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Abstract. The widespread use of unmanned aerial vehicles (UAVs) has heightened the demand for effective UAV monitoring, particularly
in protected areas. Current learning-based detection systems depend heavily on camera sensor ability to capture UAVs in surveillance areas;
however, advanced camera control methods remain limited. This paper proposes determining multi-camera trajectories that maximize UAV
capture probability, ensuring UAVs remain within the camera field of view for further analysis, such as detection methods from camera-shot
images. For this purpose, stochastic modeling is considered in the control framework for optimizing surveillance camera trajectories to enhance
the probability of capturing UAVs. Key control parameters are derived through classical probability evaluations of the model with maximizing
the entropy and covering trajectory-based strategies are applied. The reliability of stochastic system modeling is empirically validated through
comprehensive computational experiments. These findings demonstrate the model potential to enhance UAV capture rates through optimized
camera trajectories and coverage efficiency, paving the way for future advancements in real-environment applications.
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1. INTRODUCTION
A UAV, or unmanned aerial vehicle, is an aircraft operated either
autonomously or through remote control, without an onboard
pilot [1, 2]. Although UAVs are primarily employed in disas-
ter response, medical rescue operations, and package delivery
due to unstable geopolitical conditions [3], they are increasingly
developed for applications across scientific fields and various
industrial sectors [2, 3]. Despite these advantages, due to their
mobility and ease of use, UAVs can be misused for unauthorized
surveillance, smuggling, or targeted attacks, raising concerns
about the security of sensitive and restricted areas [4,5]. Conse-
quently, developing effective UAV detection systems has become
a priority in modern surveillance and security strategies [6, 7].
This recent need has led to extensive research efforts to develop
solutions to address these security challenges. To address these
security challenges, considerable research has focused on UAV
detection and tracking, demonstrating the effectiveness of com-
puter vision and AI-based methods using cameras, radar, RF
signals, infrared, and acoustic sensors, depending on the UAV
location, speed, and purpose [8–10]. Camera-based methods are
particularly popular due to their flexibility, accuracy, and effi-
ciency compared to radar, acoustic, and RF-based techniques.
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To ensure optimal performance of the AI algorithm, high-quality
images of the UAV are essential, [11], which means it can only
identify the UAV after it appears on the camera screen. With-
out proper camera capture, AI detection is ineffective. Thus,
the camera must first capture the UAV with optimal efficiency.
In other words, extensive research addresses AI-based recogni-
tion of UAVs, but there is comparatively little on optimizing the
camera role in detecting UAVs as they enter the field of view
(FOV). Overlapping FOV between adjacent cameras is essential
to ensure continuous coverage in the surveillance multi-camera
system.

Existing achievements have focused on creating effective
camera surveillance systems that reduce blind spots and cover
large areas, ensuring continuous monitoring of UAVs. Multi-
camera systems have been studied for numerous applications
using different layouts, configurations, and algorithms, and their
importance is obvious [12,13]. Pan-tilt-zoom (PTZ) cameras are
essential for dynamic surveillance applications, providing flexi-
ble control over camera orientation and zoom to capture detailed
images across wide areas. The PTZ and intelligent camera tech-
nologies have significantly advanced the field of camera control
and coordination in surveillance systems [12, 14]. While using
multiple cameras may pose economic challenges, the feasibil-
ity of employing spiral rotating cameras for UAV detection and
monitoring is explored [15]. The previously referenced article
emphasizes the importance of high-quality UAV images and
proposes a method for structuring a UAV surveillance area to
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capture these images effectively. It also explores ways to re-
duce the number of cameras in image sensing while maintain-
ing necessary image quality, thereby advancing UAV detection
technology through optimized camera usage [11].

This study presents a comprehensive model integrating multi-
camera systems and UAV motion dynamics within a single
surveillance area. Specifically, the surveillance area is subdi-
vided into adjacent subareas, each monitored by an individual
camera, and the motion paths of multiple UAVs are modeled
in the entire surveillance area. During the UAV dwell time
within the surveillance area, the probabilities for each camera
are considered, while maintaining the unique coverage trajec-
tories of the cameras. For this purpose, UAV motion is mod-
eled using stochastic differential equations (SDE), with relevant
models for UAVs detailed in [16, 17]. When modeling camera
movements through three distinct trajectories, each must ensure
coverage of all points within the subarea. A general algorithm
for coverage path planning and autonomous device coverage is
available [18, 19]. To model the complex dynamics of multi-
ple UAVs, we employ SDE, while the Hamilton-Jacobi-Bellman
(HJB) equation maximizes differential entropy, allowing for op-
timal camera trajectories under uncertainty. To assess the multi-
camera capturing probabilities for multiple UAVs during their
coverage of the surveillance area, the Fokker-Planck equation
(FPE) is employed. For models based on the FPE, we refer to the
review in [20,21], which includes numerical computations [22].
A predefined camera trajectory is also introduced and designed
to ensure comprehensive area coverage and increase UAV cap-
ture probability.

