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Abstract. Our paper presents a nonparametric data-driven technique that can enhance the accuracy of robot kinematics models by reducing
geometric and nongeometric inaccuracies. We propose this approach based on the theory of singular maps and the large dense diffeomorphic
metric mapping (LDDMM) framework, which has been developed in the field of computational anatomy. This framework can be thought of
as a method for identifying nonlinear static models that encode a priori knowledge as a nominal model that we deform using diffeomorphisms.
To tackle the kinematic calibration problem, we implement calibration by diffeomorphisms and obtain a solution using an image registration
formalism. We evaluate our approach via simulations on double pendulum robot models, which account for both geometric and nongeometric
discrepancies. The simulations demonstrate an improvement in the precision of the kinematics results for both types of inaccuracies. Additionally,
we discuss the potential application of physical experiments. Our approach provides a fresh perspective on robot kinematics calibration using
calibration by diffeomorphisms, and it has the potential to address inaccuracies caused by unknown or difficult-to-model phenomena.
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1. INTRODUCTION

The robotic manipulators’ repeatability, accuracy and precision
are the features that give them a raison d’etre in the industrial
realm. The main factor for robots being precise and accurate
is the correctness of their mathematical model of kinematics
embedded in the controller’s software. These models usually rely
on common modelling methods, such as the Denavit-Hartenberg
or the product of exponentials method, covering standard serial
robot geometries. As may be expected, the kinematics model
of the actual robot usually differs from the one created in the
design, thus affecting the precision and accuracy. This drives
one to enhance the nominal kinematics.

According to the literature [1], the process of refinement of
the performance of the kinematics model is referred to as a robot
kinematics calibration problem. The problem may be described
as follows. Having a real robot and the ability to perform some
measurements on it, propose a reformulation of the known nom-
inal kinematics that will be closer to the actual kinematics in
some predefined criterion.

In general, the robot kinematics is represented as a map
𝑘 : 𝑋 × 𝑃 −→ 𝑌 having the admissible joints position 𝑥 ∈ 𝑋
and model parameters 𝑝 ∈ 𝑃 as arguments, taking the pose of
the end-effector as values 𝑦 ∈ 𝑌 . A typical set of parameters
is the one that follows the Denavit-Hartenberg algorithm and
governs the geometry of the robot, although it is not the only
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possible one. Simply speaking, the set of parameters may be
broader depending on the details of the modelling process.

Following [2,3], it can be seen that the most significant step of
the robot kinematics calibration is the one that employs model
identification algorithms. A widely spread approach is the so-
called parametric calibration. The idea behind it relies on look-
ing for a new set of model parameters better describing the robot
kinematics. The standard procedure exploits the measurements
(𝑥𝑖 , 𝑦𝑖) of the joint position and corresponding end-effector
poses to obtain finer values of the parameters 𝑝, minimizing
the mean squared error. Despite good theoretical and practical
results, such an approach has its drawbacks. Specifically speak-
ing, for exact calibration, the method requires knowledge of the
complete model of the robot kinematics (structures, formulas,
etc.), which in practice is difficult to achieve.

Discrepancies appearing in robot models may be grouped
into: geometric and nongeometric inaccuracies. The first one
is sourced in the variations of geometric parameters, while the
second one is caused by phenomena that are unknown or hard to
model, e.g., a joint compliance, with the last one seeming to be
an unbreakable wall for a parametric approach. Usually, in such a
case nonparmetric approaches are used in model identification.
To the best knowledge of the authors, aside from employing
neural networks [4–7], the nonparametric approaches did not
bring enough attention to the robotic society.

An alternative approach and possible remedy for the men-
tioned pitfalls is to restate the calibration problem in a different
mathematical framework requiring milder assumptions. Such an
attempt has been made in the paper [8], developing so-called cal-
ibration by diffeomorphisms. That work set the problem of robot
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calibration in terms of the differential equivalence of the singu-
lar maps. Despite fruitful theoretical results, the paper lacks
a practical implementation of the findings due to difficulties
in computing diffeomorphisms. Currently, the development of
computational methods for diffeomorphic transformations in
computational anatomy unveils new opportunities for revisit-
ing the approach proposed in [8] that allows us to design a
data-driven method for robot calibration problems alternative to
machine learning. Indeed, the presented method is an alterna-
tive to classical machine learning, but nevertheless, it can also
be considered as a type of learning process. Based on the col-
lected measurements (data-driven), we iteratively propose new
and better kinematics (learning). In contrast to machine learn-
ing, our process converges to an optimal solution in a known
number of iterations. Finally, the results can be easily general-
ized to areas not covered by the measurements.

The robot calibration problem is known in the robotic liter-
ature and has been extensively studied since the end of the last
century [2,9,10]. Nowadays, this topic is an attractive and mean-
ingful research field – a relatively large number of appearing sci-
entific papers are devoted to the calibration of industrial robots
[11–17], and investigations in other applications appear, for ex-
ample, in the calibration of the surgical robots [18]. In [19,20],
the so-called elasto-geometrical calibration method has been in-
troduced. According to [21], it is necessary to use a two-step
method to address the differences between the end-effector posi-
tion and orientation discrepancies. In the study [22], the authors
delved even deeper into the calibration process and analysed the
uncertainty of its results. They were able to determine how pa-
rameter uncertainty affects position uncertainty. These findings
may provide suggestions for optimal measurement conditions.
In reference [23], the authors employ the formula for the product
of the exponentials instead of the traditional Denavit-Hartenberg
algorithm for modelling the kinematics. It was done to leverage
the modelling method benefits in the calibration process. The
introduction of finite and instantaneous screw theory allows the
authors of [24] to define the unique calibration method for serial
and parallel manipulators. Finally, other research is focused on
the measurement aspects of calibration. Laser trackers, optical
CMMs (coordinate measuring machines), or single and multiple
cameras are typically considered [25].

Our research is focused on the fundamentals of the cali-
bration problem. We introduce a new and distinct data-driven
approach to kinematics calibration that in fact may be used
for objects different than robot kinematics. It might be seen
as method for identification nonlinear static model in which
the apriori knowledge is encoded as ‘nominal model’ that
we would like to deform by diffeomorphisms. In terms of
block-structured systems proposed calibration model is similar
to Wiener-Hammerstein models, but all of the blocks are
(possibly) nonlinear, the central block is the one where we
incorporate the apriori knowledge (nominal model) and the
first and last are diffeomorphisms. At this stage of research, we
do not provide physical experiments. The goal is to develop a
computational framework for calibration by diffeomorphisms
making further experiments on the robots possible. Some
preliminary research was recently published locally in [26].

