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The half-wavelength spacing arrangement of underwater uniform linear arrays has been widely used for bet-
ter anti-interference performance and higher signal gain. However, practical challenges of small element spacing,
numerous elements, high hardware costs, large data storage requirements, high processing complexity, and mu-
tual coupling effects between elements, have hindered its widespread use. This paper proposes an under-sampled
array signal reconstruction method based on the compressed sensing (CS) theory in the element domain. This
method is not limited by the array configuration and constructs a deterministic measurement matrix that
satisfies the restricted isometry property (RIP). Based on the array configuration, to ensure reconstruction
performance. The method uses a two-dimensional orthogonal matching pursuit (OMP) method for time-space
joint reconstruction of under-sampled spatial signals. Our simulation and practical test data processing re-
sults demonstrate that this method can achieve high-precision reconstruction of under-sampled array element
domain signals at low under-sampling rates and can reconstruct full array signals with minimal error. Even
under low signal-to-noise ratio (SNR) conditions, offering a practical and efficient solution to the challenges of
underwater acoustic array signal processing.
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1. Introduction

Array-based reception methods are usually used to
resist interference and improve gain, including uniform
linear arrays (ULA), uniform circular arrays (UCA),
L-shaped arrays, and planar arrays (Balanis, 2016;
Silver, 2019; Zhang et al., 2013). The ULA is the
most common, featuring uniformly spaced array ele-
ments. Studies have shown that a ULA performs best
when the spacing between array elements is half the
wavelength. However, with the advent of large ar-
rays such as towed line arrays, a larger array aper-
ture is required to cover more spatial data. Using half-
wavelength spacing necessitates an increasing number
of array elements. For example, the number of ele-
ments can reach thousands for a ULA operating at
28 kHz with an array length of tens of meters. This
leads to greater data storage requirements and in-
creased processing complexity, exceeding active sonar
systems’ hardware and software processing capabili-
ties, and thus affecting performance.

To address this issue, researchers have explored
sparse arrays. Sparse arrays sample a subset of elements
from a ULA, allowing the spacing between elements to
exceed the half-wavelength limit, thereby reducing the
number of elements while still achieving the desired
performance. Nested arrays (Pal, Vaidyanathan, 2010)
and coprime arrays (Vaidyanathan, Pal, 2011) are
typical examples of sparse arrays. A coprime array is
formed by interleaving two subarrays with coprime
numbers of elements. In contrast, a nested array is
created by nesting multiple levels of subarrays, with
the spacing of each level determined by the number
of elements in the previous level. Various improved
sparse arrays have been proposed based on the con-
cepts of nested and coprime arrays (He et al., 2022;
Mohsen et al., 2023; Yang et al., 2023). Sparse ar-
rays are widely used in array signal processing because
they increase the degrees of freedom. One approach is
to use the difference coarray of a sparse array to con-
struct an equivalent virtual ULA and then obtain the
covariance matrix of the virtual ULA by vectorizing
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the covariance matrix (Lei et al., 2015; Li, Zhang,
2020; Kazarinov, 2022). However, this virtual do-
main method has limitations regarding the array con-
figuration. If the difference coarray of a sparse array
has holes, it increases the processing complexity.
The advent of compressed sensing (CS) theory has

provided an effective means for array signal process-
ing (Candès, Wakin, 2008; Ender, 2010). The core
idea is to take advantage of the signal sparsity to re-
duce the amount of sampled data, which has been
extensively applied in processing under-sampled sig-
nals in the time domain (Li, Yang, 2014; Jurdana
et al., 2023). Since signal sources are sparse in the spa-
tial domain, naturally satisfying the sparsity require-
ment of CS, it has also been applied to signal recon-
struction in the spatial domain. Mirza et al. (2020)
have proposed a CS technique based on a sparse array
for direction of arrival (DOA) estimation, addressing
grid mismatch issues in spatial CS, thereby enhancing
the robustness of CS DOA techniques. Kikuchi et al.
(2022) applied CS theory to process ULA, effectively
reducing the number of elements in antenna arrays.
The measurement matrices used in these studies are
random. Although the random measurement matrices
satisfied the restricted isometry property (RIP) and
yielded satisfactory results in reconstruction accuracy,
it is impossible to determine the configurations of the
sparse arrays obtained by sampling, thus hindering en-
gineering implementation. For deterministic measure-
ment matrices, Salama (2020), Lakshmi et al. (2021),
and Chen et al. (2020) used the difference co-array of
nested arrays to construct an equivalent ULA and vec-
torized the covariance matrix of the sparse array to
reconstruct the ULA’s received signal. However, these
methods only reconstruct the covariance matrix of the
ULA’s received signal and cannot reconstruct the re-
ceived signal in the element domain.
This paper applies CS theory to the reconstruction