The contributions of this study to the academic literature are
outlined below:
• Integrated modeling for UAVs and cameras dynamics: clas-

sic SDE is used for modeling the UAV dynamics to integrate
the model with FPE to gain the joint PDF in representing the
spatio-temporal distributions of UAV and camera trajecto-
ries, capturing both deterministic and stochastic behaviors.
• Empiric evaluation of the integrated model: for the reliability

of the model, which has been designed especially for the
considering problem, we introduced an indicator function
to evaluate the capturing probability of the camera. The
empiric evaluation expressed the model reasonable features.
• Entropy maximizing based optimal control approach: the ap-

plication of differential entropy is introduced to the classic

differential equation for optimal control, enabling the deter-
mination of optimal camera paths that effectively improve
detection uncertainty.
• Cover trajectory maximizing based optimal control ap-

proach: a predefined trajectory maximizes area coverage
and UAV capture probability, enhancing the system effec-
tiveness in wide-area monitoring and supporting improved
real-time responses.

The rest of this paper is organized into four sections. In Section 1,
we discuss the research background, motivation, and the impor-
tance of multi-camera systems for monitoring UAVs. Section 2
details the methodological framework while Section 3 describes
the research computational results and discussion. Finally, Sec-
tion 4 synthesizes the research findings and offers conclusive
insights.

2. METHODOLOGY
2.1. Stochastic modeling of UAV motion and surveillance

camera frustum
In the context of UAV attacks, it is crucial to recognize that such
events are inherently unpredictable. Furthermore, it is impor-
tant to highlight that the overall trajectory of UAV, particularly
a multi-motor UAV, is characterized by significant uncertainty
from its capability to navigate in all directions, the variability
in reaching its final destination, and the unpredictability of its
stopping time. The stochastic modeling is mainly used to in-
vestigate such random events [16]. Let 𝑁 represent the number
of UAVs in the surveillance area, and let the three-dimensional
coordinates of their paths be

r𝑢𝑎𝑣𝑖 (𝑡) = (𝑥𝑢𝑎𝑣𝑖 (𝑡), 𝑦𝑢𝑎𝑣𝑖 (𝑡), 𝑧𝑢𝑎𝑣𝑖 (𝑡))⊤, 𝑖 = 1, 𝑁. (1)

Paths are considered as the coordinates of UAV centroids, as
depicted in Fig. 1. Then each r𝑢𝑎𝑣𝑖 (𝑡) during UAV existence
time 𝑡 in the surveillance area is governed by a SDE [17] through
components as:

𝑑𝑥𝑢𝑎𝑣𝑖 (𝑡) = 𝜇𝑥 (r𝑢𝑎𝑣𝑖 (𝑡), 𝑡)𝑑𝑡 + 𝛿𝑥 (r𝑢𝑎𝑣𝑖 (𝑡), 𝑡)𝑑𝑤𝑥 (𝑡),
𝑑𝑦𝑢𝑎𝑣𝑖 (𝑡) = 𝜇𝑦 (r𝑢𝑎𝑣𝑖 (𝑡), 𝑡)𝑑𝑡 + 𝛿𝑦 (r𝑢𝑎𝑣𝑖 (𝑡), 𝑡)𝑑𝑤𝑦 (𝑡),
𝑑𝑧𝑢𝑎𝑣𝑖 (𝑡) = 𝜇𝑧 (r𝑢𝑎𝑣𝑖 (𝑡), 𝑡)𝑑𝑡 + 𝛿𝑧 (r𝑢𝑎𝑣𝑖 (𝑡), 𝑡)𝑑𝑤𝑧 (𝑡),

(2)

where Ω =
⋃𝑀

𝑗=1Ω 𝑗 is surveillance area which consists of
𝑀 subareas, each monitored by a surveillance camera cov-

j

j

Fig. 1. The environment of surveillance area, Left: Ω 𝑗 is 𝑗-th surveillance area, Center: camera’s field of view and 𝜕Ω 𝑗 is the boundary
of surveillance area, Right: r𝑢𝑎𝑣 (𝑡) is the centroid of UAV/multimotor