After the introductory words, we state the main contribution
of this paper, which is threefold:
1. Discussion about the idea of calibration by diffeomorphisms,

[8], and necessary modifications for numerical implementa-
tion.

2. Introduction of a novel, data-driven, nonparametric kine-
matics calibration algorithm, drawing upon the calibration
by diffeomorphisms concept.

3. A fusion of the numerical algorithms from the compu-
tational anatomy, [27], with the calibration by diffeomor-
phisms methodology.

The composition of this paper is as follows. The next section,
2, recalls theoretical fundamentals and results of the calibration
by diffeomorphisms. Afterwards in Section 3, the problem of
robot kinematics calibration by diffeomorphisms is restated in
terms of large deformation diffeomorphic mapping (LDDMM)
framework. The implementational details have been derived in
Section 4. Section 5 evaluates the theoretical results through
simulation for calibration of a double pendulum (an 𝑅𝑅 ma-
nipulator) with both geometric and nongeometric inaccuracies.
Finally, the discussion of the results concludes the paper with
Section 6.

2. CALIBRATION BY DIFFEOMORPHISMS
The calibration by diffeomorphisms mentioned above has been
proposed in [8] as a theoretical framework for solving the kine-
matic calibration problem. As the author points out, the motive
for the work was to set the theoretical fundamentals for a rather
practical problem that would allow one to answer whether or not
a correction for a given kinematics model could be computed.
That aim drove him to settle the calibration problem in terms of
the singularity theory (theory of stable mappings).

Before we introduce the main concepts of calibration by dif-
feomorphisms we shall consider the objects of our interests and
define the kinematics calibration problem. A general 𝑛-degree-
of-freedom rigid manipulator consists of 𝑟 unlimited revolute
joints and the 𝑛− 𝑟 prismatic joints. The internal/joint space 𝑋
of such a manipulator may be identified with a smooth man-
ifold 𝑋 = 𝑅𝑛−𝑟 ×𝑇𝑟 , where 𝑇𝑟 denotes 𝑟−dimensional torus.
This space (manifold) may be interpreted as the space of the
admissible joint positions. The standard way of representing
manipulator kinematics is to assign for each joint position (el-
ement of 𝑋) a pose of the manipulator’s end-effector (position
and orientation expressed in a coordinate frame of a manipula-
tor’s fixed base). The external space 𝑌 of admissible poses is a
smooth manifold and subgroup of the 𝑆𝐸 (3) Lie group. Hav-
ing defined the internal and external space, we can describe the
kinematics as a smooth map

𝑘 : 𝑋 −→ 𝑌 .

If we fix the internal and external spaces, 𝑘 may be considered as
an element of 𝐶∞ (𝑋,𝑌 ) – the set of smooth mappings between
those manifolds. Finally, with the kinematics mapping defined,
the calibration problem can be stated as follows, given nominal
kinematics 𝑘 , find a calibrating transformations that applied to 𝑘
would produce the actual kinematics 𝑘 ′, with 𝑘, 𝑘 ′ ∈ 𝐶∞ (𝑋,𝑌 ).
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The calibration by diffeomorphism exploits two concepts of
singularity theory: LR-equivalence and structural stability [28].
The first one states that two maps 𝑘, 𝑘 ′ ∈ 𝐶∞ (𝑋,𝑌 ) are equiva-
lent if there exist diffeomorphisms 𝜑 ∈Diff (𝑋) and 𝜓 ∈Diff (𝑌 )
that 𝜓 ◦ 𝑘 ◦ 𝜑−1 = 𝑘 ′. The latter one yields that a smooth map
𝑘 is structurally stable if any 𝑘 ′ in the neighbourhood of 𝑘 is
LR-equivalent to 𝑘 . Let us denote 𝑘 as nominal kinematics – the
known one, and defined by the model and 𝑘 ′ as actual kinematics
– the real, unknown one. Then according to [8] we can restate
the robot kinematics calibration problem in terms of calibration
by diffeomorphisms.

Let nominal kinematics 𝑘 and actual kinematics 𝑘 ′ be smooth
maps, i.e 𝑘, 𝑘 ′ ∈𝐶∞ (𝑋,𝑌 ), then 𝑘 can be calibrated to 𝑘 ′ if there
exists calibrating transformations 𝜑 ∈ Diff (𝑋) and 𝜓 ∈ Diff (𝑌 )
such that

𝜓 ◦ 𝑘 ◦𝜑−1 = 𝑘 ′,

It can be seen that the definition of calibration by diffeomor-
phism follows directly from the LR-equivalence. Let us look
closely at the two diffeomorphisms acting on the appropriate
spaces. If we slightly abuse the notation, then 𝜑 : 𝑋 −→ 𝑋 ′ and
𝜓 : 𝑌 −→ 𝑌 ′, where 𝑋 ′ and 𝑌 ′ denote the diffeomorphically
transformed spaces. They retain the nominal topology but obvi-
ously can change the geometry. We are now ready to compose
the following commutative diagram

𝑋 𝑌

𝑋 ′ 𝑌 ′

𝑘

𝜑 𝜓

𝑘′

. (1)

As we can see, the idea behind this is to deform the domain and
the image of the nominal kinematics so that the resulting one
aligns with the kinematics of the real robot.

Nevertheless, one would like to know whether such calibrat-
ing transformation exists. The answer to this question follows di-
rectly from the property of structural stability, i.e., the calibrating
transformations exist for structurally stable nominal kinematics.
Several classes of structurally stable maps have been discov-
ered in the theory of stable mappings. The work [8] presents
some of the results and adapts them to the scope of kinematics
calibration.

Tchoń in [8] introduces a method for computing so-called
affine calibrating transformations yielding explicit expressions
for the diffeomorphisms. This approach assumes that the nomi-
nal kinematics 𝑘 is subject exclusively to small parametric vari-
ations 𝑢 (𝑢 ∈ 𝑅𝑠 being a variation of the model parameters
𝑝 ∈ 𝑅𝑠), and the diffeomorphisms can be expressed affine in 𝑢,
i.e., 𝜓(𝑦) = 𝑦 + 𝜕𝜓 (𝑦)

𝜕𝑦

��
𝑢=0 𝑢, 𝜑(𝑥) = 𝑥 + 𝜕𝜑 (𝑥 )

𝜕𝑥

��
𝑢=0 𝑢.

