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A new chaotic hyperjerk system with four quadratic
nonlinearities, its bifurcation analysis, multistability,
circuit design and complete synchronization design

via active backstepping control

Sundarapandian VAIDYANATHANo , Aceng SAMBASo , Irene M. MOROZo ,
Chittineni ARUNAo , Mohamad Afendee MOHAMEDo and Arun SUNDARAMo

In this research work, we propose a new four-dimensional chaotic hyperjerk system with
four quadratic nonlinearities. We carry out a detailed bifurcation analysis and derive conditions
for the existence of a Hopf bifurcation for the new hyperjerk system. A linear analysis shows that
there is only a unique trivial equilibrium state, whose stability depends solely on the parameter 𝑝.
The only bifurcation possible is a Hopf bifurcation when 𝑝 = 2. This is verified from bifurcation
transition diagrams. We derive new results showing multistability and the existence of coexisting
attractors for the new chaotic hyperjerk system. Using MultiSim, a new electronic circuit is
designed for the new chaotic hyperjerk system with four quadratic nonlinearities. Finally, we
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present a control application for the proposed chaotic hyperjerk system with four quadratic
nonlinearities. Using active backstepping control, we design a new controller that achieves
complete synchronization for the master-slave chaotic hyperjerk systems with four quadratic
nonlinearities.
Key words: chaotic systems, chaos, hyperjerk systems, bifurcation analysis, circuit design,
backstepping control, synchronization

1. Introduction

Chaos theory has several applications in engineering and science branches
such as lasers [1, 2], oscillators [3, 4], robots [5, 6], memristors [7, 8], cryptosys-
tems [9, 10], financial systems [11, 12], etc.

In mechanical systems, a fourth-order autonomous hyperjerk differential equa-
tion is defined by the equation

d4𝑦

d𝑡4
= 𝑓

(
𝑦,

d𝑦
d𝑡
,

d2𝑦

d𝑡2
,

d3𝑦

d𝑡3

)
. (1)

If 𝑦(𝑡) stands for the displacement of a body, then
d𝑦
d𝑡

stands for the velocity of

the body and 𝑑𝑓 𝑟𝑎𝑐d2𝑦d𝑡2 stands for the acceleration of the body. Furthermore,
d3𝑦

d𝑡3
stands for the jerk of the body and

d4𝑦

d𝑡4
stands for the hyperjerk of the body.

This is the mechanical interpretation for the hyperjerk differential equation (1).
For dynamic analysis, it is convenient to express the fourth order autonomous

ODE (1) as a system of equations as follows:
¤𝑦1 = 𝑦2 ,

¤𝑦2 = 𝑦3 ,

¤𝑦3 = 𝑦4 ,

¤𝑦4 = 𝑓 (𝑦1, 𝑦2, 𝑦3, 𝑦4).

(2)

In the hyperjerk system (2), 𝑦1 = 𝑦, 𝑦2 = ¤𝑦, 𝑦3 = ¥𝑦 and 𝑦4 = 𝑦̈.
Hyperjerk systems have several applications in engineering such as image

encryption [13], circuit design [14], memristors [15], robotics [16], etc.
In this research work, we propose a new four-dimensional chaotic hyperjerk

system with four quadratic nonlinearities. Using Lyapunov exponents, and Ka-
plan dimension, we derive new results that the proposed hyperjerk system is a
dissipative chaotic system with fractal Kaplan dimension.

We carry out a detailed bifurcation analysis and derive conditions for the
existence of a Hopf bifurcation for the new hyperjerk system. Multistability of
chaotic systems is a complex phenomenon that refers to the coexistence of several
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chaotic or periodic attractors for the underlying system for same set of parameter
values but different sets of initial states [17, 18]. We derive new results showing
multistability for the new chaotic hyperjerk system.

Using MultiSim, a new electronic circuit is designed for the new chaotic
hyperjerk system with four quadratic nonlinearities. Electronic circuit designs of
chaotic systems are very useful for the real-world engineering applications of the
systems [19, 20].

Finally, we present a control application for the proposed chaotic hyperjerk
system with four quadratic nonlinearities. Using active backstepping control, we
design a new controller that achieves complete synchronization for the master-
slave chaotic hyperjerk systems with four quadratic nonlinearities.