2 Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 3, p. e153828, 2025



Optimal multi-camera control strategy for UAV capture

a

b

c

Near plane

Far plane

f
x f

y
=

j

j  camerath

Fig. 2. The environment of the surveillance area, Left: Ω 𝑗 is 𝑗-th surveillance area, Center: The centroid of camera’s frustum and parameters
of the camera, Right: the image sensing plane of the camera

ering the 𝑗-th area. Terms 𝛿𝑥 (r𝑢𝑎𝑣𝑖 (𝑡), 𝑡), 𝛿𝑦 (r𝑢𝑎𝑣𝑖 (𝑡), 𝑡),
and 𝛿𝑧 (r𝑢𝑎𝑣𝑖 (𝑡), 𝑡) denote the diffusion components, while
𝜇𝑥 (r𝑢𝑎𝑣𝑖 (𝑡), 𝑡), 𝜇𝑦 (r𝑢𝑎𝑣𝑖 (𝑡), 𝑡), and 𝜇𝑧 (r𝑢𝑎𝑣𝑖 (𝑡), 𝑡) represent the
drift components for the 𝑥, 𝑦, and 𝑧 components of the pro-
cess, respectively. Moreover, 𝑤𝑥 (𝑡),𝑤𝑦 (𝑡), and 𝑤𝑧 (𝑡) describe
the changes in three separate (independent) Wiener processes
for each component, introducing independent sources of ran-
domness into each of the three components. Additionally, since
the UAV motion must remain within the domain Ω, any outward
motion is not interesting (irrelevant). Thus, the corresponding
boundary condition for bounce back is as follows

r𝑢𝑎𝑣𝑖 (𝑡) =
{

2rmax− r𝑢𝑎𝑣𝑖 (𝑡), if r𝑢𝑎𝑣𝑖 (𝑡) > rmax,

2rmin− r𝑢𝑎𝑣𝑖 (𝑡), if r𝑢𝑎𝑣𝑖 (𝑡) < rmin.

Deterministic components vary by UAV type; for instance, fixed-
wing drones exhibit a drifting process, while multi-motor drones
are preferred without drift.

The surveillance camera is assumed to be a PTZ model in this
research. From a camera perspective, each camera FOV can be
conceptualized as a truncated pyramid in the horizontal direc-
tion, as shown in Fig. 2. In this framework, the world coordinate
of the centroid of this truncated pyramidal shape is denoted as

r𝑐𝑎𝑚 𝑗
(𝑡) = (𝑥𝑐𝑎𝑚 𝑗

(𝑡), 𝑦𝑐𝑎𝑚 𝑗
(𝑡), 𝑧𝑐𝑎𝑚 𝑗

(𝑡))⊤. (3)

While the camera rotates dynamically to monitor the surveil-
lance area, the centroid coordinates indicate the camera motion
paths in real three-dimensional space. The truncated pyramid
defines the camera potential FOV, commonly referred to as the
camera frustum [23]. When a UAV enters the frustum, the cam-
era captures its image on the imaging plane.

2.2. Comprehensive modeling of multi-camera tracking
probability for multiple UAVs

We consider two types of trajectories for surveillance cam-
eras—namely, the optimal trajectory and the coverage trajec-
tory. In the optimal trajectory, cameras follow the trajectories to
increase the number of UAV captures by maximizing the sys-
tem entropy. In the cover trajectory, initially, the trajectory is
defined to cover the entire area and the camera must follow only
that predetermined trajectory to conserve energy. The follow-
ing notations are used in evaluating the probability of capturing

multiple UAVs by multiple cameras in a surveillance area,

r𝑢𝑎𝑣𝑠 (𝑡) = (r𝑢𝑎𝑣1 (𝑡),r𝑢𝑎𝑣2 (𝑡), . . . ,r𝑢𝑎𝑣𝑁 (𝑡))
r𝑐𝑎𝑚𝑠 (𝑡) = (r𝑐𝑎𝑚1 (𝑡),r𝑐𝑎𝑚2 (𝑡), . . . ,r𝑐𝑎𝑚𝑀

(𝑡)),

where each r𝑢𝑎𝑣𝑖 (𝑡) is defined in entire Ω and each r𝑐𝑎𝑚 𝑗
(𝑡)

monitors Ω 𝑗 , which is the 𝑗-th subarea of Ω. The technical
parameters of all surveillance cameras are assumed to be iden-
tical. For simplicity in notation, we define r𝑢𝑎𝑣𝑠 (𝑡) = 𝑟𝑢𝑎𝑣𝑠,
r𝑐𝑎𝑚𝑠 (𝑡) = 𝑟𝑐𝑎𝑚𝑠 , and (r, 𝑡) = (𝑟𝑢𝑎𝑣𝑠 , 𝑟𝑐𝑎𝑚𝑠, 𝑡). Subsequently,
the joint PDF 𝑝(r, 𝑡) describes the likelihood of cameras and
UAVs, and satisfies the following FPE