In this paper, we consider the problem of calibration by dif-
feomorphism without constraining ourselves to small discrep-
ancies of the model and affine form of the diffeomorphisms.
The methodology for that case follows directly from homotopic
stability [28] that states: for proper nominal kinematics 𝑘, there

exists a one-dimensional family, parametrized by 𝜗 ∈ 𝑅 of cal-
ibrating transformations 𝜑𝜗 ∈ Diff (𝑋) and 𝜓𝜗 ∈ Diff (𝑌 ) with
𝜑0 = 𝜑𝜗 |𝜗=0 = id𝑋, 𝜓0 = 𝜓𝜗 |𝜗=0 = id𝑌 , such that actual kine-
matics 𝑘𝜗 takes the form

𝑘𝜗 (𝑥) = 𝜓𝜗 ◦ 𝑘 ◦𝜑−1
𝜗 (𝑥). (2)

It states the existence of a one-parameter family of calibrat-
ing transformations depending on the parameter 𝜗 ∈ 𝑅 and is
the entry-point of our deliberation. Unfortunately, it says barely
anything about how to compute the calibrating diffeomorphisms.
However, similar problems have been widely studied in the past
decades, for example, in computational anatomy [27, 29]. One
of its results is the so-called large deformation diffeomorphic
metric mapping framework that allows one to solve the image
registration problem [27]. An adaptation of its brilliant mathe-
matical machinery we introduce in the subsequent section.

3. MAIN RESULT

Relying on the unified abstract framework originally devoted to
image registration, we may formally address the main problem of
robot calibration. Let us define the space of objects𝑉 , on which
a group of diffeomorphisms will act, as the space 𝐶∞ (𝑋,𝑌 ) of
smooth mappings between the internal space 𝑋 and the external
space 𝑌 . Since we are addressing the problem of calibrating
the robot kinematics, and kinematics is inherently a smooth
mapping between 𝑋 and 𝑌 , we will consider the space 𝑉 to
consist of such kinematic mappings. Thus, we will denote it as
a space of kinematics. In this setting, we constrain ourselves to
the robot kinematics that may be expressed in coordinates, i.e.,
𝑌 = 𝑅𝑚. We identify configuration space with n-dimensional
Euclidean space 𝑋 = 𝑅𝑛, so a kinematics is a map

𝑘 : 𝑋 ≃ 𝑅𝑛 −→ 𝑌 ≃ 𝑅𝑚 , (3)

and seemingly 𝑘 ∈ 𝑉 ≃ 𝐶∞ (𝑅𝑛, 𝑅𝑚). On the other hand, to be
consistent with the calibration by diffeomorphisms, we shall set
the group of transformation 𝐺 to be 𝐺 = Diff (𝑋) ×Diff (𝑌 ) ≃
Diff (𝑅𝑛) ×Diff (𝑅𝑚) .Unfortunately, we have to take a different
approach due to numerical implementation issues. Instead of
dealing with a whole group 𝐺, we shall stick to a subgroup that
arises as a flow of appropriate ordinary differential equations
(ODEs). It is done by considering a group of diffeomorphisms
emerging from the admissible space of vector fields. The broadly
described details can be found in [29]. The procedure of building
such groups boils down to the choice of the space of vector fields
V that is admissible (continuously embedded in 𝐶1

0
(
𝑅𝑑 , 𝑅𝑑

)
,

continuously differentiable vector fields on 𝑅𝑑 that tend to 0
at infinity), then the group of diffeomorphisms DiffV is the
set of diffeomorphisms being flows from time 0 to 1 of the
vector fields from that space. In this case elements of DiffV

inherit smoothness properties from V . Thus, we shall choose
the space 𝐻∞ – intersection of all Sobolev space. Finally, we
get 𝐺 = DiffV (𝑋) ×DiffW (𝑌 ) consisting of diffeomorphisms
emerging as a flow of the vector fields living in the product
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space V ×W ≃ 𝐻∞ (𝑋, 𝑅𝑛) ×𝐻∞ (𝑌, 𝑅𝑚), i.e.,

𝜕𝜑𝜗

𝜕𝜗
= 𝑣𝜗 (𝜑𝜗) , 𝜑0 = id𝑋 ,

𝜕𝜓𝜗

𝜕𝜗
= 𝑤𝜗 (𝜓𝜗) , 𝜓0 = id𝑌 ,

(4)

for 𝑔𝜗 = (𝜑𝜗 ,𝜓𝜗) ∈ 𝐺 and 𝑢𝜗 = (𝑣𝜗 ,𝑤𝜗) ∈ V ×W .

Having specified the group𝐺, we may discuss the action of𝐺
on𝑉 . It is defined in the following way. Let 𝑔 = (𝜑,𝜓), 𝑔 ∈ 𝐺,
and 𝑘 ∈ 𝑉 then 𝑔 · 𝑘 = 𝜓 ◦ 𝑘 ◦ 𝜑−1. It is easy to check that the
action is a left action. Finally, we can formulate the calibration by
diffeomorphisms problem in the LDDMM framework [29]. In
these terms the calibration problem substantiates as a variational
optimization problem

min
𝑢
𝐸 (𝑢) = 1

2

1∫
0

∥𝑢𝜗 ∥2V ×W d𝜗+ 1
2𝜎2 ∥𝑔1 · 𝑘0− 𝑘 ∥2𝑉 , (5)

subject to
𝜕𝑔𝜗

𝜕𝜗
= 𝑢𝜗 · 𝑔𝜗 , 𝑔0 = 𝑒, (6)

where 𝑢𝜗 = (𝑣𝜗 ,𝑤𝜗) ∈ V ×W , 𝑢𝜗 · 𝑔𝜗 = (𝑣𝜗 (𝜑𝜗),𝑤𝜗 (𝜓𝜗))
and 𝑔1 = (𝜑1,𝜓1) ∈ 𝐺 is the endpoint map of the differential
equation above. The norm in the functional (5) are induced
from the inner products. The first one takes the form

⟨𝑢1, 𝑢2⟩V ×W = ⟨𝑣1, 𝑣2⟩V + ⟨𝑤1,𝑤2⟩W , (7)

where 𝑢𝑖 = (𝑣𝑖 ,𝑤𝑖) ∈ V ×W and the inner products on the right
hand side are the inner products for the appropriate admissible
vector space, i.e.,

⟨𝑣1, 𝑣2⟩V =

∫
𝑅𝑛

𝑣⊤1 (𝑥)𝐿V 𝑣2 (𝑥) d𝑥, 𝑣1, 𝑣2 ∈ V , (8)

with 𝐿V being a positive definite, self-adjoint, differential op-
erator, analogous definition holds for ⟨·, ·⟩W . For the case of the
space of kinematics we choose 𝐿2 inner product

⟨𝑘1, 𝑘2⟩𝑉 =

∫
𝑅𝑛

𝑘⊤1 (𝑥)𝑘2 (𝑥) d𝑥, 𝑘𝑖 ∈ 𝑉. (9)