2. A new chaotic hyperjerk system with four quadratic nonlinear terms

In this research work, we propose a new 4-D hyperjerk system with the
dynamics 

¤𝑥 = 𝑦,
¤𝑦 = 𝑧,
¤𝑧 = 𝑤,
¤𝑤 = −𝑥 − 𝑦 − 𝑝𝑧 − 𝑤 − 𝑎𝑥𝑧 − 𝑏𝑥𝑦 − 𝑐𝑦𝑧 + 𝑞𝑧2 .

(3)

We use the notation 𝑋 to represent the 4-D state (𝑥, 𝑦, 𝑧, 𝑤) of the new
hyperjerk system (3), which has four quadratic nonlinear terms.

We shall establish that the system (3) has a dissipative chaotic attractor for
the parameter values

𝑎 = 0.3, 𝑏 = 0.2, 𝑐 = 0.4, 𝑝 = 0.2, 𝑞 = 0.2. (4)

The Lyapunov exponents of the 4-D hyperjerk system (3) are found us-
ing MATLAB algorithm for the parameter values (4) and initial state 𝑋 (0) =

(0.5, 0.3, 0.5, 0.3) as given below:

𝐿1 = 0.1831, 𝐿2 = 0, 𝐿3 = −0.1459, 𝐿4 = −1.0375. (5)

Thus, the proposed hyperjerk system (3) has a dissipative and chaotic attractor.
Furthermore, the Kaplan dimension of the 4-D chaotic hyperjerk system (3)

is attained as
𝐷𝐿 = 3 + 𝐿1 + 𝐿2 + 𝐿3

|𝐿4 |
= 3.0359 (6)

which exhibits the complexity of the proposed hyperjerk system (3).
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To calculate the equilibrium points of the proposed hyperjerk system (3), we
solve the equations ¤𝑥 = 0, ¤𝑦 = 0, ¤𝑧 = 0 and ¤𝑤 = 0. A simple calculation shows that
𝑃0 = (0, 0, 0, 0) is the unique equilibrium point of the 4-D hyperjerk system (3).

The Jacobian matrix of the 4-D hyperjerk system (3) at 𝑃0 is found to be

𝐽0 =


0 1 0 0
0 0 1 0
0 0 0 1
−1 −1 −𝑝 −1

 . (7)

The characteristic equation associated with 𝐽0 is given by

𝑠4 + 𝑝𝑠3 + 𝑠2 + 𝑠 + 1 = 0. (8)

Using the Routh array test, it can be easily established that the characteristic
equation (8) will be stable if and only if 𝑝 > 2.

For the chaotic case (4), 𝑝 = 0.2 < 2. Hence, the characteristic equation
(8) is unstable in the chaotic case. In fact, the eigenvalues of the matrix 𝐽0 are
computed as

𝛼1,2 = 0.4659 ± 0.8848i, 𝛼3,4 = −0.9659 ± 0.2589i. (9)

This calculation shows that the proposed hyperjerk system (8) has an unstable,
saddle-focus equilibrium at 𝑃0 = (0, 0, 0, 0).

Figure 1 shows the MATLAB signal plots of the proposed hyperjerk system (8)
for the parametric values given by (4) and 𝑋 (0) = (0.5, 0.3, 0.5, 0.3).

(a) (𝑥, 𝑦) plot (b) (𝑦, 𝑧) plot

Figure 1: (a), (b)
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(c) (𝑧, 𝑤) plot (d) (𝑥, 𝑤) plot

Figure 1: MATLAB signal plots of the proposed hyperjerk system (3) for the parametric values
given by (4) and 𝑋 (0) = (0.5, 0.3, 0.5, 0.3)

3. Bifurcation analysis of the new chaotic hyperjerk system

The characteristic equation given in (8) for the linearization of the new chaotic
hyperjerk system (3) depends only upon the parameter 𝑝. A Hopf bifurcation is
possible, which can be shown by taking 𝑠 = ±i𝜔 and equating real and imaginary
parts to get

𝜔4 − 𝑝𝜔2 + 1 = 0, 𝜔2 = 1. (10)