𝜕𝑝(r, 𝑡)
𝜕𝑡

=−
𝑁∑︁
𝑖=1
∇𝑢𝑎𝑣𝑖 ·

(
b𝑢𝑎𝑣𝑖 (r𝑢𝑎𝑣𝑖 , 𝑡)𝑝(r, 𝑡)

)
−

𝑀∑︁
𝑗=1
∇𝑐𝑎𝑚 𝑗

·
(
b𝑐𝑎𝑚 𝑗

(r𝑐𝑎𝑚 𝑗
, 𝑡)𝑝(r, 𝑡)

)
+ 1

2

𝑁∑︁
𝑖=1
∇𝑢𝑎𝑣𝑖 ·

(
𝐷𝑢𝑎𝑣𝑖 (r𝑢𝑎𝑣𝑖 , 𝑡)∇𝑢𝑎𝑣𝑖 𝑝(r, 𝑡)

)
. (4)

Recall that 𝑁 represents the number of UAVs, and 𝑀 denotes
the number of cameras. In (2), the drift and diffusion terms take
the following form

b𝑢𝑎𝑣𝑖 (r𝑢𝑎𝑣𝑖 , 𝑡) =

𝜇𝑥 (𝑟𝑢𝑎𝑣𝑖 , 𝑡)
𝜇𝑦 (𝑟𝑢𝑎𝑣𝑖 , 𝑡)
𝜇𝑧 (𝑟𝑢𝑎𝑣𝑖 , 𝑡)

 ,
𝐷𝑢𝑎𝑣𝑖 (r𝑢𝑎𝑣𝑖 , 𝑡) =


𝜎2
𝑥 (r𝑢𝑎𝑣𝑖 , 𝑡) 0 0

0 𝜎2
𝑦 (r𝑢𝑎𝑣𝑖 , 𝑡) 0

0 0 𝜎2
𝑧 (r𝑢𝑎𝑣𝑖 , 𝑡)

 .
The b𝑐𝑎𝑚 𝑗

(r𝑐𝑎𝑚 𝑗
, 𝑡) is the drift coefficient for the camera, deter-

mined by the trajectory of the camera. Since the dynamic motion
of both UAV and camera are confined within the observing area,
a no-flux boundary condition is enforced to ensure that the total
probability remains conserved

𝜕𝑝(r, 𝑡)
𝜕n

= 0 on 𝜕Ω.
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This Neumann boundary condition maintains stable and unique
conditions for numerical solving with natural enforcing normal-
ization of the probability distribution over the domain, [24, 25]∫

Ω

𝑝(r, 𝑡) dr = 1.

Moreover, for the joint distribution, we have the following initial
conditions:

𝑝(r,0) = 𝑝(r𝑢𝑎𝑣𝑠 (0))𝑝(r𝑐𝑎𝑚𝑠 (0)). (5)

Here, r𝑢𝑎𝑣𝑠 (0) and r𝑐𝑎𝑚𝑠 (0) are the initial positions of each
UAV and camera, respectively. Let 𝑡 be the random time during
the UAV and camera actions, and define the following times:

𝜏𝑖 = inf{𝑡 > 0| ∥r𝑢𝑎𝑣𝑖 (𝑡) − 𝜕Ω∥2 ≤ 𝑑𝜀},

𝜏𝑗 = inf{𝑡 > 0

����� |𝑥𝑢𝑎𝑣𝑖 (𝑡) − 𝑥𝑐𝑎𝑚 𝑗
(𝑡) | < 𝑎

|𝑦𝑢𝑎𝑣𝑖 (𝑡) − 𝑦𝑐𝑎𝑚 𝑗
(𝑡) | < 𝑏

|𝑧𝑢𝑎𝑣𝑖 (𝑡) − 𝑧𝑐𝑎𝑚 𝑗
(𝑡) | < 𝑐},

𝑑𝜀 represents a distance threshold of 𝜕Ω, the boundary of the
monitoring area Ω, and the parameters 𝑎 and 𝑏 refer to the
dimensions of the camera projection plane, while 𝑐 represents
the distance between the near and far planes of the camera, as
illustrated in Fig. 2. By assuming that the starting positions of
UAV and camera must be independent, the expression (5) is
derived using the chain rule. For evaluating the camera UAV
capturing probability, the indicator function is used as

𝐼𝑖, 𝑗 (r, 𝑡) =
{

1, 𝜏𝑖 (r, 𝑡) < 𝜏𝑗 (r, 𝑡)
0, otherwise,

then the capture probability of the 𝑗-th camera at time 𝑡 before
the UAV reaches the boundary of the surveillance area can be
expressed

𝑃 𝑗 (𝑡) =
∫
Ω 𝑗

𝐼𝑖, 𝑗 (r, 𝑡)𝑝(r, 𝑡) dr. (6)

The integral represents the evolution of time in which the camera
captures the UAV, essentially calculating the total probability of
the detection event occurring within the specified region. To
compute the capture probability 𝑃 𝑗 (𝑡), the FPE must be solved.
Despite significant advancements in analytical and numerical
methods for solving FPE, achieving solutions within specific
predefined regions remains a persistent challenge.