According to [30], if the vector field 𝑢𝜗 is the solution of
the problem (5), the Euler-Poincaré reduction may be applied to
simplify the problem to the following one

min
𝑃0
𝐸 (𝑃0) =

1
2
∥𝑢0 (𝑃0)∥2V ×W +

1
2𝜎2 ∥𝑘1− 𝑘 ∥2𝑉 , (10)

subject to

𝜕𝑘𝜗

𝜕𝜗
= 𝑤𝜗 (𝑘𝜗) −𝐷𝑘𝜗 · 𝑣𝜗 ,

𝜕𝑃𝜗

𝜕𝜗
= −(𝐷𝑤𝜗 (𝑘𝜗))⊤𝑃𝜗 −div(𝑃𝜗𝑣

⊤
𝜗),

𝐿V 𝑣𝜗 = 𝐷𝑘⊤𝜗𝑃𝜗 ,

𝐿W 𝑤𝜗 = 𝑃𝜗 ,

(11)

where 𝑘1 is defined as the solution of the system of equations,
𝐷 is a differential operator with respect to the spatial argument
of a mapping, i.e., 𝐷𝑘 (𝑥) = 𝜕𝑥𝑘 (𝑥), and div denotes the diver-
gence operator, for rank-2 tensor 𝐴 = 𝐴(𝑥), 𝑓 = div(𝐴), results

in 𝑓 𝑗 =
∑︁
𝑖

𝜕𝐴𝑖 𝑗

𝜕𝑥𝑖
. The differential equations (11) are the evolu-

tion equations on the cotangent bundle 𝑇∗𝑉 of the kinematics
space 𝑉 .

In fact, the problem stated above is a two-point boundary
value problem and may be rephrased as follows: find the initial
momenta 𝑃0, such that the system of differential equations from
above satisfies 𝑘𝑡=0 = 𝑘0 and

𝑃1 +
𝜕

𝜕𝑘1

1
2𝜎2 ∥𝑘1− 𝑘 ∥2𝑉 = 0. (12)

A common approach is solving such a problem with the shoot-
ing method employing the adjoint equations or just with the
appropriate numerical optimization methods.

The solution to the optimization problem (10) solves our
calibration problem. Indeed, starting with the nominal kinemat-
ics and the optimal initial momenta we can evolve the nominal
kinematics to the actual one through the equations (11). The
main pitfall of such a formulation is that we have to provide
actual kinematics to calculate the value of the cost functional
for each step of the optimization process. Unfortunately, the ac-
tual kinematics is not known and we would like to retrieve that
model. What we are sure about the actual kinematics is that it
is available to us only by a finite number of measurements. Due
to that, we shall consider the relaxed problem, which we will do
in the following section.

4. IMPLEMENTATION

As we pointed out in the previous section, the actual kinematics
is not available to us in terms of mapping. We are able to sample
the kinematics by taking the measurements at certain points
in the internal and external space. This observation pushes us
to consider the relaxed problem that takes into account this
inconvenience. Keeping this in mind, let us formalize the notion
of measurements.

The robot nominal kinematics (kinematics model) 𝑘0 is given
as a map (3) and we assume that we get this relation, e.g., by a
standard Denavit-Hartenberg algorithm. Let 𝑘 be the kinemat-
ics of the actual robot – the one we are looking for. We expect
that 𝑘 is available to us only by measurements. From a practical
viewpoint, the measurements are treated as the collections of 𝑁
pairs of the joint positions and their corresponding end-effector
positions. We denote them as 𝑥 = (𝑥1, ..., 𝑥𝑁 ), 𝑥𝑖 ∈ 𝑅𝑛 and
𝑦 =

(
𝑘 (𝑥1), ..., 𝑘 (𝑥𝑁 )

)
= (𝑦1, ..., 𝑦𝑁 ), 𝑦𝑖 ∈ 𝑅𝑚, respectively.

So having these collections of measurements 𝑥 and 𝑦, the goal
is to find diffeomorphisms 𝜓 and 𝜑 transforming the nominal
kinematics that resembles the real one, i.e.

𝜓 ◦ 𝑘0 ◦𝜑−1 = 𝑘. (13)

Formulating the energy functional in relaxed manner involves
considering the error between nominal and actual kinematics at
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specific measurement points, rather than across the entire do-
main. Yet, despite this adjustment, the problem remains infinite-
dimensional, requiring a numerical solution. By utilizing re-
producing kernels from Reproducing Kernel Hilbert Spaces to
parameterize vector fields, we can overcome the technical hur-
dles previously encountered. This widely accepted approach im-
merses the problem into an RKHS [29], effectively reducing the
problem from an infinite-dimensional to a finite-dimensional
one based on the number of measurements taken. According
to the Moore-Aronszajn theorem (see, e.g, [31]), every cor-
rectly defined kernel 𝐾 simultaneously defines a corresponding
RKHS. So, by a proper kernel choice, we select an adequate
RKHS that enforces appropriate smoothness on vector fields.
On the other hand this mapping can be built directly from the
bĳective and self-adjoint differential operators, [29], in such a
case, for the differential operator 𝐿 the reproducing kernel 𝐾
is the inverse of that operator 𝐾 = 𝐿−1. Looking closely at the
spaces of the vector fields V and W both are Hilbert spaces
equipped with the inner products and differential operators 𝐿V ,
𝐿W being the dual operators at the same time. So, from now on,
we assume that the vector fields 𝑣𝜗 ∈ V and 𝑤𝜗 ∈ W belong
to a proper RKHS, V or W , with the kernels 𝐾V , 𝐾W corre-
sponding to the operators 𝐿V , 𝐿W . According to the [32], if
one’s choice of the differential operator is

𝐿 =
∑︁
𝛽∈N𝑛

0

1

2 |𝛽 |
𝑛∏
𝑗=1
(𝛽 𝑗 )

𝐷2𝛽 ,

the corresponding kernel is the widely used Gauss kernel

𝐾 (𝑥, 𝑦) = (2𝜋)− 𝑛
2 𝑒−

∥𝑥−𝑦∥
2 , 𝑥, 𝑦 ∈ R𝑛.