This is satisfied when 𝑝 = 2.
The remaining two eigenvalues of the characteristic equation (8) satisfy

𝑠 = −1
2
±
√

3i
2

, which shows that the Hopf bifurcation is stable. This is clearly
demonstrated in the bifurcation transition diagrams shown in Figure 2. To pro-
duce these plots, we initiated the integration at 𝑝 = 0.2, using the initial data
(0.5, 0.3, 0.5, 0.3). We integrated for 500𝑠, discarding the first 300𝑠 as transients.
Then the final condition was taking as the starting point for the next integration.
The lower panel shows a regime of period-doubling bifurcations for 1.49 < 𝑝 < 2.
There is a periodic orbit in 1.72 < 𝑝 < 2, which undergoes a period-doubling
bifurcation at 𝑝 ≈ 1.72 to a period-2 orbit, which then loses stability at to a
period-4 orbit at 𝑝 ≈ 1.64. There is a region of chaos until 𝑝 ≈ 1.59, followed
by regions of chaotic and regular dynamics until a sudden enlargement of the
chaotic regime at 𝑝 ≈ 1.49.

Figure 3 shows four phase portraits of (𝑥, 𝑦) from this blown up region,
showing a periodic orbit when 𝑝 = 1.8, a period-2 orbit for 𝑝 = 1.7, a period-4
orbit for 𝑝 = 1.63 and a broad-banded period-5 orbit for 𝑝 = 1.58.
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Figure 2: The bifurcation transition plots of 𝑥max as 𝑝 increases and decreases from 𝑝 = 0.2
in [0, 2.25], with initial conditions (0.5, 0.3, 0.5, 0.3). We take the final data value as the initial
data for the next increment/decrement. The upper panel shows the entire integration region, while
the lower panel shows a blow-up of the period-doubling region for 1.49 < 𝑝 < 2. The Hopf
bifurcation at 𝑝 = 2 is clearly shown

Figure 3: Phase portraits of (𝑥, 𝑦) for (a) 𝑝 = 1.8 (periodic orbit); (b) 𝑝 = 1.7 (period-2 orbit);
(c) 𝑝 = 1.63 (period-4 orbit); (d) 𝑝 = 1.58 (a broad-banded period-5 orbit)
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4. Multistability in the new 4-D chaotic hyperjerk system

Multistability of chaotic systems is a complex phenomenon that refers to the
coexistence of several chaotic or periodic attractors for the underlying system for
same set of parameter values but different sets of initial states [17,18]. We derive
new results showing multistability for the new chaotic hyperjerk system (3).

In order to study the coexistence of attractors for the chaotic hyperjerk system
(3) better, it is necessary to give some disturbance to the initial conditions under
the condition of keeping the system parameters constant.

Figure 4 shows the dynamic behavior with coexistence of chaotic at-
tractors with initial states 𝑋0 = (0.5, 0.3, 0.5, 0.3) (blue orbit) and 𝑌0 =

(−0.2, 0.2,−0.20.2) (red orbit).

(a) (𝑥, 𝑦) plot (b) (𝑦, 𝑧) plot

Figure 4: Coexistence of two chaotic attractors of the hyperjerk system (3) with different initial
values: the blue for 𝑋0 = (0.5, 0.3, 0.5, 0.3) and the red for 𝑌0 = (−0.2, 0.2,−0.2, 0.2)

5. Circuit design of the new chaotic hyperjerk system

In this segment, we create an electronic circuit employing Multisim software to
implement the novel hyperjerk chaotic system. Utilizing Multisim, we combine
TL082CD Op-amp, AD633JN multiplier, resistors, and capacitors to simulate
the chaotic attractor. The schematic representation of the electronic circuit is
illustrated in Figure 5, with 𝑥, 𝑦, 𝑧 and 𝑤 denoting the voltages across capacitors
𝐶1, 𝐶2, 𝐶3, and 𝐶4, respectively.

