight-
ing [4, 14, 23–25]:

1. The Lyapunov function-based approach may be applied for the sake of
analyzing properties of the system 𝚺 such as observability and detectability.

2. Both observability and especially detectability are possible to prove in the
presence of unknown inputs.

3. It is possible to depict particular interactions between system states and
exogenous inputs, which affect observability and detectability properties.

4. The zeros dynamics known from differential geometry-based control ap-
proach, e.g., [15] can be used to investigate observable and unobservable
parts of the system.

5. The results may be directly interpreted as global or local.
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2.3. Problem statement

In general, the investigation of observability and detectability properties under
uncertainty and various sets of system measured outputs for a certain sub-class
of the general class of affine non-linear dynamic systems is the aim of the paper.
This sub-class is represented by the bioreactor with the settler in WRRF. The con-
sidered system model is based on CSTR with the microbial growth reaction and
microbial mortality with the aggregated substrate and biomass concentrations. In
turn, the reaction kinetics function is the source of uncertainty in the model of
system dynamics. Thus, the results of analysis carried out provide the necessary
knowledge for the synthesis of a state observer for this type of system.

3. CSTR model of selected biochemical processes

The mechanistic model which describes the selected biochemical processes is
derived by invoking the mass balance laws. Hence, the considered CSTR model
taking into account the microbial growth reaction and microbial mortality with
the aggregated substrate and biomass concentrations yields [7, 9, 12, 29]:

𝚺CSTR :



¤𝑋 (𝑡) = 𝜇(𝑡)𝑋 (𝑡) − 𝑚x𝑋 (𝑡) − (1 + 𝑟)𝑋 (𝑡)𝐷 (𝑡) + 𝑟𝑋r(𝑡)𝐷 (𝑡),
¤𝑆(𝑡) = −𝑌−1

s 𝜇(𝑡)𝑋 (𝑡) − 𝑚s𝑋 (𝑡) + 𝑆in(𝑡)𝐷 (𝑡)
− (1 + 𝑟)𝑆(𝑡)𝐷 (𝑡),

¤𝐷𝑂 (𝑡) = −𝑌−1
o 𝜇(𝑡)𝑋 (𝑡) − 𝑚o𝑋 (𝑡) + 𝐷𝑂in(𝑡)𝐷 (𝑡)

− (1 + 𝑟)𝐷𝑂 (𝑡)𝐷 (𝑡) + 𝑘L𝑎(𝑡) (𝐷𝑂s − 𝐷𝑂 (𝑡)),
¤𝑋r(𝑡) = 𝑣(1 + 𝑟)𝑋 (𝑡)𝐷 (𝑡) − 𝑣(𝑤 + 𝑟)𝑋𝑟 (𝑡)𝐷 (𝑡),
𝑋 (𝑡0) = 𝑋0 ,

𝑆(𝑡0) = 𝑆0 ,

𝐷𝑂 (𝑡0) = 𝐷𝑂0 ,

𝑋r(𝑡0) = 𝑋r0 ,

(2)

where: 𝜇(𝑡) [−] denotes the reaction kinetics function (growth rate function);
𝑚x ∈ R+ [h−1] is the biomass mortality rate; 𝑚s ∈ R+ [h−1], 𝑚o ∈ R+ [h−1] are
the maintenance coefficients of the substrate and dissolved oxygen concentrations,
respectively; 𝑌o ∈ R+ [−], 𝑌s ∈ R+ [−] denote the yield coefficients of the
dissolved oxygen and substrate concentrations, respectively; 𝑆in(𝑡) ∈ R+ [mg/L],
𝐷𝑂in(𝑡) ∈ R+ [mg/L] signify the concentrations of the substrate in inflow to
the CSTR and dissolved oxygen, respectively; 𝐷𝑂s ∈ R+ [mg/L] stands for
the dissolved oxygen saturation constant; 𝑘L𝑎(𝑡) denotes the gas-liquid transfer
function; 𝐷 (𝑡) = 𝑄in(𝑡)/𝑉a [h−1] is the dilution rate, where 𝑄in(𝑡) ∈ R+ [m3/h],
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𝑉a ∈ R+ [m3] are the inflow rate and bioreactor volume; 𝑟 = 𝑄r(𝑡)/𝑄in(𝑡) ∈
R+ [−] is the constant proportion between the inflow and recirculated flow, where
𝑄r(𝑡) ∈ R+ [m3/h] is the recirculated flow rate; 𝑤 = 𝑄w(𝑡)/𝑄in(𝑡) ∈ R+ [−]
stands for the constant proportion between the sewage flow and inflow, where
𝑄w(𝑡) ∈ R+ [m3/h] is the sewage flow rate; 𝑣 = 𝑉a/𝑉s ∈ R+ [−] denotes
the constant proportion between the bioreactor’s and settler’s volumes, where
𝑉s ∈ R+ [m3] is the settler volume; 𝑋 (𝑡) [mg/L], 𝑆(𝑡) [mg/L], 𝐷𝑂 (𝑡) [mg/L],
𝑋r(𝑡) [mg/L] are the aggregated biomass, aggregated substrate, dissolved oxygen,
and aggregated recirculated biomass concentrations, respectively.

The entire system modelled by (2) is shown in Fig. 1.

Figure 1: Diagram of the modelled system

For further consideration, according to Assumption 3, the set of all possible
system states is defined as:

𝛀 = {(𝑋 (𝑡), 𝑆(𝑡), 𝐷𝑂 (𝑡), 𝑋r(𝑡)) ∈ R4
+ ∪ {04×1} : ∀𝑡 ∈ T

0 ¬ 𝑋 (𝑡) ¬ 𝑋 (𝑡) ¬ 𝑋, 0 ¬ 𝑆(𝑡) ¬ 𝑆(𝑡) ¬ 𝑆,
0 ¬ 𝐷𝑂 (𝑡) ¬ 𝐷𝑂 (𝑡) ¬ 𝐷𝑂, 0 ¬ 𝑋 r(𝑡) ¬ 𝑋r(𝑡) ¬ 𝑋 r}, (3)

It is worth adding that 𝛀 ⊂ Xn ⊂ R4 is an invariant set known with the
condition of the general theory of biochemical processes dynamics [1, 7, 26, 27].
Moreover, according to [24] the system (2) is Lyapunov stable and its state
trajectories are bounded ∀𝑡 ∈ T.

CSTR model 𝚺CSTR includes the following biochemical phenomena [1, 1, 7,
9, 12, 26]:

1) the microbial growth in the bioreactor is premised on the reaction kinetics
function 𝜇(𝑡),

2) the inflow to the given tank and its outflow is imposed by the dilution
rate 𝐷 (𝑡),
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3) the gas-liquid transfer of dissolved oxygen delivered to the bioreactor
is given by the positive term including the oxygen mass transfer coeffi-
cient 𝑘L𝑎(𝑡),

4) the microbial mortality is given as follows. For the biomass death 𝑋 (𝑡) →
𝑋d(𝑡), while for the substrate and dissolved oxygen maintenance 𝐷𝑂 (𝑡) +
𝑆(𝑡) + 𝑋 (𝑡) → 𝑋 (𝑡), where 𝑋d [mg/L] is the dead biomass concentration,

5) the inflow concentrations 𝑆in(𝑡) and 𝐷𝑂in(𝑡) are delivered to the bioreactor
from the outside of the process, e.g., other bioreactors.

It is easy to state that CSTR model 𝚺CSTR neatly fits the general form of
dynamic system (1). Hence, the state variables and particular inputs of the con-
sidered CSTR model are defined as follows:

𝒙(𝑡) =
[
𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡) 𝑥4(𝑡)

]T

≜
[
𝑋 (𝑡) 𝑆(𝑡) 𝐷𝑂 (𝑡) 𝑋r(𝑡)

]T
, 𝑣(𝑡) ≜ 𝜇(𝑡),

𝒖(𝑡) =
[
𝑢1(𝑡) 𝑢2(𝑡) 𝑢3(𝑡) 𝑢4(𝑡)

]T

≜
[
𝐷 (𝑡) 𝑘L𝑎(𝑡) 𝑆in(𝑡) · 𝐷 (𝑡) 𝐷𝑂in(𝑡) · 𝐷 (𝑡)

]T
.