The RKHS distinguishes itself from Hilbert space in that it
possesses a reproducing kernel. It allows us to interpolate the
vector fields (4) in an arbitrary location based on

𝑣𝜗 (𝑥) =
∫
𝑋

𝐾𝑉 (𝑥, 𝜉)𝛼(𝜗, 𝜉) d𝜉, for 𝛼(𝜗, 𝜉) ∈ 𝑅𝑚,

𝑤𝜗 (𝑦) =
∫
𝑌

𝐾𝑊 (𝑦,𝜂)𝛽(𝜗,𝜂) d𝜂, for 𝛽(𝜗,𝜂) ∈ 𝑅𝑚,

(14)

where 𝐾V (𝑥, 𝜉) and 𝐾W (𝑦,𝜂) denotes the reproducing kernels
for V and W , and 𝛼(𝜗, 𝜉) and 𝛽(𝜗,𝜂) are vectors in 𝑅𝑚 coming
from the construction of the reproducing kernels for the spaces
consisting of multi-dimensional vector fields (more detailed ex-
planation in [29]), they may be interpreted as a sort of suitable
weighting coefficients

𝑣𝜗 (𝑥) =
𝑁∑︁
𝑖=1
𝐾V (𝑥, 𝜉𝑖)𝛼𝑖 (𝜗),

𝑤𝜗 (𝑦) =
𝑁∑︁
𝑖=1
𝐾W (𝑦,𝜂𝑖)𝛽𝑖 (𝜗).

(15)

Keeping that in mind, we formulate the relaxed calibration by
diffeomorphisms as follows. For given nominal kinematics 𝑘0
and the measurements (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1, . . . , 𝑁 taken from the actual
kinematics 𝑘 (𝑘, 𝑘0 ∈ 𝑉), find 𝑃0 ∈ 𝑉∗ that minimizes

𝐸 (𝑃0) =
1
2

𝑁∑︁
𝑖, 𝑗=1

𝑃⊤0 (𝑥𝑖)𝐷𝑘0 (𝑥𝑖)𝐾V (𝑥𝑖 , 𝑥 𝑗 )𝐷𝑘0 (𝑥 𝑗 )⊤𝑃0 (𝑥 𝑗 )

+ 1
2

𝑁∑︁
𝑖, 𝑗=1

𝑃⊤0 (𝑥𝑖)𝐾W (𝑘0 (𝑥𝑖), 𝑘0 (𝑥 𝑗 ))𝑃0 (𝑥 𝑗 )

+ 1
2𝜎2

𝑁∑︁
𝑖=1
∥𝑘1 (𝑥𝑖) − 𝑦𝑖 ∥22 , (16)

where 𝑘1 (𝑥𝑖) is defined as the solution of the system of equations

𝜕𝑘𝜗 (𝑥𝑖)
𝜕𝜗

= 𝑤𝜗 (𝑘𝜗 (𝑥𝑖)) −𝐷𝑘𝜗 (𝑥𝑖) · 𝑣𝜗 (𝑥𝑖),

𝜕𝑃𝑖
𝜗

𝜕𝜗
= −(𝐷𝑤𝜗 (𝑘𝜗 (𝑥𝑖)))⊤𝑃𝑖

𝜗 −div(𝑃𝑖
𝜗𝑣
⊤
𝜗 (𝑥𝑖)),

𝑣𝜗 (𝑥𝑖) =
𝑁∑︁
𝑗

𝐾V

(
𝑥𝑖 , 𝑥 𝑗

)
𝐷𝑘𝜗 (𝑥 𝑗 )⊤𝑃 𝑗

𝜗
,

𝑤𝜗 (𝑦𝑖) =
𝑁∑︁
𝑗

𝐾W (𝑦𝑖 , 𝑦 𝑗 )𝑃 𝑗

𝜗
,

(17)

evaluated at the point 𝑡 = 1.

One should notice that the Jacobian of the current kinematics
𝑘𝜗 is needed at every evaluation of the differential equation.
Unfortunately, we cannot compute it analytically. Instead, let us
look at the evolution of that Jacobian along the evolution curve.
It is easy to check that 𝐷𝑘𝜗 = 𝐷𝜓𝜗𝐷𝑘0𝐷𝜑

−1
𝜗

is a solution to
the following differential equation

𝜕𝐷𝑘𝜗

𝜕𝜗
= 𝐷𝑤𝜗 (𝑘𝜗)𝐷𝑘𝜗 −𝐷𝑘𝜗𝐷𝑣𝜗 (18)

being a type of Sylvester differential equation. Evaluation of
(18) for a certain point 𝑥𝑖 yields

𝜕𝐷𝑘 (𝑥𝑖)
𝜕𝜗

= 𝐷𝑤𝜗 (𝑘𝜗 (𝑥𝑖))𝐷𝑘𝜗 (𝑥𝑖) −𝐷𝑘𝜗 (𝑥𝑖)𝐷𝑣𝜗 (𝑥𝑖). (19)

Thus, supplementing the set of equations (17) with (19) is suffi-
cient to find the initial momenta 𝑃0 using one of the numerical
optimization procedures. We need to look for 𝑃0 once per robot
and a data set of measurements (once per calibration process).
Once there is a solution we can compute the actual kinemat-
ics, namely the relation between task space variables 𝑦, and an
arbitrary value of joint variables 𝜉, with the following
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𝜕𝑘𝜗 (𝜉)
𝜕𝜗

= 𝑤𝜗 (𝑘𝜗 (𝜉)) −𝐷𝑘𝜗 (𝜉) · 𝑣𝜗 (𝜉),

𝜕𝐷𝑘 (𝜉)
𝑑𝑡

= 𝐷𝑤(𝑘𝜗 (𝜉))𝐷𝑘𝜗 (𝜉) −𝐷𝑘𝜗 (𝜉)𝐷𝑣(𝜉),

𝑣𝜗 (𝜉) =
𝑁∑︁
𝑗

𝐾V

(
𝜉, 𝑥 𝑗

)
𝐷𝑘𝜗 (𝑥 𝑗 )⊤𝑃 𝑗

𝜗
,

𝑤𝜗 (𝑘𝜗 (𝜉)) =
𝑁∑︁
𝑗

𝐾W (𝑘𝜗 (𝜉)), 𝑘𝜗 (𝑥 𝑗 ))𝑃 𝑗

𝜗
,

(20)

where 𝑃𝑖
𝜗

and 𝑘𝜗 (𝑥𝑖) can be obtained and reused from the
solution of the previous system of equations for the measurement
points 𝑥𝑖 . Finally, the kinematics relation is given by

𝑦 = 𝑘1 (𝜉), (21)

where 𝑘1 (𝜉) is a value of a resultant trajectory 𝑘𝜗 (𝜉) of (20) at
point 𝜗 = 1 for a given configuration 𝜉. The presented calibra-
tion may be outlined as, from our calibration process (offline)
we at least determine the vector fields 𝑣𝜗 (𝑥) and 𝑤𝜗 (𝑦) and
may interpret them with corresponding kernel 𝐾V and 𝐾W .
So the solution, the actual kinematics 𝑘1 is the value of the
trajectory 𝑘𝜗 of (20) in point 𝜗 = 1. The idea behind the first
equation in (20) is depicted in Fig. 1. As can be seen, as the
𝜗 increases, the mapping 𝑘𝜗 (𝑥𝑖), continuously maps a point
𝑥𝑖 from the internal space 𝑋 into a point 𝑘𝜗 (𝑥𝑖) in the exter-
nal space 𝑌 . For 𝜗 = 0, we arrive at the point resulting from
nominal kinematics, and for 𝜗 = 1 the computation yields with
the point 𝑘1 (𝑥𝑖) (calibrated kinematics) which coincides, as
expected, with the measurements. By utilizing the concept of
reproducing kernels, we can similarly determine the outcome of
calibrated kinematics for any point that does not align with the
measurement using (20).