3. COMPUTATION RESULTS AND DISCUSSION

3.1. A UAV-driven analysis for model investigation

For analysis of the reliability of the model, we fix the camera
trajectory as covering and change the number of UAVs. When
the number of UAVs increases the number of capture probability
must be increased if the model is authentic. Hence, to streamline

the computation of the capture probability and address FPE, the
surveillance area is transformed into a two-dimensional domain,
as shown in Fig. 3, left. The chosen projection plane is carefully
oriented to coincide with the camera image plane, facilitating
subsequent computations in the next section. The projection
plane ofΩ𝑖 is denoted asΩ𝑖 , and the dimensions of the projection
plane are specified as 2𝑅max × 2𝑅max, with 𝑅max denoting the
distance of the camera far field. The method of projecting the
surveillance area gives us significant advantages in numerical
computation for solving the FPE regarding its initial conditions.
The camera far-field covers approximately 400 meters and was
taken from an average of PTZ cameras. Consequently, the total
surveillance area is 400 meters by 800 meters, consisting of two
adjacent areas, each measuring 400 meters by 400 meters for
Ω1 and Ω2 in Fig. 3, left.

1
2

1
2

1 2

0 400m 800m

0

200 m

400 m start

end

UAV/drone path in Ω1 ∪ Ω2

Fig. 3. The projection planes for surveillance areas, Left: Ω 𝑗 is the
projection plane of Ω 𝑗 , Right: 2D path of the UAV/multimotor in

Ω1∪Ω2

Note that with this projection plane, only the multi-motor
UAV is focused, because of its complicated feature of flight
ability compared to fixed wing. For this purpose, we suggested
the following specified functions for drone drift and diffusion{

𝜇𝑥 (r𝑢𝑎𝑣𝑖 (𝑡), 𝑡) = 𝑥𝑢𝑎𝑣𝑖 (𝑡) | tan(𝑡) | + 𝑦𝑢𝑎𝑣𝑖 (𝑡)
𝜎𝑥 (r𝑢𝑎𝑣𝑖 (𝑡), 𝑡) = 𝑦𝑢𝑎𝑣𝑖 (𝑡) | cot(𝑡) |{
𝜇𝑦 (r𝑢𝑎𝑣𝑖 (𝑡), 𝑡) = 𝑦𝑢𝑎𝑣𝑖 (𝑡) | tan(𝑡) | + 𝑥𝑢𝑎𝑣𝑖 (𝑡)
𝜎𝑦 (r𝑢𝑎𝑣𝑖 (𝑡), 𝑡) = 𝑥𝑢𝑎𝑣𝑖 (𝑡) | cot(𝑡) |.

These functions are employed to present the drone unique flying
capabilities. Specifically, the drone exhibits a flight pattern char-
acterized by straight-line segments followed by circular trajec-
tories. It can pause during a straight-line flight and subsequently
resume in a circular path. The random motion emulates the drone
observed phenomena are depicted in Fig. 3, right. The Zigzag
type trajectory of the camera, encompassing various trajectory
types considered in the subsequent Section 3.3 and Fig. 7, left.
Utilizing the projection plane as a simplified domain, the finite
difference method (FDM) is applied to solve the FPE, which
characterizes the initial conditions expressed in (5). Since all
UAVs initially start from the left side of the surveillance area,
the initial distribution of UAVs has a long peak along the left
part of the domain Fig. 4, left. Subsequently, the initial distribu-
tion of the camera has two peaks for the starting positions of the
two cameras Fig. 4, center. Using these representations of initial
distributions for UAVs and cameras, the joint initial distribution
is computed using equation (5) and shown in Fig. 4, right.
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Algorithm 1. The algorithm of solving Fokker-Planck Equation
(4) with varying UAV

1: Initialize parameters:
2: Define spatial grid: Δ𝑥 and Δ𝑦 and give time step: Δ𝑡
3: Define number cameras 𝑀 and give initial number of UAVs 𝑁

4: Set initial probability distribution 𝑝 (r, 𝑡 = 0)
5: Initialize drift coefficients 𝜇𝑥 , 𝜇𝑦 for UAVs and cameras
6: Initialize diffusion coefficients 𝜎𝑥 , 𝜎𝑦 for UAVs
7: Start N=2
8: for each time step 𝑡 = 0 to 𝑇𝑚𝑎𝑥 with step size Δ𝑡 do
9: for each UAV 𝑖 = 1 to 𝑁 do