(4)

Thus, and according to Assumption 3, the dilution rate, gas-liquid transfer
function, concentrations of the substrate and dissolved oxygen in inflow to the
CSTR signify the bounded inputs to plant, i.e., 0 ¬ 𝐷 (𝑡) ¬ 𝐷 ∈ R+, 0 ¬ 𝑘L𝑎(𝑡) ¬
𝑘L𝑎 ∈ R+, 0 ¬ 𝑆in(𝑡) ¬ 𝑆in ∈ R+, and 0 ¬ 𝐷𝑂in(𝑡) ¬ 𝐷𝑂in ∈ R+. However,
since in model (2) appears multiplication between the dilution rate and inflow
concentrations, the new (artificial) inputs are proposed in (4) as the parts of the
model for analysis purposes.

Various types of models of reaction kinetics function can be found in the
literature [1,3,7,30]. They differ due to the number of constituting compounds or
because of distinct structures representing the biochemical phenomenon. How-
ever, due to the lack of sufficient knowledge about the values of parameters or
the structure complexity, it is often hard to propose particular kinetics functions.
Therefore, for the observability and detectability analysis purposes, it is assumed
that 𝜇(𝑡) is the uniformly bounded unknown input 𝑣(𝑡), i.e., 0 ¬ 𝜇(𝑡) ¬ 𝜇 ∈ R+.
Otherwise, i.e. 𝑣(𝑡) ≡ 0 ∀𝑡 ∈ T, the reaction kinetics function is treated as the
state-dependent part of the internal system dynamics. Thus, it is given as a product
of two distinct Monod components [7, 9, 24, 27, 29, 30]:

𝜇(𝑡) = 𝜇max
𝑆(𝑡)

𝐾s + 𝑆(𝑡)
𝐷𝑂 (𝑡)

𝐾o + 𝐷𝑂 (𝑡) , (5)
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where ∀𝑡 ∈ T : 𝜇max ∈ R+ [h−1], 𝐾s ∈ R+ [mg/L], 𝐾o ∈ R+ [mg/L] denote the
coefficients of maximum specific growth rate, substrate saturation, and dissolved
oxygen saturation, respectively.

Remark 2. The issue of analyzing the observability and detectability properties
of biochemical systems is strictly associated with not only the selection of mea-
sured outputs but also with appropriate considering the form of reaction kinetics
function. As it has been shown in, e.g., [4, 6, 24, 29, 30], the Monod component
entails indistinguishable state trajectories of the system for the given initial con-
ditions only in the (biomass) wash-out state, where 𝑋 (𝑡) is zero. In detail, the
functional form of Monod component compared to, e.g., the Haldane component
does not affect the verdict of the observability and detectability analysis due to
its monotonicity.

Remark 3. According to the physical requirements of the wastewater treatment
process the wash-out state is highly undesired. However, even knowing that, in
order to carry out a comprehensive analysis of observability and detectability,
this state has been also studied.

4. Analysis of observability and detectability

As stated above the method of indistinguishable state trajectories (in-
distinguishable dynamics) is used to analyze the properties of observability
and detectability. To apply this tool, the following considerations are done
[4, 5, 14, 23, 25, 28–30]. To begin with, the extended system, which embodies
the ‘original – 𝒙(𝑡)’ system and ‘copied – 𝒛(𝑡)’ system, is derived as the extended
model, which has analogous form to the general form of affine system (1). Hence,
the extended system has analogous form to the general form of the system ΣCSTR
invoked in (2) and its dynamics is the eight-dimensional manifold of the original
state space and ‘error’ space [𝒙T(𝑡), 𝜺T(𝑡)]T ∈ 𝛀 × 𝚵 = 𝚿 ⊂ R4

+ × R4. The
‘error’ variables are defined as follows:

𝜺(𝑡) ≜ 𝒙(𝑡) − 𝒛(𝑡) → 𝒛(𝑡) = 𝒙(𝑡) − 𝜺(𝑡). (6)

Moreover, the difference between uncertain parts of the dynamics of the
‘original’ and ‘copied’ systems is determined as follows:

𝜀𝜇 (𝑡) ≜ 𝜇(𝑡) − 𝜇z(𝑡) → 𝜇z(𝑡) = 𝜇(𝑡) − 𝜀𝜇 (𝑡), (7)

where 𝜀𝜇 (𝑡) ∈ R are the ‘error’ of reaction kinetics function, and 𝜇z(𝑡) ∈ R+∪{0}
denotes the reaction kinetics function for ‘copied’ system.

As it has been pointed out in Section 3, the two situations are considered.
The first, when the reaction kinetics function 𝜇(𝑡) is assumed as an unknown
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input, and the second when 𝜇(𝑡) is claimed as a component of model dynamics
(2). Thus, for the investigation of observability and detectability purposes, the
following 𝜇z(𝑡) yields:

𝜇z(𝑡) = 𝜇max
𝑥2(𝑡) − 𝜀2(𝑡)

𝐾s + 𝑥2(𝑡) − 𝜀2(𝑡)
𝑥3(𝑡) − 𝜀3(𝑡)

𝐾o + 𝑥3(𝑡) − 𝜀3(𝑡)
. (8)

The analysis based on the introduced methodology is given as follows [23,
25, 28–30]. It is assumed that the initial conditions of both systems are not
equal. Thus, different integral curve trajectories of the system state, i.e., 𝒙(𝑡) ≠
𝒛(𝑡) ∀𝑡 ∈ T are given. Moreover, measured outputs 𝒚(𝑡) and control inputs 𝒖(𝑡)
associated with both systems are the same for 𝑡 ∈ T. Hence, observability occurs,
when the only possible state solutions of ‘original’ and ‘copied’ state dynamics
are always equal, which is the same as the state trajectory indistinguishability.
In turn, the detectability property takes place, when the indistinguishable state
solutions mutually tend to one another asymptotically in finite time, which is
associated with asymptotic stability of ‘error’ dynamics. The ‘error’ dynamics is
given as follows:

ΣE :



¤𝜀1(𝑡) = 𝜀𝜇 (𝑡)𝑥1(𝑡) + 𝜀1(𝑡)
(
𝜇(𝑡) − 𝜀𝜇 (𝑡)

)
− 𝑚x𝜀1(𝑡)

− (1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡) + 𝑟𝜀4(𝑡)𝑢1(𝑡),
¤𝜀2(𝑡) = −𝑌−1

s
[
𝜀𝜇 (𝑡)𝑥1(𝑡) + 𝜀1(𝑡)

(
𝜇(𝑡) − 𝜀𝜇 (𝑡)

) ]
− 𝑚s𝜀1(𝑡)

− (1 + 𝑟)𝜀2(𝑡)𝑢1(𝑡),
¤𝜀3(𝑡) = −𝑌−1

o
[
𝜀𝜇 (𝑡)𝑥1(𝑡) + 𝜀1(𝑡)

(
𝜇(𝑡) − 𝜀𝜇 (𝑡)

) ]
− 𝑚o𝜀1(𝑡)

− (1 + 𝑟)𝜀3(𝑡)𝑢1(𝑡) − 𝜀3(𝑡)𝑢2(𝑡),
¤𝜀4(𝑡) = 𝑣(1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡) − 𝑣(𝑤 + 𝑟)𝜀4(𝑡)𝑢1(𝑡),
𝜺(𝑡0) = 𝜺0 .

(9)

To increase the clarity of the above description, Figs. 2 and 3 show the
trajectories of error 𝜀1(𝑡) for two different situations.

Figure 2 depicts how detectable trajectories converge to the zero point of
equilibrium when all trajectories of error 𝜀1(𝑡) are globally asymptotically stable
for any initial conditions and for identity relationship between 𝑦(𝑡) and 𝒖(𝑡)
impacts their time evolution. In turn, the situation when 𝑥1(𝑡) is non-detectable
is presented in Fig. 3, where error trajectories 𝜀1(𝑡) do not converge to the
zero equilibrium point. Obviously, for any initial conditions of 𝑥1(𝑡), observable
(distinguishable) trajectories of 𝜀1(𝑡) must always be zero.