𝑥𝑖
𝑥 𝑗

𝜕
𝜕𝜗
𝑘𝜗 (𝑥𝑖)

𝑘0 (𝑥𝑖) 𝑘0 (𝑥 𝑗 )

𝑘1 (𝑥𝑖) 𝑘1 (𝑥 𝑗 )
𝑘0

𝑘𝜗𝑙

𝑘𝜗𝑙+1

𝑘1𝜗

𝑋 𝑌

Fig. 1. Actual kinematics computation

The computational flow of the entire calibration procedure
is illustrated in Fig. 2 for clarity, while the pseudocode for the
algorithm is provided in Listings 1 and 2.

Algorithm 1. LR calibration, offline part
Require:
𝑋 = (𝑥1, . . . , 𝑥𝑁 ),𝑌 = (𝑘𝑟 (𝑥1), . . . , 𝑘𝑟 (𝑥𝑁 )) ⊲

Sets of 𝑁 measurements of configurations and corresponding
end-effector poses,
𝑘,𝐾V ,𝐾W ,𝜎 ⊲ Nominal kinematics, reproducing kernels for
V and W spaces, regularization coefficient,
𝜇, 𝜖,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 ⊲ step size, optimization tolerance, number of
iterations
function lr_calibration(𝑋,𝑌, 𝑘,𝐾V ,𝐾W ,𝜎, 𝜖,max_iter)

Initialize 𝑃0 = (𝑃1
0, . . . , 𝑃

𝑁
0 ) ← 0

Set iteration counter 𝑘← 0
while 𝑖 < max_iter do

Solve ODEs (17) along 𝜗 ∈ (0,1)
Compute gradient of (12), i.e., ∇𝑃0

if ∥∇𝑃0 ∥ < 𝜖 then
break ⊲ Convergence criteria met

end if
Update the momenta 𝑃0← 𝑃0− 𝜇∇𝑃0

Increment iteration counter 𝑖← 𝑖 +1
end while
return (𝑋,𝑃0, 𝑘,𝐾V ,𝐾W ) ⊲ Tuple encoding the

calibrated kinematics
end function

Algorithm 2. LR calibration, online part
Require:
𝜉 ⊲ Point for evaluation of the calibrated kinematics
(𝑋,𝑃0, 𝑘,𝐾V ,𝐾W ) ⊲ Tuple encoding the calibrated
kinematics, returned from the offline part

function evaluate(𝜉, 𝑋, 𝑃0, 𝑘,𝐾V ,𝐾W )
Solve ODEs (20) with (16) along 𝜗 ∈ (0,1)
return (𝑘1 (𝜉), 𝐷𝑘1 (𝜉)) ⊲ Calibrated kinematics and its

Jacobian at given point 𝜉, obtained as the endpoint value of
(20)
end function

Summarizing the introduced approach and applying it in a
classical calibration procedure, we follow four steps outlined





∂kϑ(xi)
∂ϑ = wϑ(kϑ(xi))−Dkϑ(xi) · vϑ(xi),

∂P i
ϑ

∂ϑ = −(Dwϑ(kϑ(xi)))
⊤P i

ϑ − div(P i
ϑv

⊤
ϑ (xi)),

vϑ(xi) =
∑N

j KV (xi, xj)Dkϑ(xj)
⊤P j

ϑ,

wϑ(yi) =
∑N

j KW(yi, yj)P
j
ϑ,





∂kϑ(ξ)
∂ϑ = wϑ(kϑ(ξ))−Dkϑ(ξ) · vϑ(ξ),

∂Dk(ξ)
dt = Dw(kϑ(ξ))Dkϑ(ξ)−Dkϑ(ξ)Dv(ξ),

vϑ(ξ) =
∑N

j KV (ξ, xj)Dkϑ(xj)
⊤P j

ϑ,

wϑ(kϑ(ξ)) =
∑N

j KW(kϑ(ξ)), kϑ(xj))P
j
ϑ,

(xi, yi)

k0(x)

y = k1(ξ)

ξ

kϑ(x), Pϑ

offline – learning phase online – operation phase

Fig. 2. Computation flow of the calibration by diffeomorphisms
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in [2]. Firstly, we start with a first-guess model of nominal
kinematics (3). It can be a standard model attained through
the Denavit-Hartenberg algorithm. There is no requirement to
consider some prior knowledge of phenomena different from
kinematics (bends, joint compliance, etc.). In the second step,
we collect 𝑁 independent pairs of (𝑥, 𝑦) measurements – config-
uration and the corresponding pose of the end-effector. The third
step involves a reformulation of the identification procedure to
the introduced one that is based on diffeomorphic deformation
(13), contrary to the original approach proposed in [1–3] and
many others. This reformulation leads us to LDDMM and to
the dynamical system driving the calibration process that can be
numerically solved with given initial conditions. Finally, the last
calibration step, the implementation, can be achieved through
equation (21).

5. SIMULATION RESULTS

The efficiency of the calibration by diffeomorphisms, presented
in previous sections, will be evaluated through simulation re-
sults. We have chosen an 𝑅𝑅 manipulator as our simulational
testbed to accomplish that. The schematic diagram of the se-
lected robot has been depicted in Fig. 3.

Y1

Y2

l1

l2

y1

y2

x1

x2

Fig. 3. Schematic diagram of the 𝑅𝑅 manipulator

The values of the link lengths in the considered robot are set
to 𝑙1 = 1 and 𝑙2 = 0.5, whilst the nominal kinematics model of an
𝑅𝑅 robot has been obtained via the standard Denavit-Hartenberg
procedure. Thus, the kinematics in coordinates takes the form(

𝑦1

𝑦2

)
=

(
𝑙1 cos(𝑥1) + 𝑙2 cos(𝑥1 + 𝑥2)
𝑙1 sin(𝑥1) + 𝑙2 sin(𝑥1 + 𝑥2)

)
, (22)

where 𝑦 = (𝑦1, 𝑦2) ∈ 𝑅2 is a vector in task space representing the
position of the end-effector, and 𝑥 = (𝑥1, 𝑥2) ∈ 𝑇2 ≃ 𝑅2 denotes
a joint space vector collecting angles of a first and second joint
respectively (see Fig. 3).