of element-domain signals. By constructing a sensing
matrix and using a two-dimensional orthogonal match-
ing pursuit (OMP) method, the time-domain signals
are projected onto the element domain to achieve the
reconstruction of under-sampled array signals. This
approach imposes fewer restrictions on the array con-
figurations of sparse arrays for signal reconstruction.
Furthermore, reconstructing signals in the element do-
main allows sampling only a portion of the array ele-
ments to obtain the entire array’s received data, effec-
tively reducing the data storage requirements for large
arrays.

2. Compressed sensing theory

For sparse signals, CS theory samples signals at
a rate much lower than the Nyquist sampling theo-
rem to obtain discrete samples of the original signals.
These samples are then used to reconstruct the origi-

nal signals through reconstruction algorithms. If a sig-
nal can be sparsely represented, a measurement matrix
unrelated to the transformation basis can be designed
to observe it. The observed values can then be used to
achieve exact or approximate signal reconstruction by
solving optimization problems. The process mainly in-
cludes two parts: CS observation and signal reconstruc-
tion.

2.1. Compressed sensing observation part

Consider an N -dimensional discrete-time domain
signal X and an N ×N -dimensional sparse representa-
tion matrix Ψ, consisting of N ×N -dimensional basis
vectors. If the signal X can be represented as

X =
N

∑
i=1

ψiαi =Ψα, (1)

where α is a sparse vector containing only K (K ≪ N)
non-zero values, this implies that X can be sparsely
represented. Then, a measurement matrix Φ ∈ RM×N

(M ≪ N) that satisfies certain conditions is used to
“sense” the signal, resulting in an M -dimensional ob-
servation signal of X:

Y =ΦX. (2)

The process of CS observation is illustrated in Fig. 1.

Sparse representation
X = Ψ α

Compressed sampling
Y = Ф X

X Y

Fig. 1. Process of CS observation.

2.2. Signal reconstruction sections

After obtaining the linear observation vector Y of
the signal X with respect to the measurement ma-
trix Φ, the next step is to determine how to recover
X fromY. Since directly solving the underdetermined
Eq. (2) is infeasible, we use the sparse representation
of X in Eq. (1):

Y =ΦX =ΦΨα =Θα, (3)

where Θ = ΦΨ is a M ×N -dimensional matrix called
the sensing matrix. We can think ofY as the projection
of α onto the sensing matrix Θ. Thus, the problem
now becomes recovering α from Y. Although Eq. (3)
is also an underdetermined equation, the sparsity of α
significantly reduces the number of unknowns, making
signal reconstruction feasible.
Candès andWakin (2008) proved that, under the

condition that the signal α is sparse, if the sensing
matrix Θ satisfies the condition that any 2K columns
are linearly independent, the solution can be obtained
using the following equation:

{ α̂ = argmin ∥α∥0 ,
subject to Θα =Y.

(4)
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Equation (4) is an NP-hard non-convex optimiza-
tion problem, making it very challenging to solve. Nu-
merous optimization algorithms have been proposed
to address this issue (Zhao, Nehorai, 2014; Wang
et al., 2022). After recovering α through the recon-
struction algorithm, the signal X can be reconstructed
according to Eq. (1).
The process of signal reconstruction can be illus-

trated in Fig. 2.

Signal reconstruction
Y = Θ α X = Ψ α

α XY

Fig. 2. Process of CS reconstruction signal.

From the aforementioned analysis, it can be con-
cluded that the primary research focus of CS encom-
passes the following three aspects:

1) sparse representation: designing a sparse represen-
tation matrix to represent the original signal X as
a sparse vector α of the same length;

2) compressed sampling: using an M ×N measure-
ment matrix, CS observes the high-dimensional
original signalX to obtain the low-dimensional ob-
served signal Y;

3) signal reconstruction: recovering the original sig-
nal X from the observed signal Y by solving
Eq. (4).