It is worth emphasizing, that for error dynamics (9) two types of error of
reaction kinetics function 𝜀𝜇 (𝑡) defined in (6) can be used. Then 𝜇(𝑡) is unknown
and 𝜀𝜇 (𝑡) is treated directly as the difference between distinct unknown inputs.
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Figure 2: The error trajectories 𝜀1 (𝑡) illustrating the time behavior of detectable state
variable 𝑥1 (𝑡) for different initial conditions 𝑥1 (𝑡0)
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Figure 3: The error trajectories 𝜀1 (𝑡) illustrating the time behavior of non-detectable
state variable 𝑥1 (𝑡) for different initial conditions 𝑥1 (𝑡0)

In the second case, when 𝜇(𝑡) is considered as the part of the dynamics, the
proposed 𝜇z(𝑡) is combined with (7), and finally substituted into model (9).
Therefore, systems ΣCSTR and ΣE constitute indistinguishable dynamics and by
incorporating the relevant notions from [5, 14, 25] the following definitions are
introduced:

• System ΣCSTR is globally u–observable if and only if for every input-output
system’s behavior and every 𝜺 (𝑡0) there is only a solution given by 𝜺(𝑡) =
𝜺 = 0 ∀𝑡 ∈ T, where 𝜺 is an equilibrium point of error dynamics (so-called
‘zero point’).

• System ΣCSTR is locally u–observable if and only if the property of global
u–observability is given only in the certain neighborhood V ⊂ 𝚵 of zero
point.
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• System ΣCSTR is globally u–detectable if and only if for every input-output
system’s behavior and every initial condition 𝜺 (𝑡0) ≠ 𝜺, zero point of ΣE is
a globally attractive point for all trajectories defined in T.

• System ΣCSTR is locally u–detectable if and only if the property of for global
u–detectability is given only in the certain neighborhood V ⊂ 𝚵 of zero
point.

Remark 4. Error dynamics (9) does not contain 𝑢3(𝑡) and 𝑢4(𝑡) defined in (4). It is
because of straight subtraction between ‘original’ and ‘copied’ system dynamics.

The analysis presented below in this section focuses on the fundamental
situation where the reaction kinetics function is unknown. However, to show the
impact of this uncertainty, the second part of the analysis shows studies for the
situation when this function is known.

4.1. Part 1 – unknown reaction kinetics function

A detailed analysis of four most interesting cases and a synthetic (tabular)
description of all possibilities limited to a reasonable number of two measured
outputs is presented in this section.

4.1.1. Measured output – biomass concentration 𝑋 (𝑡)

The measured output is 𝑦(𝑡) = ℎ(𝒙(𝑡)) = 𝑥1(𝑡). It implies that ∀𝑡 ∈ T 𝜀1(𝑡) =
0 and ¤𝜀1(𝑡) = 0, thus model (9) is converted into the following differential-
algebraic equation (DAE) system:

0 = 𝜀𝜇 (𝑡)𝑥1(𝑡) + 𝑟𝜀4(𝑡)𝑢1(𝑡),
¤𝜀2(𝑡) = −𝑌−1

s 𝜀𝜇 (𝑡)𝑥1(𝑡) − (1 + 𝑟)𝜀2(𝑡)𝑢1(𝑡),
¤𝜀3(𝑡) = −𝑌−1

o 𝜀𝜇 (𝑡)𝑥1(𝑡) − (1 + 𝑟)𝜀3(𝑡)𝑢1(𝑡) − 𝜀3(𝑡)𝑢2(𝑡),
¤𝜀4(𝑡) = −𝑣(𝑤 + 𝑟)𝜀4(𝑡)𝑢1(𝑡),
𝜺(𝑡0) = 𝜺0 .

(10)

By substituting the first algebraic equation into the second and third differential
equations, system (10) yields:

0 = 𝜀𝜇 (𝑡)𝑥1(𝑡) + 𝑟𝜀4(𝑡)𝑢1(𝑡),
¤𝜀2(𝑡) = 𝑌−1

s 𝑟𝜀4(𝑡)𝑢1(𝑡) − (1 + 𝑟)𝜀2(𝑡)𝑢1(𝑡),
¤𝜀3(𝑡) = 𝑌−1

o 𝑟𝜀4(𝑡)𝑢1(𝑡) − (1 + 𝑟)𝜀3(𝑡)𝑢1(𝑡) − 𝜀3(𝑡)𝑢2(𝑡),
¤𝜀4(𝑡) = −𝑣(𝑤 + 𝑟)𝜀4(𝑡)𝑢1(𝑡),
𝜺(𝑡0) = 𝜺0 .

(11)
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Now, there are two variants to be considered. The first takes place when state
variable 𝑥1(𝑡) is positive, whereas the second is linked with a wash-out state,
where 𝑥1(𝑡) becomes zero.

In the first option, when 𝑥1(𝑡) > 0 and input 𝑢1(𝑡) is always positive, the
last dynamic equation from (10) is globally asymptotically stable. Therefore,
𝜀4(𝑡) → 0, which means that 𝑥4(𝑡) is globally strongly u–detectable. Hence,
dynamics (11) is reduced to:

0 = 𝜀𝜇 (𝑡)𝑥1(𝑡) + 𝑟𝛾1(𝑡)𝑢1(𝑡),
¤𝜀2(𝑡) = 𝑌−1

s 𝑟𝛾(𝑡)𝑢1(𝑡) − (1 + 𝑟)𝜀2(𝑡)𝑢1(𝑡),
¤𝜀3(𝑡) = 𝑌−1

o 𝑟𝛾1(𝑡)𝑢1(𝑡) − (1 + 𝑟)𝜀3(𝑡)𝑢1(𝑡) − 𝜀3(𝑡)𝑢2(𝑡),
𝜺(𝑡0) = 𝜺0 ,

(12)

where 𝜀4(𝑡) ≡ 𝛾1(𝑡) = 𝜀4(𝑡0) exp
[
−𝑣(𝑤 + 𝑟)

∫ 𝑡
𝑡0
𝑢1(𝜏)d𝜏

]
→ 0 when 𝑡 → ∞ is

the solution of the third differential equation from (11).
Therefore, taking into account that both inputs 𝑢1(𝑡) and 𝑢2(𝑡) are always pos-

itive, the remaining dynamic equations in (12) asymptotically tend to zero, which
means that state variables 𝑥2(𝑡) and 𝑥3(𝑡) are globally strongly u–detectable.
Moreover, since kinetics-related error 𝜀𝜇 (𝑡) is associated with positive signals
𝑥1(𝑡) and 𝑢1(𝑡) and globally asymptotically stable 𝛾1(𝑡), the reaction kinetics
function is globally u–detectable. The fact that the right-hand sides of differential
equations from (12) are always negative can be explained in an analogous way
to [29], where the classical partial integration approach has been applied.

In turn, in the second option, where 𝑥1(𝑡) = 0, the algebraic equation from
(11) is always equal to zero. It causes that expression 𝑟𝜀4(𝑡)𝑢1(𝑡) = 0 ∀𝑡 ∈ T,
which means that due to the positiveness of 𝑢1(𝑡), 𝜀4(𝑡) must be always equal
to zero. Hence, the fourth state variable is globally strongly u–observable. In the
end, the whole dynamics (11) is reduced to:

¤𝜀2(𝑡) = −(1 + 𝑟)𝜀2(𝑡)𝑢1(𝑡),
¤𝜀3(𝑡) = −(1 + 𝑟)𝜀3(𝑡)𝑢1(𝑡) − 𝜀3(𝑡)𝑢2(𝑡),
𝜺(𝑡0) = 𝜺0 .

(13)

Taking into account that both inputs 𝑢1(𝑡) and 𝑢2(𝑡) are always positive, the
remaining dynamic equations in (13) globally asymptotically tend to zero, which
means that they are globally strongly u–detectable. However, in comparison to
the first variant, it is not possible to make any statement about the observability
and detectability of 𝜇(𝑡), hence this variable is treated as non-detectable.
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4.1.2. Measured output – substrate concentration 𝑆(𝑡)

The measured output is 𝑦(𝑡) = ℎ(𝒙(𝑡)) = 𝑥2(𝑡). It implies that ∀𝑡 ∈ T 𝜀2(𝑡) =
0 and ¤𝜀2(𝑡) = 0, thus model (9) is converted into the following DAE system:

𝑌s𝑚s𝜀1(𝑡) = −
[
𝜀𝜇 (𝑡)𝑥1(𝑡) + 𝜇(𝑡)𝜀1(𝑡) − 𝜀𝜇 (𝑡)𝜀1(𝑡)

]
,

¤𝜀1(𝑡) = − [𝑌s𝑚s + 𝑚x + (1 + 𝑟)𝑢1(𝑡)] 𝜀1(𝑡) + 𝑟𝜀4(𝑡)𝑢1(𝑡),
¤𝜀3(𝑡) =

[
𝑌s𝑌

−1
o 𝑚s − 𝑚o

]
𝜀1(𝑡) − [(1 + 𝑟)𝑢1(𝑡) + 𝑢2(𝑡)] 𝜀3(𝑡),

¤𝜀4(𝑡) = 𝑣(1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡) − 𝑣(𝑤 + 𝑟)𝜀4(𝑡)𝑢1(𝑡),
𝜺(𝑡0) = 𝜺0 .