To perform the robot calibration, we need to generate a dataset
of measurements, namely the pairs (𝑥𝑖 , 𝑦𝑟𝑖 ) for 𝑖 = 1, . . . , 𝑁 of a
real robot joint positions 𝑥𝑖 corresponding with the end-effector
positions 𝑦𝑟𝑖 . For this reason, we introduce new kinematics

reflecting the actual manipulator kinematics. The desired (real)
kinematic relationship is expressed by

𝑦𝑟 = 𝑘𝑟 (𝑥), (23)

which we design according to the elastostatic model proposed
in [33], with additional discrepancies introduced in link lengths
and robot base position. We assume this relationship is unknown
and remains hidden during the calibration process. It serves
only as a measurement source and a benchmark for the result
assessment. We will refer to the relationship (23) as the desired
(real) kinematics, as opposed to the actual kinematics delivered
from the calibration algorithm.

In the real manipulator kinematics (23), we have introduced
three types of disturbances. Firstly we changed the link lengths
by around 10%. Secondly, we add an offset of the base mount-
ing point location, which could be interpreted as a misaligned
base coordinate system. Finally, the third disturbance involved
bending, stretching, and shrinking of the links. We assume that
the links of the manipulator can bend according to the influence
of gravity. One should notice that we deal only with the static
kinematics model. So the robot acceleration is not considered
and does not affect link bending. It is easy to imagine that the
end-effector position can vary significantly depending on the
elasticity parameter.

To calibrate the manipulator based on the introduced theory,
we need an initial kinematics relation as a starting point. It is
helpful to compare the real (unknown) kinematics to the initial
one. Figure 4 shows the comparison presenting the position of
the end-effector of the nominal manipulator and the real one at
a few configurations – the same for each manipulator. One can
notice from Fig. 4 that discrepancies in the end-effector posi-
tion can be relatively considerable and, according to introduced
disturbances, can vary along the workspace.

Y1

Y2

Fig. 4. The initial and the real manipulator poses comparison

Having our testbed established, we can specify the calibra-
tion by diffeomorphism problem to the RR manipulator case.
Figure 5 presents a specific instance of a diagram (1) for our
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y1

y2

y1

y2

k0

ψφ

k1

Fig. 5. Calibration by diffeomorphism for 𝑅𝑅 manipulator

testbed (𝑅𝑅 manipulator). Now we can show the topologies of
the corresponding spaces 𝑋 (inner space) and𝑌 (external space).
While our model is an 𝑅𝑅 manipulator, the inner (joint) space
is a torus 𝑇2. The external (task) space is a subspace of an 𝑅2

and depends on the link lengths. In the presented scenario, the
manipulator work range forms an annulus. Also, we may ob-
serve the influence of the resultant diffeomorphisms. The effect
of the 𝜑 diffeomorphism is to distort, in a proper way, the geom-
etry of the 𝑥 space while preserving its topology and differential
structure. Analogously, the diffeomorphism𝜓 transforms diffeo-
morphically the 𝑦 space. After such transformation, the proper
composition of diffeomorphisms with the initial kinematics 𝑘0
as in (13) produces the sought relation of actual kinematics 𝑘1.

Proceeding to the simulational part, we have to find ini-
tial momenta 𝑃𝑖

0 such that its value, under the evolution
through the equation, at time 𝑡 = 1 satisfy the boundary con-

straint 𝑃𝑖
1 = −

𝜕

𝜕𝑘1 (𝑥𝑖)
1

2𝜎2 ∥𝑘1 (𝑥𝑖) − 𝑘2 (𝑥𝑖)∥22. Further, we ob-

tain the actual kinematics by (21) under (20). We perform
the computation by the Matlab built-in algebraic and differ-
ential equation solvers using the Kernel Operations (KeOps)
library [34], supplying Matlab with functions for efficient cal-
culations of kernel-related operations. The library allows one
for easy computation on GPU. Nonetheless, we have not used
yet those capabilities in the simulations. As kernel functions,
we chose a Gaussian kernel and a positive kernel properly de-

fined on the torus, [35]. Thus, 𝐾W = exp
(
− |𝑥− 𝑦 |

2

𝑎

)
and 𝐾V =

𝛾 exp (𝑏1 (cos(𝑥𝑖 − 𝑦𝑖) −1) + 𝑏2 (cos(𝑥2− 𝑦2) −1)). The value of
the parameters for𝐾V have been set to 𝑏1 = 1.0186, 𝑏2 = 1.0186,
whereas for 𝐾W = 𝐾 (𝑥, 𝑦) to 𝑎 = 1.0270. The role of the weight
parameter 𝛾 in the 𝐾V kernel is to enforce the preference be-
tween the 𝜑 and 𝜓 diffeomorphisms and in the simulation took

the value 𝛾 = 8, the regularization parameter 𝜎 = 100. The real
kinematics have been sampled with 256 measurements taken
from a grid defined on configurational space.

The simulation results of the whole calibration process are
depicted in Figures 6–12. For comparison purposes, each figure
demonstrates the state before and after calibration concerning
the desired one in both cases.

−π −π
2 0 π

2 π −π
−π

2

0

π
2

π

−1

0

1

x1

x2

y 1

−5

−4

−3

−2

−1

0

lo
g
|y r

1
−
y n

1
|

−π −π
2 0 π

2 π −π
−π

2

0

π
2

π

−1

0

1

x1

x2

y 2

−5

−4

−3

−2

−1

0

lo
g
|y r

2
−
y n

2
|

Fig. 6. The real versus nominal kinematics
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Fig. 7. The real versus actual kinematics

8 Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 2, p. e153230, 2025



Calibration by diffeomorphisms of manipulator kinematics

Plots in Fig. 6 visualize the uncalibrated kinematics. The
surfaces represent the real kinematics expressed by (23), and the
colour maps the logarithm of absolute value of the discrepancy
between (23) and the nominal (22) kinematics. One can notice
that we start from relatively large errors that are mostly around
0.1 to 0.15 length units.

Contrary to Fig. 6, Fig. 7 depicts the actual (final) kinematics
acquired from our method. Once again, the surface presents the
respective 𝑦1 and 𝑦2 components of the real kinematics (23),
while this time, the colour indicates the resultant errors log |𝑦𝑟𝑖 −
𝑦𝑎𝑖 | along each task space coordinate. It may be concluded from
the collection of Figs. 6 and 7 that our method reduces the
discrepancy between the actual and the real kinematics by 4–5
orders of magnitude.