The electronic circuit for implementing the new hyperjerk system (3) is synthe-
sized, as depicted in Figure 5. The equations governing the circuit are formulated
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Figure 5: Electronic circuit of the Hyperjerk system using MultiSim 14.0
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as follows: 

𝐶1 ¤𝑥 =
1
𝑅1
𝑦,

𝐶2 ¤𝑦 =
1
𝑅2
𝑧,

𝐶3 ¤𝑧 =
1
𝑅3
𝑤,

𝐶4 ¤𝑤 = − 1
𝑅4
𝑥 − 1

𝑅5
𝑦 − 1

𝑅6
𝑧 − 1

𝑅7
𝑤 − 1

10𝑅8
𝑥𝑧

− 1
10𝑅9

𝑥𝑦 − 1
𝑅10

𝑦𝑧 + 1
10𝑅11

𝑧2.

(11)

Here, 𝑥, 𝑦, 𝑧 and 𝑤 are the output voltages of the operational amplifiers U1A,
U3A, U5A, and U7A, respectively. The values of circuit components are selected
as: 𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 = 𝑅5 = 𝑅7 = 400 kΩ, 𝑅6 = 2 MΩ, 𝑅8 = 133.33 kΩ,
𝑅9 = 𝑅11 = 200 kΩ, 𝑅10 = 𝑅12 = 𝑅13 = 𝑅14 = 𝑅15 = 𝑅16 = 𝑅17 = 100 kΩ,
𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = 1 nF.

The phase portraits of the system (3) are visually depicted in Figures 6–9
through oscilloscope graphics. It is evident that the circuit simulation results

Figure 6: Oscilloscope output of the chaotic attractor of novel chaotic hyperjerk system in
(𝑥, 𝑦)-plane using MultiSim 14.0
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Figure 7: Oscilloscope output of the chaotic attractor of novel chaotic hyperjerk system in
(𝑦, 𝑧)-plane using MultiSim 14.0

Figure 8: Oscilloscope output of the chaotic attractor of novel chaotic hyperjerk system in
(𝑧, 𝑤)-plane using MultiSim 14.0
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Figure 9: Oscilloscope output of the chaotic attractor of novel chaotic hyperjerk system in
(𝑥, 𝑤)-plane using MultiSim 14.0

of the oscilloscope graphics presented in Figures 6–9 align with the MATLAB
simulation results provided in Figure 1.

6. Active backstepping synchronization of the new chaotic hyperjerk systems

Here, we shall deploy active backstepping control for globally synchronizing
the trajectories of a set of new chaos hyperjerk systems considered as master–slave
systems.

The master hyperjerk system is taken as the new chaotic hyperjerk system
¤𝑥1 = 𝑦1 ,

¤𝑦1 = 𝑧1 ,

¤𝑧1 = 𝑤1 ,

¤𝑤1 = −𝑥1 − 𝑦1 − 𝑝𝑧1 − 𝑤1 − 𝑎𝑥1𝑧1 − 𝑏𝑥1𝑦1 − 𝑐𝑦1𝑧1 + 𝑞𝑧21 .

(12)

We denote the state of the 4-D master hyperjerk system (12) as 𝑋 =

(𝑥1, 𝑦1, 𝑧1, 𝑤1).
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The slave hyperjerk system is taken as the new controlled chaotic hyperjerk
system

¤𝑥2 = 𝑦2 ,

¤𝑦2 = 𝑧2 ,

¤𝑧2 = 𝑤2 ,

¤𝑤2 = −𝑥2 − 𝑦2 − 𝑝𝑧2 − 𝑤2 − 𝑎𝑥2𝑧2 − 𝑏𝑥2𝑦2 − 𝑐𝑦2𝑧2 + 𝑞𝑧22 + 𝑣.

(13)

We denote the state of the 4-D slave hyperjerk system (13) as 𝑌 =

(𝑥2, 𝑦2, 𝑧2, 𝑤2). Also, 𝑣 is the active backstepping control which is to be de-
termined using backstepping control theory.

The synchronization error between the master and slave hyperjerk systems is
defined as follows:

𝑒𝑥 = 𝑥2 − 𝑥1 ,

𝑒𝑦 = 𝑦2 − 𝑦1 ,

𝑒𝑧 = 𝑧2 − 𝑧1 ,
𝑒𝑤 = 𝑤2 − 𝑤1 .