(14)

Analogously to 4.1.1, the considerations are divided into two variants, i.e.,
when 𝑥1(𝑡) is always positive or when it becomes zero.

In the first variant, when 𝑥1(𝑡) > 0, if dynamics (14) is asymptotically stable,
then it is supposed that 𝑥1(𝑡), 𝑥3(𝑡), and 𝑥4(𝑡) are globally strongly u–detectable
and 𝜇(𝑡) is globally u–detectable. To show that, it must be proved, that the first
and fourth differential equations from (14) have global attractor in (𝜀1, 𝜀4) =

(0, 0) equilibrium point. This particular sub-dynamics of 𝜀1(𝑡) and 𝜀4(𝑡) can
be decoupled from the third differential equation due to the non-occurrence of
𝜀3(𝑡) in mentioned equations. This issue can be resolved in the following way. By
invoking the method of indistinguishable dynamics [4, 22, 23, 25], the Lyapunov
analysis can be employed [17].

Remark 5. It is worth emphasizing that the current literature where the method of
indistinguishable dynamics has been applied (e.g. [4,23]) does not show examples
of using the second Lyapunov method. However, some tools like the equilibrium
point linearization, the first Lyapunov method, or Poincaré-Bendixson theorem
have been used.

Thus, assuming the following Lyapunov functionV (𝜀1(𝑡), 𝜀4(𝑡)) : 𝚵 → R+:

V (𝜀1(𝑡), 𝜀4(𝑡)) = 0.5
(
𝜀2

1(𝑡) + 𝑣
−1𝜀2

4(𝑡)
)
,

the analysis of detectability is performed (the proof that there is only one zero
equilibrium point related to dynamics (14) is shown in Appendix A). Thus, the
time derivative of V(𝜀1(𝑡), 𝜀4(𝑡)) is as follows:

¤V (𝜀1(𝑡), 𝜀4(𝑡)) = − (𝑌s𝑚s + 𝑚x + (1 + 𝑟)𝑢1(𝑡)) 𝜀2
1(𝑡)

+ (2𝑟 + 1)𝑢1(𝑡)𝜀1(𝑡)𝜀4(𝑡) − (𝑤 + 𝑟)𝑢1(𝑡)𝜀2
4(𝑡) < 0. (15)
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Next, by taking some transformation using Schwartz inequality [3, 17], the
part of the inequality (15) converts to:

𝜀1(𝑡)𝜀4(𝑡) ¬ |𝜀1(𝑡)𝜀4(𝑡) | ¬ |𝜀1(𝑡) | |𝜀4(𝑡) | ¬ 0.5
(
𝜀2

1(𝑡) + 𝜀
2
4(𝑡)

)
.

Thus, the right-hand side of inequality (15) can be assessed by:
¤V (𝜀1(𝑡), 𝜀4(𝑡)) ¬ − (𝑌s𝑚s + 𝑚x + (1 + 𝑟)𝑢1(𝑡)) 𝜀2

1(𝑡) + 0.5(2𝑟 + 1)𝑢1(𝑡)𝜀2
1(𝑡)

+ 0.5(2𝑟 + 1)𝑢1(𝑡)𝜀2
4(𝑡) − (𝑤 + 𝑟)𝑢1(𝑡)𝜀2

4(𝑡) < 0. (16)

Therefore, by reordering the components of (16), the following inequalities
are given: {

0 > −𝑌s𝑚s − 𝑚x − [(1 + 𝑟) − 0.5(2𝑟 + 1)] 𝑢1(𝑡)
0 > − ((𝑤 + 𝑟) − 0.5(2𝑟 + 1)) 𝑢1(𝑡)

→
{

0 > − (0.5𝑢1(𝑡) + 𝑌s𝑚s + 𝑚x)
𝑤 > 0.5

Hence, it is shown ∀𝑡 ∈ T that (𝜀1, 𝜀4) = (0, 0) is globally asymptotically
stable equilibrium point when 𝑤 > 0.5, which means that 𝑥1(𝑡) and 𝑥4(𝑡) are
globally strongly u–detectable. Knowing that, dynamics (14) can be presented as:

𝑌s𝑚s𝜀1(𝑡) = −
[
𝜀𝜇 (𝑡)𝑥1(𝑡) + 𝜇(𝑡)𝜀1(𝑡) − 𝜀𝜇 (𝑡)𝜀1(𝑡)

]
,

¤𝜀3(𝑡) =
[
𝑌s𝑌

−1
o 𝑚s − 𝑚o

]
𝛾2(𝑡) − [(1 + 𝑟)𝑢1(𝑡) + 𝑢2(𝑡)] 𝜀3(𝑡),

𝜺(𝑡0) = 𝜺0 ,

(17)

where 𝛾2(𝑡) ≡ 𝜀1(𝑡) is the solution of the first differential equation, which
vanishes asymptotically to zero for any initial condition. Therefore, considering
the positiveness of both inputs and the property of 𝛾2(𝑡), the third state variable is
globally strongly u–detectable. If 𝜀1(𝑡) → 0 and 𝜀3(𝑡) → 0 then 𝜇(𝑡) is globally
strongly u–detectable.

In the second option, when the 𝑥1(𝑡) = 0, the investigation results are as
follows. When 𝑥1(𝑡) is eliminated from (14), the new indistinguishable dynamics
is given as:

0 = −
[
𝑌s𝑚s + 𝜇(𝑡) − 𝜀𝜇 (𝑡)

]
𝜀1(𝑡),

¤𝜀1(𝑡) = − [𝑌s𝑚s + 𝑚x + (1 + 𝑟)𝑢1(𝑡)] 𝜀1(𝑡) + 𝑟𝜀4(𝑡)𝑢1(𝑡),
¤𝜀3(𝑡) =

[
𝑌s𝑌

−1
o 𝑚s − 𝑚o

]
𝜀1(𝑡) − [(1 + 𝑟)𝑢1(𝑡) + 𝑢2(𝑡)] 𝜀3(𝑡),

¤𝜀4(𝑡) = 𝑣(1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡) − 𝑣(𝑤 + 𝑟)𝜀4(𝑡)𝑢1(𝑡),
𝜺(𝑡0) = 𝜺0 .

(18)
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The investigation of global strong u–detectability of 𝑥1(𝑡), 𝑥3(𝑡), and 𝑥4(𝑡) can
be performed in the same way as in the situation when the biomass concentration
(𝑥1(𝑡)) is positive. It is because the differential equations contained in dynamics
(18) are the same as in dynamics (14). Thus, by applying the presented method-
ology, i.e. (15)–(17), it can be shown that 𝑥1(𝑡), 𝑥3(𝑡), and 𝑥4(𝑡) are globally
strongly u–detectable, due to asymptotic convergence of particular differential
equations to zero point. However, due to the form of the algebraic equation from
(18), nothing can be said on the u–detectability of 𝜇(𝑡). In other words, if 𝜀1(𝑡)
tends to zero asymptotically, then the rest of invoked expression cannot indi-
cate anything about the asymptotic convergence of 𝜀𝜇 (𝑡), which coincide with
𝑌s𝑚s + 𝜇(𝑡) expression, which is not vanishing in time T.

4.1.3. Measured output – dissolved oxygen concentration 𝐷𝑂 (𝑡)

The measured output is 𝑦(𝑡) = ℎ(𝒙(𝑡)) = 𝑥3(𝑡). It implies that ∀𝑡 ∈ T 𝜀3(𝑡) =
0 and ¤𝜀3(𝑡) = 0, thus model (9) is converted into the following DAE system:

¤𝜀1(𝑡) = 𝜀𝜇 (𝑡)𝑥1(𝑡) + 𝜇(𝑡)𝜀1(𝑡) − 𝜀𝜇 (𝑡)𝜀1(𝑡) − 𝑚x𝜀1(𝑡)
− (1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡) + 𝑟𝜀4(𝑡)𝑢1(𝑡),

¤𝜀2(𝑡) = −𝑌−1
s

[
𝜀𝜇 (𝑡)𝑥1(𝑡) + 𝜇(𝑡)𝜀1(𝑡) − 𝜀𝜇 (𝑡)𝜀1(𝑡)

]
− 𝑚s𝜀1(𝑡)

− (1 + 𝑟)𝜀2(𝑡)𝑢1(𝑡),
0 = −𝑌−1

o
[
𝜀𝜇 (𝑡)𝑥1(𝑡) + 𝜇(𝑡)𝜀1(𝑡) − 𝜀𝜇 (𝑡)𝜀1(𝑡)

]
− 𝑚o𝜀1(𝑡),

¤𝜀4(𝑡) = 𝑣(1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡) − 𝑣(𝑤 + 𝑟)𝜀4(𝑡)𝑢1(𝑡),
𝜺(𝑡0) = 𝜺0 .