10: for each grid point (𝑥, 𝑦) do
11: 𝑏𝑢𝑎𝑣 ← [𝜇𝑥 (𝑥, 𝑦, 𝑡 ) 𝜇𝑦 (𝑥, 𝑦, 𝑡 ) ]⊤
12: // Update drift term: ∇ · (b𝑢𝑎𝑣 𝑝)
13: drift_uav_x← (𝑝 [𝑥+1]−𝑝 [𝑥−1])

2Δ𝑥 𝜇𝑥+ (𝜇𝑥 [𝑥+1]−𝜇𝑥 [𝑥−1])
2Δ𝑥 𝑝[𝑥 ]

14: drift_uav_y← (𝑝 [𝑦+1]−𝑝 [𝑦−1])
2Δ𝑦 𝜇𝑦+

(𝜇𝑦 [𝑦+1]−𝜇𝑦 [𝑦−1])
2Δ𝑦 𝑝[𝑦 ]

15: end for
16: for each grid point (𝑥, 𝑦) do

17: 𝐷𝑢𝑎𝑣 ←
[
𝜎2
𝑥 0

0 𝜎2
𝑦

]
18: // Update diffusion term: ∇ · (𝐷𝑢𝑎𝑣∇𝑝)
19: diff_uav_x← 𝜎2 [𝑥+1]−𝜎2 [𝑥−1]

Δ𝑥2
(𝑝 [𝑥+1]−𝑝 [𝑥−1])

2Δ𝑥

20: +𝜎2 [𝑥 ] 𝑝 [𝑥+1]−2𝑝 [𝑥 ]+𝑝 [𝑥−1]
Δ𝑥2

21: diff_uav_y← 𝜎2 [𝑦+1]−𝜎2 [𝑦−1]
Δ𝑦2

(𝑝 [𝑦+1]−𝑝 [𝑦−1])
2Δ𝑦

22: +𝜎2 [𝑦 ] 𝑝 [𝑦+1]−2𝑝 [𝑦 ]+𝑝 [𝑥−1]
Δ𝑥2

23: end for
24: end for
25: for each camera 𝑗 = 1 to 𝑀 do
26: for each grid point (𝑥, 𝑦) do
27: 𝑏𝑐𝑎𝑚← [𝜇𝑥 (𝑥, 𝑦, 𝑡 ) 𝜇𝑦 (𝑥, 𝑦, 𝑡 ) ]⊤
28:
29: // Update drift term: ∇ · (b𝑐𝑎𝑚𝑝)
30: drift_cam_x← (𝑝 [𝑥+1]−𝑝 [𝑥−1])

2Δ𝑥 𝜇𝑥+ (𝜇𝑥 [𝑥+1]−𝜇𝑥 [𝑥−1])
2Δ𝑥 𝑝[𝑥 ]

31: drift_cam_y← (𝑝 [𝑦+1]−𝑝 [𝑦−1])
2Δ𝑦 𝜇𝑦+

(𝜇𝑦 [𝑦+1]−𝜇𝑦 [𝑦−1])
2Δ𝑦 𝑝[𝑦 ]

32: end for
33: end for
34: for each grid point (𝑥, 𝑦) do
35: 𝑝𝑛𝑒𝑤 [𝑥, 𝑦 ] ← 𝑝[𝑥, 𝑦 ] +Δ𝑡 · (drift_uav_x+drift_uav_y
36: +diff_uav_x+diff_uav_y
37: +drift_cam_x+drift_cam_y)
38: end for
39: 𝑝← 𝑝𝑛𝑒𝑤 ⊲ Set 𝑝 for the next time step
40: end for
41: 𝑁 ← 𝑁𝑛𝑒𝑤 ⊲ Set 𝑁 for increasing number of UAV