3. Under-sampled array signal reconstruction
method in the element domain

The application of CS in the time domain mainly
deals with one-dimensional signals. However, array re-
ception signals are typically two-dimensional, encom-
passing both the element domain (spatial domain)

a(θk) = [1, exp(−j2π d sin(θk)
λ

) , exp(−j2π ⋅ 2d sin(θk)
λ

) , ..., exp(−j2π ⋅ 2d sin(θk)
λ

)]
T

. (7)

1. Input: sensing matrix
under-sampled signal

2. Output: projection coefficient
vector
signal
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Ψ consists of steering vectors of
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Fig. 3. Flow chart of signal reconstruction method of under-sampled array.

and the time domain. Focusing on the three criti-
cal technologies of sparse representation, compressed
sampling, and signal reconstruction, this paper uses
the inherent sparsity of spatial arrays, construct-
ing a sparse matrix from steering vectors of various
angles for sparse representation in the spatial domain.
Based on the configuration of the under-sampled array,
a measurement matrix satisfying the RIP condition is
constructed using a unit diagonal sampling method.
It extends the OMP method to the two-dimensional
space-time joint domain for signal reconstruction in the
element domain. The implementation process is shown
in Fig. 3.

3.1. Sparse representation of array signals

CS requires the original signal to be sparsely rep-
resentable. When applied to the element domain, the
target is sparse in the spatial domain, naturally satis-
fying the sparsity condition.
Suppose a ULA withN hydrophones spaced by d re-

ceivesK signals with identical central frequency f0 and
wavelength λ. We first consider the case of a single
snapshot, where the time-domain signal received by
the array can be described as

X =As +N, (5)

where X = [x1,x2, ...,xN ]T, N = [n1,n2, ...,nN ]T,
xN , nN , respectively, represent the signal and addi-
tive noise received by the N -th array element. Addi-
tionally, s = [s1, s2, ..., sK]T, where sK represents the
K-th incident signal on the array. The matrix A is
the N ×K-dimensional array manifold matrix:

A = [a(θ1),a(θ2), ...,a(θk)]T , (6)

where a(θk) is the steering vector of the array in the
direction θk:
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If the spatial domain from −90○ to 90○ is divided
into Γ grids, and the incident angles of the K signal
sources fall on these grids, we obtain Γ spatial angles.
The array steering vectors at these Γ angles are used
to form an extended array manifold matrix Ψ. Thus,
Eq. (5) can be further expressed as:

X =Ψs +N, (8)

where s is a Γ -dimensional projection coefficient vec-
tor, and each element of s corresponds to a grid. Since
there are only K grids with incident signals among the
Γ grids, s is aK-sparse vector, having a form similar to
[0,0, ..., s1,0, ...,0, ..., sK ,0, ...0]T, where non-zero val-
ues occur only at the grids with incident signals.
Equation (8) shows that the array received signal

X is sparsely represented as a sparse vector s through
the extended array manifold matrix Ψ. The extended
array manifold matrix Ψ serves as the sparse represen-
tation matrix, constructed through the following steps:

1) divide the spatial domain from −90○ to 90○ into Γ
grids of equal angles, resulting in {θ1, θ2, ..., θΓ };

2) obtain the steering vectors of the array at these Γ
angles: {a (θk)}Γk=1;

3) form the sparse representation matrix:
Ψ = [a (θ1) ,a (θ2) , ...,a (θΓ )]T.

3.2. Construction of the measurement matrix based
on under-sampled array configuration

In CS, the under-sampling of large ULAs is achieved
through a measurement matrix. The critical difference
between element-domain CS and time-domain CS is
that the measurement matrix of element-domain CS
does not require a linear combination of all element
signals for compressive sampling. From a hardware
perspective, linear combination of element signals
still necessitates sampling each element. However,
the under-sampled signals we obtain only contain the
received signals from a subset of elements.
In the element domain, the received signal of an

N -element ULA can be expressed asX=[x1,x2, ...,xN]T,
where xi (i = 1,2, ...,N) is the signal received by
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Fig. 4. Signal compression sampling in the element domain.

the i-th element. The measurement matrix Φ con-
sists of M ×N -dimensional sampling basis vectors φi