(14)

The synchronization error dynamics is calculated as follows:

¤𝑒𝑥 = 𝑒𝑦 ,
¤𝑒𝑦 = 𝑒𝑧 ,
¤𝑒𝑧 = 𝑒𝑤 ,
¤𝑒𝑤 = −𝑒𝑥 − 𝑒𝑦 − 𝑝𝑒𝑧 − 𝑒𝑤 − 𝑎(𝑥2𝑧2 − 𝑥1𝑧1) − 𝑏(𝑥2𝑦2 − 𝑥1𝑦1)

− 𝑐(𝑦2𝑧2 − 𝑦1𝑧1) + 𝑞
(
𝑧22 − 𝑧

2
1

)
+ 𝑣.

(15)

We state and prove the main control result of this section.

Theorem 1. The active backstepping control law stated by

𝑣 = −4𝑒𝑥 − 9𝑒𝑦 − (9 − 𝑝)𝑒𝑧 − 3𝑒𝑤 − 𝐾𝜂4 + 𝑎(𝑥2𝑧2 − 𝑥1𝑧1)
+ 𝑏(𝑥2𝑦2 − 𝑥1𝑦1) + 𝑐(𝑦2𝑧2 − 𝑦1𝑧1) − 𝑞(𝑧22 − 𝑧

2
1), (16)

where 𝐾 > 0 and 𝜂4 = 3𝑒𝑥 + 5𝑒𝑦 + 3𝑒𝑧 + 𝑒𝑤, globally and asymptotically syn-
chronizes the trajectories of the 4D chaotic hyperjerk systems (12) and (13) for
all values of 𝑋 (0), 𝑌 (0) ∈ R4.

Proof. For the control design, we start with the Lyapunov function

𝑉1(𝜂𝑥) =
1
2
𝜂2

1 , (17)

where
𝜂1 = 𝑒𝑥 . (18)
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Differentiating 𝑉1 with respect to 𝑡 along the error system (15), we get
¤𝑉1 = 𝜂1 ¤𝜂1 = −𝜂2

1 + 𝜂1(𝑒𝑥 + 𝑒𝑦). (19)

We define
𝜂2 = 𝑒𝑥 + 𝑒𝑦 . (20)

Using (20), we simplify (19) as
¤𝑉1 = −𝜂2

1 + 𝜂1𝜂2 . (21)

We proceed next with defining the Lyapunov function

𝑉2(𝜂1, 𝜂2) = 𝑉1(𝜂1) +
1
2
𝜂2

2 =
1
2
𝜂2

1 +
1
2
𝜂2

2 . (22)

Differentiating 𝑉2 with respect to 𝑡 along the error system (15), we get
¤𝑉2 = −𝜂2

𝑥 − 𝜂2
𝑦 + 𝜂𝑦 (2𝑒𝑥 + 2𝑒𝑦 + 𝑒𝑧). (23)

We define
𝜂3 = 2𝑒𝑥 + 2𝑒𝑦 + 𝑒𝑧 . (24)

Using (24), we simplify (23) as
¤𝑉2 = −𝜂2

1 − 𝜂
2
2 + 𝜂2𝜂3 . (25)

Next, we define the Lyapunov function

𝑉3(𝜂1, 𝜂2, 𝜂3) = 𝑉2(𝜂𝑥 , 𝜂𝑦) +
1
2
𝜂2

3 =
1
2
(𝜂2

1 + 𝜂
2
2 + 𝜂

2
3). (26)

Differentiating 𝑉3 with respect to 𝑡 along the error system (15), we get
¤𝑉3 = −𝜂2

1 − 𝜂
2
2 − 𝜂

2
3 + 𝜂3(3𝑒𝑥 + 5𝑒𝑦 + 3𝑒𝑧 + 𝑒𝑤). (27)

We define
𝜂4 = 3𝑒𝑥 + 5𝑒𝑦 + 3𝑒𝑧 + 𝑒𝑤 . (28)

Using (28), we simplify (27) as
¤𝑉3 = −𝜂2

1 − 𝜂
2
2 − 𝜂

2
3 + 𝜂4𝜂4 . (29)

Finally, we define the quadratic Lyapunov function

𝑉 (𝜂1, 𝜂2, 𝜂3, 𝜂4) = 𝑉3(𝜂1, 𝜂2, 𝜂3) +
1
2
𝑒2

4 =
1
2
𝑒2

1 +
1
2
𝑒2

2 +
1
2
𝑒2

3 +
1
2
𝑒2

4 . (30)