The natural discretization is used to grid the domain into fi-
nite uniform node points, and the centered difference method is
applied in FDM for improving the truncation errors. The grid
size of dividing the domain is Δ𝑦 = 0.1 and Δ𝑥 = 2Δ𝑦 for the
400𝑚 × 800𝑚 dimensional domain, and the time is discretized
to evaluate the system for each second. The time evolutionary
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Fig. 4. The initial distributions of UAVs, cameras and joint,
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numerical solutions of the FPE are depicted in Fig. 5, with cor-
responding selected times, and a pseudo-code description of
the numerical solving algorithm is expressed in Algorithm 1.
In each iteration, UAVs and cameras adjust their positions ac-
cording to their respective motion rules. For instance, all UAVs
move in random directions determined by a stochastic process
with specific drift and diffusion laws. Although the paths of
these UAVs exhibit significant diversity due to their random na-
ture, they all originate from the left side of the three-dimensional
surveillance area within the projection domain. Consequently,
the time-evolutionary numerical solutions of the FPE encapsu-
late all phenomena related to the motion of transferring UAVs
and cameras. In the UAV-driven segment, the number of UAVs
is varied while consistent motion is maintained for two cam-
eras, following Zigzag trajectories across different UAV quan-
tities. The number of UAVs differs in each scenario, with 2,
5, 10, 15, and 20 values. For each distinct UAV count, FPE
is solved to evaluate the expression (6). Regardless of the spe-
cific number of UAVs, the average time required for them to
reach the boundary of the projection domain remains constant
at 8 minutes—an indicator of the function temporal behaviour.
Due to this relatively short boundary-reaching time, the cam-
eras do not complete their full trajectories. This is primarily
attributed to an average velocity of 5 meters per second exhib-
ited by the cameras, and in our case, each camera passes half of
the trajectories. Despite this limitation, it suffices to assess the
inter-dependencies between UAV and camera movements using
regression analysis. To achieve this purpose, the same computa-
tional approach as previously described is employed to obtain the
time-evolutionary numerical solutions of the FPE. Thus, each
row delineates the detection probabilities of each camera. The
findings are succinctly presented in Table 1, wherein the initial
column denotes the quantity of UAVs. This correlates with the
time-dependent probabilities of two cameras positioned in the
second and third columns. It is intuitive that as the number of
UAVs escalates, the probabilities associated with both cameras
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Fig. 5. The numerical solution of the FPE in different time evolution
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Table 1
A UAV-driven capture probability estimation in two cameras

𝑁 𝑃1 (𝑡) of first camera 𝑃2 (𝑡) of second camera

2

0 120 → t → 360 480
0

0.5

1
P1(t) > 0.5

0 120 → t → 360 480
0

0.5

1
P2(t) > 0.5

5

0 120 → t → 360 480
0

0.5

1
P1(t) > 0.5

0 120 → t → 360 480
0

0.5

1
P2(t) > 0.5

10

0 120 → t → 360 480
0

0.5

1
P1(t) > 0.5

0 120 → t → 360 480
0

0.5

1
P2(t) > 0.5

15

0 120 → t → 360 480
0

0.5

1
P1(t) > 0.5

0 120 → t → 360 480
0

0.5

1
P2(t) > 0.5

20

0 120 → t → 360 480
0

0.5

1
P1(t) > 0.5

0 120 → t → 360 480
0

0.5

1
P2(t) > 0.5

2 5 10 15 20

100

200

P1 > 0.5

Preg = 11.2n+ 9.56
28

41

138

254 250

Number of UAV (drone)

2 5 10 15 20

50

100

150

P2 > 0.5

Preg = 6.7n+ 34.63
72

49

81

148

172

Number of UAV (drone)

must concurrently rise. At the onset of the starting time, it is ex-
pected that the first camera would exhibit a superior probability
compared to the second camera. This anticipation arises from
the proximity of the first camera starting position to that of the
UAVs, a phenomenon accurately captured in the computational
analysis. Consequently, the cumulative duration spent by both

cameras within the camera region amounts to 12 minutes for the
first camera and 8 minutes for the second camera, considering
their movement at a velocity of 5 meters per second. In conjunc-
tion with the temporal investigation, the assessment extends to
quantifying the probabilities within each camera region, a fac-
tor contingent upon the speed of UAVs. A regression method
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is employed for consolidation to encapsulate all potential anal-
yses comprehensively. Specifically, probabilities exceeding 0.5
are deemed reasonable and are visually denoted in green across
all probability computations for both the first and second cam-
eras. For UAV quantities ranging from 2 to 20, probabilities
surpassing 0.5 for the first and second cameras range from 28
to 250 and 72 to 172, respectively. Subsequently, linear regres-
sion yields coefficients of 11.2 and 6.7, indicating that the first
camera consistently maintains approximately twice the capture
probability of the second camera region. A notable advantage of
this computational approach is its consistent behaviour across
multiple iterations, despite the random and varied generation of
UAV paths in each run. However, the analysis lacks exploration
into the effects of varying the speed of each UAV and camera,
thus representing a potential avenue for future investigation.

3.2. Optimal trajectory control of cameras for increasing
UAVs capture through the entropy maximization

In the previous section, the reliability of the model was tested
by changing the number of UAVs while keeping the trajectories
of both cameras permanently set to Zigzag, ensuring coverage
of the entire surveillance area. In this section, we extend the
model to explore the optimal trajectories of both cameras for the
best UAV capture and examine how to control them effectively.
To quantify the system uncertainty in this context, differential
entropy, a widely used measure in fields such as control theory
[26] and robotics [27], is employed.