(i = 1,2, ...,M), each of which samples the origi-
nal array signal X once, obtaining one element sig-
nal. In total, the M sampling basis sample M ele-
ment signals, forming the under-sampled array signal
Y = [y1,y2, ...,yM ]T. To ensure that each sampling
basis samples only one element, each N -dimensional
sampling basis vector can be a sparse vector containing
only one non-zero value. Moreover, to avoid redundant
sampling, the positions of the non-zero values in the
M sampling basis should be different.
Figure 4 illustrates the process of element signal

under-sampling. By sorting the M sampling basis vec-
tors according to the positions of their non-zero values,
the measurement matrix has a structure similar to that
of Eq. (9). It can be viewed as M rows extracted from
an identity diagonal matrix, where the columns are
linearly independent, ensuring that the resulting mea-
surement matrix satisfies the RIP:

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0

0 0 1
⋯

0 0 0

0 0 0

⋮ ⋱ ⋮
0 0 0

0 0 0
⋯ 1 0 0

0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (9)

Thus, the steps to construct the measurement ma-
trix are as follows:

1) determine the positions of the sampled elements
in the under-sampled array: D = [d1, d2, ..., dM ];

2) construct an N -dimensional identity diagonal ma-
trix E;

3) extract the i-th rows from E to form the measure-
ment matrix Φ.

3.3. Signal reconstruction based
on two-dimensional OMP

Subsections 3.1 and 3.2 discussed the mathematical
model for the single snapshot case. Now, we consider
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the scenario with L snapshots. The problem of recon-
structing the original N ×L-dimensional array signal
X from the M ×L-dimensional array signal Y can be
described as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ŝ = argmin ∥S∥0 ,
X =ΨŜ,

subject to ΘS =Y,
(10)

where Ŝ is an M ×L matrix containing L projection
coefficient vectors; Ψ is an N ×Γ -dimensional sparse
representation matrix, and Θ is an M ×Γ sensing ma-
trix obtained by Θ =ΦΨ, with Φ being the measure-
ment matrix as detailed in Subsec. 3.2.
The reconstruction of the one-dimensional projec-

tion coefficient vector involves solving the problem
in Eq. (4). In CS, there are numerous optimization
algorithms available to solve Eq. (4). The OMP al-
gorithm is one such reconstruction method, which
uses an iterative approach to obtain the solution
(Tropp, Gilbert, 2007). However, traditional OMP
cannot handle two-dimensional signals as presented in
Eq. (10). This paper utilizes a two-dimensional OMP
algorithm. The under-sampled signal Y is first divided
into L vectors by columns, and then each vector is se-
quentially solved:

⎧⎪⎪⎨⎪⎪⎩
ŝi = argmin ∥si∥0 ,
subject to Θs =Yi,

(11)

where Yi denotes the i-th column of Y, and ŝi rep-
resents the projection coefficient vector reconstructed
from it. Finally, the L projection coefficient vectors
form the projection coefficient matrix Ŝ.
The two-dimensional OMP algorithm process is as

follows:

1) initialize the projection coefficient matrix SΓ×L

and set the iteration count i = 1. repeat steps (2)
to (4) L times until i > L, then proceed to step (5);

2) initialize the projection coefficient vector αΓ ,
residual r0 =Yi, index set Λ0 = ∅, and inner loop
iteration count n = 1. Repeat steps (a) to (e) until
the stopping criterion is met:

a) find the atom column in Θ most correlated
with the residual and its index:

λn = arg max
j∉Λn−1

∥⟨θj , rn−1⟩∥ ,

where θj is the j-th column of Θ;

b) update the index set: Λn = Λn−1 ∪ λn;

c) solve the projection coefficient vector using
least squares:

sn(t ∈ Λn) = argmin
x
∥ΘΛnx −Yi∥2 ,

sn(t ∉ Λn) = 0;

d) update the residual: rn = rn−1 −Θsn;

e) n = n + 1;
3) output the projection coefficient vector s as the

i-th row of SΓ×L;
4) i = i + 1;
5) recover the signal: XN×L =ΨN×ΓSΓ×L.

Using the two-dimensional OMP algorithm, the en-
tire array signal X is reconstructed from the under-
sampled array signal Y.