(19)

By invoking to the third equation in (19), the following transformation is
given:

¤𝜀1(𝑡) = −𝑌o𝑚o𝜀1(𝑡) − 𝑚x𝜀1(𝑡) − (1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡) + 𝑟𝜀4(𝑡)𝑢1(𝑡),
¤𝜀2(𝑡) = 𝑌−1

s 𝑌o𝑚o𝜀1(𝑡) − 𝑚s𝜀1(𝑡) − (1 + 𝑟)𝜀2(𝑡)𝑢1(𝑡),
𝑌o𝑚o𝜀1(𝑡) = −

[
𝜀𝜇 (𝑡)𝑥1(𝑡) + 𝜇(𝑡)𝜀1(𝑡) − 𝜀𝜇 (𝑡)𝜀1(𝑡)

]
,

¤𝜀4(𝑡) = 𝑣(1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡) − 𝑣(𝑤 + 𝑟)𝜀4(𝑡)𝑢1(𝑡),
𝜺(𝑡0) = 𝜺0 .

(20)

If 𝑥1(𝑡) > 0, then it is assumed, analogously to the considerations presented in
Section 4.1.2, that 𝑥1(𝑡), 𝑥2(𝑡), 𝑥4(𝑡) are globally strongly u–detectable provided
that dynamics (20) is asymptotically stable. To show that this property holds,
the same analysis premised on the second Lyapunov method can be performed
as it is done in Section 4.1.2. Thus, by substituting dynamics (14) by dynamics
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(20), 𝜀1(𝑡) and 𝜀4(𝑡) tend asymptotically to zero for any initial conditions in
time T if and only if parameter 𝑤 > 0.5. Hence, it is shown that (𝜀1, 𝜀4) = (0, 0)
is globally asymptotically stable equilibrium point, which means that 𝑥1(𝑡) and
𝑥4(𝑡) are globally strongly u–detectable. Knowing that, dynamics (20) can be
presented as:

𝑌o𝑚o𝜀1(𝑡) = −
[
𝜀𝜇 (𝑡)𝑥1(𝑡) + 𝜇(𝑡)𝜀1(𝑡) − 𝜀𝜇 (𝑡)𝜀1(𝑡)

]
,

¤𝜀2(𝑡) =
[
𝑌o𝑌

−1
s 𝑚o − 𝑚s

]
𝛾3(𝑡) − (1 + 𝑟)𝑢1(𝑡)𝜀2(𝑡),

𝜺(𝑡0) = 𝜺0 ,

(21)

where 𝛾3(𝑡) ≡ 𝜀1(𝑡) is the solution of the first differential equation, which
vanishes asymptotically. Therefore, considering the positiveness of both control
inputs and the property of 𝛾3(𝑡), state variable 𝑥2(𝑡) is globally strongly u–
detectable.

In turn, if 𝑥1(𝑡) = 0, then the investigation results are as follows. When 𝑥1(𝑡)
is cancelled from (20), then the new indistinguishable dynamics is given as:

0 = −
[
𝑌o𝑚o + 𝜇(𝑡) − 𝜀𝜇 (𝑡)

]
𝜀1(𝑡),

¤𝜀1(𝑡) = − [𝑌o𝑚o + 𝑚x + (1 + 𝑟)𝑢1(𝑡)] 𝜀1(𝑡) + 𝑟𝜀4(𝑡)𝑢1(𝑡),
¤𝜀2(𝑡) =

[
𝑌o𝑌

−1
s 𝑚o − 𝑚s

]
𝜀1(𝑡) − (1 + 𝑟)𝑢1(𝑡)𝜀2(𝑡),

¤𝜀4(𝑡) = 𝑣(1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡) − 𝑣(𝑤 + 𝑟)𝜀4(𝑡)𝑢1(𝑡),
𝜺(𝑡0) = 𝜺0 .

(22)

The investigation of global strong u–detectability of 𝑥1(𝑡), 𝑥2(𝑡), and 𝑥4(𝑡) can
be performed in the same way as in the situation when the biomass concentration
(𝑥1(𝑡)) is positive. It is because the differential equations contained in dynamics
(18) are the same as in dynamics (14). Thus, by applying the presented method-
ology, i.e. (15)–(17), it can be shown that 𝑥1(𝑡), 𝑥2(𝑡), and 𝑥4(𝑡) are globally
strongly u–detectable, due to asymptotic convergence of particular differential
equations to zero point. However, due to the form of the algebraic equation from
(22), nothing can be said on the u–detectability of 𝜇(𝑡). In other words, if 𝜀1(𝑡)
tends to zero asymptotically, then the rest of invoked expression cannot indi-
cate anything about the asymptotic convergence of 𝜀𝜇 (𝑡), which coincide with
𝑌o𝑚o + 𝜇(𝑡) expression, which is not vanishing in time T.

4.1.4. Measured output – recirculated biomass concentration 𝑋r (𝑡)

The measured output is 𝑦(𝑡) = ℎ(𝒙(𝑡)) = 𝑥4(𝑡). It implies that ∀𝑡 ∈ T
𝜀4(𝑡) = 0 and ¤𝜀4(𝑡) = 0, thus model (9) is converted into the following DAE



ANALYSIS OF OBSERVABILITY AND DETECTABILITY FOR CSTR MODEL
OF BIOCHEMICAL PROCESSES UNDER UNCERTAIN SYSTEM DYNAMICS. . . 685

system:

¤𝜀1(𝑡) = 𝜀𝜇 (𝑡)𝑥1(𝑡) + 𝜇(𝑡)𝜀1(𝑡) − 𝜀𝜇 (𝑡)𝜀1(𝑡) − 𝑚x𝜀1(𝑡)
− (1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡),

¤𝜀2(𝑡) = −𝑌−1
s

[
𝜀𝜇 (𝑡)𝑥1(𝑡) + 𝜇(𝑡)𝜀1(𝑡) − 𝜀𝜇 (𝑡)𝜀1(𝑡)

]
− 𝑚s𝜀1(𝑡)

− (1 + 𝑟)𝜀2(𝑡)𝑢1(𝑡),
¤𝜀3(𝑡) = −𝑌−1

o
[
𝜀𝜇 (𝑡)𝑥1(𝑡) + 𝜇(𝑡)𝜀1(𝑡) − 𝜀𝜇 (𝑡)𝜀1(𝑡)

]
− 𝑚o𝜀1(𝑡)

− (1 + 𝑟)𝜀3(𝑡)𝑢1(𝑡) − 𝜀3(𝑡)𝑢2(𝑡),
0 = 𝑣(1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡),

𝜺(𝑡0) = 𝜺0 .

(23)

By invoking to the last equation in (23), if ∀𝑡 ∈ T 𝑢1(𝑡) ≠ 0 then ∀𝑡 ∈
T 𝜀1(𝑡) = 0 and ¤𝜀1(𝑡) = 0, hence 𝑥1(𝑡) is globally strongly u–observable. It leads
to the following transformation of (23):

0 = 𝜀𝜇 (𝑡)𝑥1(𝑡),
¤𝜀2(𝑡) = −𝑌−1

s 𝜀𝜇 (𝑡)𝑥1(𝑡) − (1 + 𝑟)𝜀2(𝑡)𝑢1(𝑡),
¤𝜀3(𝑡) = −𝑌−1

o 𝜀𝜇 (𝑡)𝑥1(𝑡) − (1 + 𝑟)𝜀3(𝑡)𝑢1(𝑡) − 𝜀3(𝑡)𝑢2(𝑡),
𝜺(𝑡0) = 𝜺0 .

(24)

Because the left-hand side of the algebraic equation in (24) must be equal to
zero ∀𝑡 ∈ T, the considerations about observability and detectability of 𝑥2(𝑡) and
𝑥3(𝑡) are divided into two cases. The first is associated with the fact that 𝑥1(𝑡) is
zero, whereas the other one is linked to the fact that the kinetics function error
𝜀𝜇 (𝑡) is equal to zero ∀𝑡 ∈ T, assuming that 𝑥1(𝑡) is always positive.