Differentiating 𝑉 with respect to 𝑡, we get
¤𝑉 = −𝜂2

1 − 𝜂
2
2 − 𝜂

2
3 − 𝜂

2
4 + 𝜂4𝑄, (31)
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where
𝑄 = 𝜂3 + 𝜂4 + ¤𝜂4 . (32)

Simplifying the expression in (32), we get

𝑄 = 4𝑒𝑥 + 9𝑒𝑦 + (9 − 𝑝)𝑒𝑧 + 3𝑒𝑤 − 𝑎(𝑥2𝑧2 − 𝑥1𝑧1)
− 𝑏(𝑥2𝑦2 − 𝑥1𝑦1) − 𝑐(𝑦2𝑧2 − 𝑦1𝑧1) + 𝑞(𝑧22 − 𝑧

2
1) + 𝑣. (33)

Substituting 𝑣 from Eq. (16) into (33), we get

𝑄 = −𝐾𝜂4 . (34)

Using (34) and (31), we get
¤𝑉 = −𝜂2

1 − 𝜂
2
2 − 𝜂

2
3 − (1 + 𝐾)𝜂2

4 . (35)

From (35), ¤𝑉 is negative definite on R4.
Consequently, by Lyapunov stability theory, (𝑒𝑥 (𝑡), 𝑒𝑦 (𝑡), 𝑒𝑧 (𝑡), 𝑒𝑤 (𝑡)) → 0

as 𝑡 → ∞ for all values of the initial conditions 𝑋 (0), 𝑌 (0) ∈ R4. 2

For computer simulations, we take the parameter values as in the chaos case,
viz. 𝑎 = 0.3, 𝑏 = 0.2, 𝑐 = 0.4, 𝑝 = 0.2 and 𝑞 = 0.2.

We choose the feedback gain 𝐾 as 𝐾 = 20.
We take 𝑋 (0) = (1.6, 4.3, 7.2, 3.9) and 𝑌 (0) = (2.8, 1.5, 3.1, 8.6).
Figure 10 shows the asymptotic convergence of the synchronization error

𝑒𝑥 (𝑡), 𝑒𝑦 (𝑡), 𝑒𝑧 (𝑡) and 𝑒𝑤 (𝑡) between the master system (12) and the slave sys-
tem (13).

Figure 10: Time-plot of the synchronization errors between the master system (12) and
the slave system (13)
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7. Conclusions

In this research work, we described a new four-dimensional chaotic hyperjerk
system with four quadratic nonlinearities. We performed a detailed bifurcation
analysis and derive conditions for the existence of a Hopf bifurcation for the
new hyperjerk system. A linear stability analysis of the 4-D hyperjerk system
gives a unique trivial equilibrium state, whose stability depends only upon the
parameter 𝑝. We showed that the only simple bifurcations possible are a Hopf
bifurcation when 𝑝 = 2, with the remaining two eigenvalues having negative real
parts. We noted that the Hopf bifurcation is supercritical and that the bifurcation
transition diagrams as 𝑝 varies clearly verify this Hopf bifurcation, as well as
period-halving bifurcations. We showed phase portraits of the new hyperjerk
system in the (𝑥, 𝑦)-space of examples of a period-1, period-2, period-4 orbit
in the bifurcation sequence, as well as a broad-banded period-5 example in a
periodic window. The dynamics at the chosen value of 𝑝 = 0.2 is well inside
the chaotic region. Next, we derived new results for the new chaotic hyperjerk
system showing multistability and the existence of coexisting attractors for the
new chaotic hyperjerk system. Using MultiSim, a new electronic circuit was
designed for the new chaotic hyperjerk system with four quadratic nonlinearities.
Finally, we presented a control application for the proposed chaotic hyperjerk
system with four quadratic nonlinearities. Using active backstepping control and
Lyapunov stability theory, we designed a new controller that achieves complete
synchronization for the master-slave chaotic hyperjerk systems with four quadratic
nonlinearities. A numerical example was presented to illustrate the complete
synchronization for the new chaotic hyperjerk systems taken as the master-slave
systems.
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