Figures 8 and 9 provide us with another comparative analysis.
This time, we draw a whole workspace of the 𝑅𝑅 manipulator

−2 −1 1 2

−2

−1

1

2

y1

y2

Fig. 8. The grid in workspace comparison between 𝑘𝑟 and 𝑘𝑛

−2 −1 1 2

−2

−1

1

2

y1

y2

Fig. 9. The grid in workspace comparison between 𝑘𝑟 and 𝑘𝑎

by sweeping the two joint variables on the full range. In both
figures, the red mesh represents the real (desired) kinematics,
while the blue one indicates nominal or actual kinematics –
respectively to the figures. The calibration error becomes lower
when the two task space grids coincide. One can observe that
the grid generated with the actual kinematics (Fig. 9) is closer
to the desired (real) one than the nominal grid presented in
Fig. 8. Since the already presented simulational results have
been prepared for the regular grid of joint variables and may
not be objective enough, we have performed other simulations
for randomly drawn configurations. Upon that, we drew a set
of 3000 uniformly distributed samples of joint variables and
determined their corresponding task space values. We are going
to discuss the results in both qualitative and quantitative manner.

Let us start with the qualitative analysis. Figures 10 and 11
present the heatmap of calibration error distribution in the

−2 −1 1 2

−2

−1

1

2

y1

y2

−5

−4

−3

−2

−1

log ∥yr − yn∥

Fig. 10. Calibration error ∥𝑦𝑟 − 𝑦𝑛∥ heatmap
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−1
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Fig. 11. Calibration error ∥𝑦𝑟 − 𝑦𝑎 ∥ heatmap
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workspace. As in the previous figures, they exhibit errors before
and after the calibration procedure, i.e., for the initial (nominal)
and final (actual) kinematics.

Please keep in mind that the colour still is in the logarithm
scale for convenience, and once again, one should notice that
we reduce the error by more than three orders of magnitude. It
is also worth noting that we achieve slightly higher error values
at the border of the workspace when the manipulator is in its
singular position.

Quantitative analysis can be performed with the help of his-
tograms in Fig. 12. These histograms indicate that the average
error value has shifted significantly after calibration by at least
three orders of magnitude.
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Fig. 12. Frequency of occurrence of values of ∥𝑦𝑟 − 𝑦𝑎 ∥ and ∥𝑦𝑟 − 𝑦𝑛∥

Summarizing, the simulation results demonstrate that our in-
novative method for calibration of robot kinematics is an effec-
tive way to achieve a more accurate kinematics relationship. The
accuracy of the presented results can be further improved by in-
creasing the computation precision and taking a more extensive
set of measurement points.

We are conscious of the computational aspects of the pro-
posed solution. The most time demanding part is to solve a sys-
tem of equations (17), which takes around 470 seconds on the
12-core, 3.8 GHz CPU processor. Considering that the system
of equations (17) is solved only once, the result is remarkable.

We are aware that the efficiency of the presented calibration
method is confirmed simulatively only. One of our future goals
is to establish the experimental stand. However, this task is
quite challenging, particularly on the mechanical part, since
our approach can deal with a large spectrum of discrepancies,
even the unpredictive ones, so it is hard to design and build the
hardware that will be able to imitate the selected phenomenon
in a desired way. Nevertheless, we look to perform experiments
in the future.

6. CONCLUSIONS

Based on the presented content, it can be concluded that the
proposed approach to robot calibration has effectively solved
the stated problem. Therefore, one may consider our method of

calibration by diffeomorphisms as a promising utility for robot
kinematics calibration or even for a broader class of model
identification problems, specifically when the source of the dis-
crepancies is unknown or hard to model. The efficiency of the
presented approach has been depicted with simulation results.
Moreover, it is possible to further enhance the method accu-
racy simply by using more measured data and calculating the
diffeomorphisms accordingly.

It is important to emphasize that the presented approach of
calibration by diffeomorphisms requires the same level (or even
less) of prior knowledge as the classical approach. The reference
model it works with, can be the first-guess model, for example,
one determined with a Denavit-Hartenberg procedure. Foras-
much as it is relatively challenging to discover and model the
existing phenomena that influence the discrepancies between
the kinematics relation and reality, the introduced method may
be a remedy for that. Worth mentioning is that the methodol-
ogy combines theoretical and empirical approaches. It seems to
be well-balanced between exact modelling and inferring model
from data, preserving essential properties of the robot kinemat-
ics, i.e., topological and differential structure. Nonetheless, for
the sake of the infancy of the presented method, there are still
research issues to address that we would like to spell out and,
what follows, highlight our future research goals.
• In the current state, the method works with kinematics ex-

pressed in the coordinates; hence the problem arises when
we deal with kinematics taking values in the SE(3) or the
other space with geometric structures different from Eu-
clidean. To overcome that, we should generalize the ap-
proach considering these cases. An optimistic perspective
for solving the problem is given by the research [36] fo-
cusing, among others, on designing stable vector fields on
the Lie groups. It is expected that some of their ideas may
be successfully incorporated into calibration by diffeomor-
phisms.
• Another urgent issue to consider is to investigate how to in-

crease the accuracy and computational efficiency of the al-
gorithm. Specifically, increasing the dimensions of the task
and joint space or the accuracy of the solution inevitably
demands more measurement samples, which drives us to
the curse of dimensionality. One of the enhancements is to
use GPUs for computational purposes. This path seems to
be a symptomatic solution and relatively easy to implement.
More fruitful appear to reformulate or simplify the prob-
lem by introducing constraints, for example, on the vector
fields.
• A distinct area of investigation is reproducing kernel func-

tions. Currently used Gaussian kernels pretend to be a rea-
sonable first choice because they allow us to reproduce the
vector fields with a demanded degree of smoothness; how-
ever, it is worth considering alternate functions to already
used ones. It would be tremendous to answer the question of
what kernel function should be used in robotics applications.
Other kernel-related issues to solve concern the parameters
and procedure of choosing their values. For now, their val-
ues are determined based on the researcher’s experience.
A suitable objective method would simplify the usage.
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• A selection of the measurement points offers some opportu-
nity for exploration as well. It should be worth determining
how the number of measurement and their distribution in
the joint/task space influence the accuracy and computation
time. Simply speaking, we should find the answer to the
question: How should the measurements be taken to im-
prove the accuracy and computation time? We expect some
clues for this issue may be found in [37].
• An innovative and promising idea is to leverage introduced

methods and diffeomorphometry along with its metric stud-
ies of shapes to develop a holistic framework for the predic-
tive maintenance of robots and machines.
• Last but not least is the approach validation by physical ex-

periment with a real manipulator. As has been mentioned,
the most challenging part is to design and build the hard-
ware that allows for the introduction of the phenomena in
a controlled way and makes it possible to test our method
against them.
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