In the first case, where 𝑥1(𝑡) becomes zero, the behavior of kinetics function
error 𝜀𝜇 (𝑡) cannot be directly established. Additionally, due to the boundedness
of the state trajectories, the kinetics function does not tend infinitely. Taking into
account that the inputs are the permanent excited positive signals, the dynamics
of 𝜀2(𝑡) and 𝜀3(𝑡) from (24) asymptotically tend to zero. Therefore, in the first
case 𝑥2(𝑡) and 𝑥3(𝑡) are globally strongly u–detectable, whereas nothing can be
said about the observability or detectability of kinetics function 𝜇(𝑡). In turn, in
the second case, when 𝑥1(𝑡) is always positive a different result is obtained. The
algebraic equation becomes zero ∀𝑡 ∈ T when error 𝜀𝜇 (𝑡) reveals this particular
property, which makes 𝜇(𝑡) strongly u–observable. Next, to make the right-hand
side of the third equation in (24) equals zero, both 𝜀2(𝑡) and 𝜀3(𝑡) and of course
its derivatives must tend to zero asymptotically. Hence, in the second case, 𝑥2(𝑡)
and 𝑥3(𝑡) are globally strongly u–detectable.
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4.1.5. Part 1 – summary

Analogous analysis to cases described in Sections 4.1.1–4.1.4 has been carried
out for the combinations of measured outputs and its results, together with results
of Sections 4.1.1–4.1.4 are summarised in Table 1.

Table 1: Part 1 – results of the observability or detectability analysis

Case Variable

No. wash-out 𝑥1 (𝑡) 𝑥2 (𝑡) 𝑥3 (𝑡) 𝑥4 (𝑡) 𝜇(𝑡)

(1)
NO M D D D O

YES M D D D ND

(2)
NO D M D D D

YES D M D D ND

(3)
NO D D M D D

YES D D M D ND

(4)
NO O D D M O

YES O D D M ND

(5)
NO D M M O D

YES D M M O ND

(6)
NO M D D M O

YES M O D M ND

(7)
NO O M D M O

YES O M D M ND

(8)
NO O D M M O

YES O D M M ND

The symbols used in Table 1 denote ‘O’ – observable, ‘D’ – detectable, ‘M’
– measured, and ‘ND’ – non-detectable.

4.2. Part 2 – known reaction kinetics function

A detailed analysis of three cases not presented in [5] and a synthetic (tabular)
description of all possibilities limited to a reasonable number of two measured
outputs is presented in this section.
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4.2.1. Measured output – substrate concentration 𝑆(𝑡)

The measured output is 𝑦(𝑡) = ℎ(𝒙(𝑡)) = 𝑥2(𝑡). It implies that ∀𝑡 ∈ T 𝜀2(𝑡) =
0 and ¤𝜀2(𝑡) = 0, thus model (9) is converted into the following DAE system:

¤𝜀1(𝑡) = 𝜇(𝑡)𝑥1(𝑡) − 𝜇z(𝑡) (𝑥1(𝑡) − 𝜀1(𝑡)) − 𝑚x𝜀1(𝑡)
− (1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡) + 𝑟𝜀4(𝑡)𝑢1(𝑡),

0 = −𝑌−1
s [𝜇(𝑡)𝑥1(𝑡) − 𝜇z(𝑡) (𝑥1(𝑡) − 𝜀1(𝑡))] − 𝑚s𝜀1(𝑡),

¤𝜀3(𝑡) = −𝑌−1
o [𝜇(𝑡)𝑥1(𝑡) − 𝜇z(𝑡) (𝑥1(𝑡) − 𝜀1(𝑡))] − 𝑚o𝜀1(𝑡)

− (1 + 𝑟)𝜀3(𝑡)𝑢1(𝑡) − 𝜀3(𝑡)𝑢2(𝑡),
¤𝜀4(𝑡) = 𝑣(1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡) − 𝑣(𝑤 + 𝑟)𝜀4(𝑡)𝑢1(𝑡),
𝜺(𝑡0) = 𝜺0 .

(25)

By invoking to the second equation in (25), the following transformation is
given:

¤𝜀1(𝑡) = −𝑌s𝑚s𝜀1(𝑡) − 𝑚x𝜀1(𝑡) − (1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡) + 𝑟𝜀4(𝑡)𝑢1(𝑡),
𝑌s𝑚s𝜀1(𝑡) = − [𝜇(𝑡)𝑥1(𝑡) − 𝜇z(𝑡) (𝑥1(𝑡) − 𝜀1(𝑡))] ,

¤𝜀3(𝑡) = 𝑌−1
o 𝑌s𝑚s𝜀1(𝑡) − 𝑚o𝜀1(𝑡) − (1 + 𝑟)𝜀3(𝑡)𝑢1(𝑡) − 𝜀3(𝑡)𝑢2(𝑡),

¤𝜀4(𝑡) = 𝑣(1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡) − 𝑣(𝑤 + 𝑟)𝜀4(𝑡)𝑢1(𝑡),
𝜺(𝑡0) = 𝜺0 .

(26)

If 𝑥1(𝑡) > 0, then it is assumed, analogously to the considerations presented
in Section 4.1.2, that 𝑥1(𝑡), 𝑥3(𝑡), 𝑥4(𝑡) are globally u–detectable provided that
dynamics (26) is asymptotically stable. To show that this property holds, the same
analysis premised on the second Lyapunov method can be performed as it is done
in Section 4.1.2. Thus, by substituting dynamics (14) by dynamics (26), 𝜀1(𝑡)
and 𝜀4(𝑡) tend asymptotically to zero for any initial conditions in time T if and
only if parameter 𝑤 > 0.5. Hence, it is shown that (𝜀1, 𝜀4) = (0, 0) is globally
asymptotically stable equilibrium point, which means that 𝑥1(𝑡) and 𝑥4(𝑡) are
globally u–detectable. Knowing that, dynamics (26) can be presented as:

𝑌s𝑚s𝜀1(𝑡) = − [𝜇z(𝑡)𝑥1(𝑡) + 𝜇(𝑡)𝜀1(𝑡) − 𝜇z(𝑡)𝜀1(𝑡)] ,
¤𝜀3(𝑡) =

[
𝑌s𝑌

−1
o 𝑚s − 𝑚o

]
𝛾4(𝑡) − [(1 + 𝑟)𝑢1(𝑡) + 𝑢2(𝑡)] 𝜀3(𝑡),

𝜺(𝑡0) = 𝜺0 ,

(27)

where 𝛾4(𝑡) ≡ 𝜀1(𝑡) is the solution of the first differential equation, which
vanishes asymptotically. Therefore, considering the positiveness of both control
inputs and the property of 𝛾4(𝑡), the third state variable is globally u–detectable.
It is worth emphasizing that the behavior of 𝜇z(𝑡) function, which is dependent
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on 𝜀3(𝑡) does not cause any indistinguishable trajectories, due to the fact that if
𝜀3(𝑡) → 0 then 𝜇z(𝑡) → 0 if 𝑡 → ∞.

In turn, when 𝑥1(𝑡) = 0, then the investigation results are as follows. When
𝑥1(𝑡) is eliminated from (26), then the new indistinguishable dynamics is given as:

0 = − [𝑌s𝑚s + 𝜇(𝑡)] 𝜀1(𝑡),
¤𝜀1(𝑡) = − [𝑌s𝑚s + 𝑚x + (1 + 𝑟)𝑢1(𝑡)] 𝜀1(𝑡) + 𝑟𝜀4(𝑡)𝑢1(𝑡),
¤𝜀3(𝑡) =

[
𝑌s𝑌

−1
o 𝑚s − 𝑚o

]
𝜀1(𝑡) − [(1 + 𝑟)𝑢1(𝑡) + 𝑢2(𝑡)] 𝜀3(𝑡),

¤𝜀4(𝑡) = 𝑣(1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡) − 𝑣(𝑤 + 𝑟)𝜀4(𝑡)𝑢1(𝑡),
𝜺(𝑡0) = 𝜺0 .

(28)

Taking into account that the first algebraic equation from (28) disappears
when 𝜀1(𝑡) and ¤𝜀1(𝑡) are equal to zero, 𝑥1(𝑡) is claimed as globally u–observable.
Therefore, dynamics (28) is conversed to:

0 = 𝑟𝜀4(𝑡)𝑢1(𝑡),
¤𝜀3(𝑡) = − [(1 + 𝑟)𝑢1(𝑡) + 𝑢2(𝑡)] 𝜀3(𝑡),
¤𝜀4(𝑡) = −𝑣(𝑤 + 𝑟)𝜀4(𝑡)𝑢1(𝑡),
𝜺(𝑡0) = 𝜺0 .