4. Performance verification based on simulated
and measured data

This section compares the reconstruction error un-
der different under-sampling rates, array configura-
tions, and signal-to-noise ratio (SNR) using simulated
and measured data. For an N -element ULA, M ele-
ments are sampled. When M < N , the array is under-
sampled, and the ratio M/N is the under-sampling
rate. The reconstruction error is defined as

Error = ∥X̂N×L −XN×L∥2
∥XN×L∥2

, (12)

where X̂N×L is the reconstructed signal, and XN×L is
the original signal.

4.1. Performance verification using simulated data

The simulation involves the transmission of lin-
ear frequency-modulated signals by active sonar with
a center frequency of 28 kHz and a bandwidth of
16 kHz. A 32-element ULA receives the echo signal.
The full array signal received by the ULA is the original
signal X. The under-sampled signal Y is obtained us-
ing the constructed measurement matrix as described
Eq. (2). The measurement matrix can be either de-
terministic, as shown is Subsec. 3.2, or random. The
underwater sound speed is set to c = 1500 m/s, and
the element spacing is half the wavelength of the echo
signal.

4.1.1. Signal waveform comparison

In this section, the waveform of the original signal
from unsampled elements is compared with the recon-
structed signal at an under-sampling rate of 50 % and
SNR = 5 dB. The positions of the 16 sampled elements
are {1, 2, 3, 5, 10, 11, 15, 16, 17, 19, 22, 23, 24, 25, 31,
32}. The original and reconstructed signals from the
18th and 28th elements among the remaining 16 un-
sampled elements are compared, as shown in Fig. 5.

4.1.2. Reconstruction error of different under-sampled
arrays

In this section, at an under-sampling rate of 50 %
and SNR = 5 dB, 100 sets of under-sampled structures
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Fig. 5. Comparison of signal waveforms before and after reconstruction: a) the 18th element; b) the 28th element.

are independently tested using a random measurement
matrix. Each set of structures undergoes five repeated
experiments, and the average reconstruction error of
the five experiments is taken as the reconstruction er-
ror for that set. The results are shown in Fig. 6, with
reconstruction errors mainly ranging from 0.1 to 0.25,
and some under-sampled structures exhibiting large er-
rors.

Fig. 6. Reconstruction errors of different under-sampled
arrays.

4.1.3. Reconstruction error at different under-sampling
rates

Five sets of under-sampled arrays are selected, and
the under-sampling rates are gradually reduced from
87.5 % to 12.5 % by removing one redundant element

from the under-sampled array each time, while keep-
ing other conditions unchanged. The reconstruction
error at different under-sampling rates is then com-
pared. Each set of under-sampled arrays undergoes
five repeated experiments to avoid randomness, and
the average error is computed. The results are shown
in Table 1. From Table 1, it can be seen that when
the under-sampling rate reaches 31.25 % or higher, the
reconstruction error is generally below 0.2, indicating
good reconstruction effect.

Table 1. Reconstruction errors of five under-sampled arrays
at different under-sampling rates.

Under-sampling
rate

25 % 31.25 % 37.5 % 50 % 75 % 87.5 %

1 0.702 0.151 0.14 0.094 0.071 0.063

2 0.677 0.124 0.109 0.102 0.069 0.062

3 0.895 0.124 0.1 0.081 0.055 0.059

4 0.47 0.23 0.195 0.165 0.078 0.068

5 0.528 0.265 0.251 0.185 0.095 0.061

4.1.4. Reconstruction error under different SNR

Ten groups of under-sampled arrays are selected to
construct deterministic measurement matrices. Each
group undergoes an independent experiment at an
under-sampling rate of 50 %. The reconstruction per-
formance under different SNRs is then analyzed. Each
group of under-sampled arrays is subjected to five re-
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peated experiments to avoid randomness. The results
are shown in Table 2. It can be observed that high
SNRs yield lower reconstruction errors. For signals
without noise, the optimal reconstruction error can
reach 0.009, which is almost negligible.

Table 2. Reconstruction errors of five under-sampled arrays
under different SNR.