(29)

Knowing that, the algebraic equation from (29) becomes zero when ∀𝑡 ∈ T
𝑢1(𝑡) ≠ 0. Hence, state variable 𝑥4(𝑡) is u–observable. Also, considering that
𝑢1(𝑡) and 𝑢2(𝑡) are persistent excited signals, 𝜀3(𝑡) related differential equation is
globally asymptotically stable in equilibrium zero point, which means that 𝑥3(𝑡)
is globally u–detectable.

4.2.2. Measured output – dissolved oxygen concentration 𝐷𝑂 (𝑡)

The measured output is 𝑦(𝑡) = ℎ(𝒙(𝑡)) = 𝑥3(𝑡). It implies that ∀𝑡 ∈ T 𝜀3(𝑡) =
0 and ¤𝜀3(𝑡) = 0, thus model (9) is converted into the following DAE system:

¤𝜀1(𝑡) = 𝜇(𝑡)𝑥1(𝑡) − 𝜇z(𝑡) (𝑥1(𝑡) − 𝜀1(𝑡)) − 𝑚x𝜀1(𝑡)
− (1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡) + 𝑟𝜀4(𝑡)𝑢1(𝑡),

¤𝜀2(𝑡) = −𝑌−1
s [𝜇(𝑡)𝑥1(𝑡) − 𝜇z(𝑡) (𝑥1(𝑡) − 𝜀1(𝑡))] − 𝑚s𝜀1(𝑡)

− (1 + 𝑟)𝜀2(𝑡)𝑢1(𝑡),
0 = −𝑌−1

o [𝜇(𝑡)𝑥1(𝑡) − 𝜇z(𝑡) (𝑥1(𝑡) − 𝜀1(𝑡))] − 𝑚o𝜀1(𝑡),
¤𝜀4(𝑡) = 𝑣(1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡) − 𝑣(𝑤 + 𝑟)𝜀4(𝑡)𝑢1(𝑡),
𝜺(𝑡0) = 𝜺0 .

(30)
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By invoking to the second equation in (30), the following transformation is
given:

¤𝜀1(𝑡) = −𝑌o𝑚o𝜀1(𝑡) − 𝑚x𝜀1(𝑡) − (1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡) + 𝑟𝜀4(𝑡)𝑢1(𝑡),
¤𝜀2(𝑡) = 𝑌−1

s 𝑌o𝑚o𝜀1(𝑡) − 𝑚s𝜀1(𝑡) − (1 + 𝑟)𝜀2(𝑡)𝑢1(𝑡),
𝑌o𝑚o𝜀1(𝑡) = − [𝜇(𝑡)𝑥1(𝑡) − 𝜇z(𝑡) (𝑥1(𝑡) − 𝜀1(𝑡))] ,

¤𝜀4(𝑡) = 𝑣(1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡) − 𝑣(𝑤 + 𝑟)𝜀4(𝑡)𝑢1(𝑡),
𝜺(𝑡0) = 𝜺0 .

(31)

If 𝑥1(𝑡) > 0, then it is assumed, analogously to the considerations presented
in Section 4.1.2, that 𝑥1(𝑡), 𝑥2(𝑡), 𝑥4(𝑡) are globally u–detectable provided that
dynamics (31) is asymptotically stable. To show that this property holds, the same
analysis premised on the second Lyapunov method can be performed as it is done
in Section 4.1.2. Thus, by substituting dynamics (14) by dynamics (31), 𝜀1(𝑡)
and 𝜀4(𝑡) tend asymptotically to zero for any initial conditions in time T if and
only if parameter 𝑤 > 0.5. Hence, it is shown that (𝜀1, 𝜀4) = (0, 0) is globally
asymptotically stable equilibrium point, which means that 𝑥1(𝑡) and 𝑥4(𝑡) are
globally u–detectable. Knowing that, dynamics (31) can be presented as:

𝑌o𝑚o𝜀1(𝑡) = − [𝜇z(𝑡)𝑥1(𝑡) + 𝜇(𝑡)𝜀1(𝑡) − 𝜇z(𝑡)𝜀1(𝑡)] ,
¤𝜀2(𝑡) =

[
𝑌o𝑌

−1
s 𝑚o − 𝑚s

]
𝛾5(𝑡) − (1 + 𝑟)𝑢1(𝑡)𝜀2(𝑡),

𝜺(𝑡0) = 𝜺0 ,

(32)

where 𝛾5(𝑡) ≡ 𝜀1(𝑡) is the solution of the first differential equation, which
vanishes asymptotically. Therefore, considering the positiveness of both control
inputs and the property of 𝛾5(𝑡), the second state variable is globally u–detectable.
It is worth emphasizing that the behavior of 𝜇z(𝑡), which is dependent on 𝜀2(𝑡)
does not cause any indistinguishable trajectories, due to the fact that if 𝜀2(𝑡) → 0
then 𝜇z(𝑡) → 0 if 𝑡 → ∞.

In the second option, when 𝑥1(𝑡) = 0, the investigation results are as follows.
When 𝑥1(𝑡) is cancelled from (31), the new indistinguishable dynamics is given as:

0 = − [𝑌o𝑚o + 𝜇(𝑡)] 𝜀1(𝑡),
¤𝜀1(𝑡) = − [𝑌o𝑚o + 𝑚x + (1 + 𝑟)𝑢1(𝑡)] 𝜀1(𝑡) + 𝑟𝜀4(𝑡)𝑢1(𝑡),
¤𝜀2(𝑡) =

[
𝑌o𝑌

−1
s 𝑚o − 𝑚s

]
𝜀1(𝑡) − (1 + 𝑟)𝑢1(𝑡)𝜀2(𝑡),

¤𝜀4(𝑡) = 𝑣(1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡) − 𝑣(𝑤 + 𝑟)𝜀4(𝑡)𝑢1(𝑡),
𝜺(𝑡0) = 𝜺0 .

(33)

Taking into account that the algebraic equation from (28) vanishes when 𝜀1(𝑡)
and ¤𝜀1(𝑡) are always equal to zero, 𝑥1(𝑡) is claimed as globally u–observable.
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Therefore, dynamics (28) is conversed to:
0 = 𝑟𝜀4(𝑡)𝑢1(𝑡),

¤𝜀2(𝑡) = −(1 + 𝑟)𝑢1(𝑡)𝜀2(𝑡),
¤𝜀4(𝑡) = −𝑣(𝑤 + 𝑟)𝜀4(𝑡)𝑢1(𝑡),
𝜺(𝑡0) = 𝜺0 .

(34)

Knowing that, the first algebraic equation from (29) becomes zero when
∀𝑡 ∈ T 𝑢1(𝑡) ≠ 0. Hence, state variable 𝑥4(𝑡) is u–observable. Also, taking into
account that 𝑢1(𝑡) is the persistent excited signal, 𝜀2(𝑡) related to differential
equation is globally asymptotically stable in equilibrium zero point, which means
that 𝑥2(𝑡) is globally u–detectable.

4.2.3. Measured output – recirculated biomass concentration 𝑋r

The measured output is 𝑦(𝑡) = ℎ(𝒙(𝑡)) = 𝑥4(𝑡). It implies that ∀𝑡 ∈ T 𝜀4(𝑡) =
0 and ¤𝜀4(𝑡) = 0, thus model (9) is converted into the following DAE system:

¤𝜀1(𝑡) = 𝜇(𝑡)𝑥1(𝑡) − 𝜇z(𝑡) (𝑥1(𝑡) − 𝜀1(𝑡)) − 𝑚x𝜀1(𝑡) − (1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡),
¤𝜀2(𝑡) = −𝑌−1

s [𝜇(𝑡)𝑥1(𝑡) − 𝜇z(𝑡) (𝑥1(𝑡) − 𝜀1(𝑡))] − 𝑚s𝜀1(𝑡)
− (1 + 𝑟)𝜀2(𝑡)𝑢1(𝑡),

¤𝜀3(𝑡) = −𝑌−1
o [𝜇(𝑡)𝑥1(𝑡) − 𝜇z(𝑡) (𝑥1(𝑡) − 𝜀1(𝑡))] − 𝑚o𝜀1(𝑡)

− (1 + 𝑟)𝜀3(𝑡)𝑢1(𝑡) − 𝜀3(𝑡)𝑢2(𝑡),
0 = 𝑣(1 + 𝑟)𝜀1(𝑡)𝑢1(𝑡),

𝜺(𝑡0) = 𝜺0 .

(35)

By invoking to the last equation in (35), if ∀𝑡 ∈ T 𝑢1(𝑡) ≠ 0 then ∀𝑡 ∈
T 𝜀1(𝑡) = 0 and ¤𝜀1(𝑡) = 0, hence 𝑥1(𝑡) is globally u–observable. It leads to the
following transformation of (35):

0 = 𝜇(𝑡)𝑥1(𝑡) − 𝜇z(𝑡)𝑥1(𝑡),
¤𝜀2(𝑡) = −𝑌−1

s (𝜇(𝑡) − 𝜇z(𝑡)) 𝑥1(𝑡) − (1 + 𝑟)𝜀2(𝑡)𝑢1(𝑡),
¤𝜀3(𝑡) = −𝑌−1

o (𝜇(𝑡) − 𝜇z(𝑡)) 𝑥1(𝑡) − (1 + 𝑟)𝜀3(𝑡)𝑢1(𝑡) − 𝜀3(𝑡)𝑢2(𝑡),
𝜺(𝑡0) = 𝜺0 .

(36)

Considering the first equation in (36) this system can be rewritten as:
0 = 𝜇(𝑡)𝑥1(𝑡) − 𝜇z(𝑡)𝑥1(𝑡),

¤𝜀2(𝑡) = −(1 + 𝑟)𝜀2(𝑡)𝑢1(𝑡),
¤𝜀3(𝑡) = −(1 + 𝑟)𝜀3(𝑡)𝑢1(𝑡) − 𝜀3(𝑡)𝑢2(𝑡),
𝜺(𝑡0) = 𝜺0 .

(37)
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Since the left-hand side of algebraic equation in (37) must be equal to zero
∀𝑡 ∈ T, the considerations about observability and detectability of 𝑥2(𝑡) and 𝑥3(𝑡)
are divided into two situations. The first is associated with the fact that 𝑥1(𝑡) is
zero, whereas the other one is linked to the fact that the kinetics functions 𝜇(𝑡)
and error 𝜇z(𝑡) are equal to each other ∀𝑡 ∈ T, assuming that 𝑥1(𝑡) is always
positive.

In the first situation, where 𝑥1(𝑡) becomes zero, the behavior of kinetics
functions is dependent only on inputs and initial conditions of 𝑥2(𝑡) and 𝑥3(𝑡).
Taking into account that the inputs are the permanent excited positive signals, the
dynamics of 𝜀2(𝑡) and 𝜀3(𝑡) from (37) asymptotically tend to zero. Moreover, due
to fact that 𝜇z(𝑡) and 𝜇(𝑡) are Monod terms, when 𝜀2(𝑡) → 0 and 𝜀3(𝑡) → 0 then
𝜇z(𝑡) → 𝜇(𝑡) asymptotically. Additionally, due to the boundedness of the state
trajectories, the kinetics functions do not tend infinitely. Therefore, in the first
situation 𝑥2(𝑡) and 𝑥3(𝑡) are globally strongly u–detectable. In turn, in the second
situation, when 𝑥1(𝑡) is always positive the same result is obtained; however,
its understanding is slightly different. To make the right-hand side of the third
equation in (37) equals zero, both 𝜀2(𝑡) and 𝜀3(𝑡) and of course its derivatives
must tend to zero. Hence, in the second situation, 𝑥2(𝑡) and 𝑥3(𝑡) are globally
strongly u–detectable.

4.2.4. Part 2 – summary

Analogous analysis to cases described in Sections 4.2.1–4.2.3 has been carried
out for the combinations of measured outputs and its results, together with results
of Sections 4.2.1–4.2.3 are summarized in Table 2.

Table 2: Part 2 – results of the observability or detectability analysis

Case Variable

No. wash-out 𝑥1 (𝑡) 𝑥2 (𝑡) 𝑥3 (𝑡) 𝑥4 (𝑡)

(1)
NO D M D D
YES O M D O

(2)
NO D D M D
YES O D M O

(3)
NO O D D M
YES O D D M

(4)
NO M D D D
YES M D D D

Continued on the next page
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Table 2 [cont.]

Case Variable
No. wash-out 𝑥1 (𝑡) 𝑥2 (𝑡) 𝑥3 (𝑡) 𝑥4 (𝑡)

(5)
NO O M M O
YES O M M O

(6)
NO M D D M
YES M D D M

(7)
NO O M O M
YES O M D M

(8)
NO O O M M
YES O D M M

5. Conclusions

In this paper, the analysis of the observability and detectability of continu-
ous stirred tank reactor model of selected biochemical processes has been in-
vestigated. In particular, the properties of observability or detectability of the
considered system model have been discussed under uncertain system dynamics
and taking into account various sets of measured outputs. The method of in-
distinguishable state trajectories (indistinguishable dynamics) and the Lyapunov
second method have been used as analysis tools. Eight different cases covering
a wide range of possible combinations of the measured outputs have been con-
sidered. Delivered comprehensive analysis shows how the given structure of the
system mathematical model and selection of particular measured outputs affect
the observability and detectability properties. The proposed approaches may be
successfully applied to the complex biochemical non-linear uncertain systems
modeled as continuous stirred tank reactors.

The obtained research results are essential for system state estimation that
involves the synthesis of state observers. Thus, they may be used for the state ob-
server synthesis and diagnostic systems development for biochemical processes.

A. Analysis of equilibrium points of indistinguishable dynamics

In Section 4 a gradual analysis of the observability and detectability for the
particular selection of measured outputs is presented. For the sake of completing
the research, it is necessary to prove the hypothesis that only one equilibrium point
of decoupled sub-dynamics of (14) is given as (𝜀1, 𝜀4) = (0, 0). Essentially, the
derived two-dimensional system is linear with respect to its states 𝜀1(𝑡) and 𝜀4(𝑡)
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(detailing bi-linear [15,17]). Hence, let us define the set of two algebraic equations
derived directly from (14):{

0 = − [𝑌s𝑚s + 𝑚x + (1 + 𝑟)𝑢1] 𝜀1 + 𝑟𝜀4𝑢1 ,

0 = 𝑣(1 + 𝑟)𝑢1𝜀1 − 𝑣(𝑤 + 𝑟)𝑢1𝜀4 ,
(38)

where 𝜀1, 𝜀4, 𝑢1 ∈ R are constants, which represent particular coordinates of the
equilibrium point.

The site performed division by 𝑣 and 𝑢1 in the second equation can be done
due to the positiveness of invoked constants. Thus, the set of equations (38) can
be written as follows:

02×1 =

[
−𝛼A 𝑟𝑢1
(1 + 𝑟) −(𝑤 + 𝑟)

]
︸                   ︷︷                   ︸

A∈R2×2

[
𝜀1
𝜀4

]
,

𝛼A ≜ [𝑌s𝑚s + 𝑚x + (1 + 𝑟)𝑢1] ∈ R+ ∀𝑡 ∈ T.

(39)

To prove the proposed hypothesis, it must be shown that ker (A) =

{(𝜀1, 𝜀4) = (0, 0)}, where ker(·) denotes kernel of the matrix. This situation
appears when the rows of A are linearly independent ∀𝑡 ∈ T [17].

Theorem 1. The rows of matrix A from (39) are linearly independent, i.e.
rank (A) = 2, for any positive values of parameters (𝑚s, 𝑚x 𝑟, 𝑤 and𝑌s) and any
value of positive input 𝑢1(𝑡) in time T.

Proof. Since matrix A is square the checking its singularity is necessary for the
sake of the rank investigation. Thus, the calculation of its determinant yields:

det (A) = 𝛼A (𝑤 + 𝑟) − 𝑟𝑢1(1 + 𝑟)
= 𝛼A𝑤 + [𝑌s𝑚s + 𝑚x + (1 + 𝑟)𝑢1] 𝑟 − (1 + 𝑟)𝑟𝑢1

= 𝛼A𝑤 + [𝑌s𝑚s + 𝑚x] 𝑟. (40)

The form of obtained determinant does not include any division or subtraction
operations. Hence, taking into account that all parameters from (40) are always
positive, there is no possibility to make det (A) = 0 under any circumstances.
Hence, rows of A are linearly independent, which causes there to be only one
zero equilibrium point, which ends the proof. 2
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