SNR [dB] 1 2 3 4 5

Noise is 0 0.066 0.011 0.094 0.009 0.009

5 0.079 0.115 0.155 0.111 0.095

7 0.067 0.095 0.133 0.064 0.080

10 0.05 0.074 0.114 0.048 0.067

15 0.055 0.047 0.097 0.035 0.051

4.2. Performance verification using measured data

The measured data is obtained from a lake test at
the Xin’anjiang test site, where the underwater sound
speed is approximately 1450 m/s. A linear frequency
modulated signal with a frequency range of 20 kHz–
36 kHz is transmitted with a pulse width of 2 ms. The
test setup is shown in Fig. 7. A 32-element ULA re-
ceives the underwater echo signal, sampled at 1 MHz.
The hydrophone array and target are 10 m underwater,
and the transmitter is 9.5 m underwater. The target is
a 0.6 m diameter spherical model.
Due to the complexity of the underwater environ-

ment, and to more clearly observe the target, we ap-
ply a matched filter to both the original signal X and
the reconstructed signal X̂, resulting in X′ and X̂

′

, re-
spectively. Then, the reconstruction error is calculated
using Eq. (13):

Error =
∥X̂′N×L −X′N×L∥

2

∥X′N×L∥2
, (13)

where X̂
′

N×L is the matched filter signal of the recon-
structed signal X̂N×L, and X

′

N×L is the matched filter
signal of the original signal XN×L.

Lake surface

10
 m

9.
5 

m

10
 m

Motion path of targetHydrophone 
array

Transmitting transducer
Target

Floating platform

Fig. 7. Experimental setup on the lake.

4.2.1. Signal waveform comparison

In this section, the 32-element ULA is processed at
a 75 % under-sampling rate. The positions of the sam-
pled elements are selected as {1, 2, 3, 4, 5, 7, 8, 10, 12,
13, 14, 15, 16, 17, 18, 19, 21, 22, 26, 27, 28, 29, 30, 32}.
Among the remaining eight unsampled elements, the
signals before and after reconstruction at the 23th ele-
ment are compared along with the results of matched
filter. The results are shown in Fig. 8.

4.2.2. Reconstruction error of different under-sampled
arrays

This section processes the measured data at a 75 %
under-sampling rate. One hundred groups of under-
sampled arrays are sampled using a random measure-
ment matrix. The results are shown in Fig. 9, where the
reconstruction error fluctuates between 0.08 and 0.28.

4.2.3. Reconstruction errors of 10 under-sampled
arrays

Five groups of under-sampled arrays are selected.
Starting with an under-sampling rate of 87.5 %, re-
dundant elements are gradually removed to reduce the
under-sampling rate to 37.5 % while keeping other con-
ditions unchanged. The reconstruction error at differ-
ent under-sampling rates is compared. The results are
shown in Table 3. As shown in Table 3, the proposed al-
gorithm achieves optimal performance with measured
data, with reconstruction errors below 0.1 when the
under-sampling rate is above 50 %.

Table 3. Reconstruction errors of five groups
of under-sampled arrays at different under-sampling rates.

Under-sampling
rate

37.5 % 50 % 62.5 % 75 % 87.5 %

1 0.164 0.103 0.071 0.064 0.083

2 0.174 0.117 0.096 0.092 0.107

3 0.166 0.099 0.086 0.076 0.095

4 0.157 0.116 0.085 0.079 0.099

5 0.166 0.125 0.097 0.096 0.106
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a)

b)

Fig. 8. Waveform comparison before and after reconstruction of measured data: a) signal comparison before and after
reconstruction; b) comparison of matched filter results before and after reconstruction.

Fig. 9. Reconstruction error under different under-sampled
arrays.

5. Conclusion

This paper addressed the under-sampling problem
in large ULAs by applying CS theory to element-
domain signal processing. The array signals were
sparsely represented by exploiting the sparsity of sig-
nal sources in the spatial domain. Time-domain sig-
nals were projected onto the element domain through
sparse representation. Then, reconstruction algorithms
were used in the element domain to recover the full ar-
ray signal from the under-sampled array signals. Com-
pared to the method of reconstructing the original ar-
ray covariance matrix, the element-domain signal re-
construction method directly processes the signal and

has broader applicability. Using CS for signal recon-
struction allows recovering full array data from any
under-sampled array, enabling data reception from re-
dundant elements in large arrays without the need
to sample them. The performance of this method is
verified through the processing of both simulated and
measured data, demonstrating that it can reconstruct
element-domain signals with small errors even at low
SNRs and varying under-sampling rates.
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