We denote 𝑝(r, 𝑡) as the solution of (4) when the camera drift
part is removed. Then the entropy at time 𝑡 is calculated using
the probability distribution 𝑝(r, 𝑡) as

𝐻 (𝑡) = −
∫
Ω

𝑝(r, 𝑡) log 𝑝(r, 𝑡) dr,

which reflects the likelihood of UAVs being located at specific
positions. This measure of uncertainty aligns with the broader
concept of differential entropy, originally introduced by Shan-
non in the context of continuous probability distributions [28],
which quantifies uncertainty in such systems and for more com-
prehensive examples are in [29].

A more dispersed and unpredictable UAV distribution results
in higher entropy, reflecting greater uncertainty about their posi-
tions. Consequently, the camera must navigate the environment
in a manner that maximizes the information gathered about
UAVs, thereby reducing the uncertainty in their locations. This
principle, rooted in information theory, was introduced in [30]
and further elaborated using advanced techniques in [31]. Nev-
ertheless, the camera must balance several objectives: maxi-
mizing entropy, minimizing energy or time expenditure, and
maintaining continuous surveillance of its designated area. In
this situation, the HJB equation is primarily used to determine
the optimal trajectory, particularly in settings that involve both
deterministic and uncertain environments. Some specific appli-
cations in optimal navigation can be found from [32, 33], while
solutions addressing fully stochastic and nonlinear dynamics
with constraints have been explored in [34, 35].

The control policy corresponds to the camera movement, de-
noted as u𝑐𝑎𝑚(𝑡). The optimization of this control policy is
achieved by defining a cost function that is minimized by solv-
ing the HJB equation:

𝜕𝑉 (r, 𝑡)
𝜕𝑡

+ min
u𝑐𝑎𝑚 (𝑡 )

{−𝐻 (𝑡) +∇r𝑉 (r, 𝑡) ·u𝑐𝑎𝑚(𝑡)} = 0,

in the equation 𝑉 (r, 𝑡) represents the value function, encapsu-
lating the cost-to-go or reward-to-go, while u𝑐𝑎𝑚 (𝑡) denotes the
control input for the camera drift. The value function reflects
the best possible outcome starting from a specific position r and
time 𝑡, extending to a designed future time horizon. In this way,
𝑉 (r, 𝑡) provides the optimal reward, directly related to maximiz-
ing entropy for a given camera position. Reflective boundary
conditions are applied to the HJB equation to model the behav-
ior of the camera at the edges of the surveillance domain, this
means when the camera reaches the boundary, its control input
u𝑐𝑎𝑚(𝑡) is reflected to maintain the same magnitude but with
the direction adjusted based on the outward normal vector n at
the boundary, this is expressed by the condition

u𝑐𝑎𝑚(𝑡) ·n = −u𝑐𝑎𝑚 (𝑡) ·n.

The following Dirichlet boundary condition is introduced to in-
corporate operational constraints and strategic penalties, guid-
ing the camera trajectory to optimize its efficiency in capturing
and engaging UAVs. This Dirichlet condition is not only reason-
able in this context but also a deliberate choice to support an
optimal control framework.

Thus, for the value function 𝑉 (r, 𝑡), we impose:

𝑉 (r, 𝑡) =𝑉exit (r) for all r ∈ 𝜕Ω,

where 𝑉exit (r) is defined based on the high-probability regions
for UAV encounters, formulated as a function of the distance
from the point r to each target regions rtarget𝑖 with constants
𝑉𝑖 , for more detail works on high probability region can be
founded [36, 37]:

𝑉exit (r) =
2∑︁
𝑖=1

𝑉𝑖 exp

(
−
∥r− rtarget𝑖 ∥2

2𝜎2
𝑖

)
.

This formulation allows the value function to reflect a high
likelihood in areas where UAV encounters are most probable,
thereby guiding the camera efficiently.

The Dirichlet boundary condition ensures that 𝑉 (r, 𝑡) is di-
rectly determined on 𝜕Ω, helping to implement operational con-
straints and avoid unintended influences outside this boundary.
Furthermore, it aids in establishing uniqueness and convergence
of the numerical solution [38, 39], ensuring stability within the
domain and mitigating boundary-based inconsistencies. With
the Dirichlet condition applied, the value function aligns with
operational constraints, supporting the objective of best UAV
capture and engagement.

Hence, maximizing this entropy ensures that the camera fo-
cuses on areas characterized by uncertainty and dynamism, ef-
fectively tracking the UAV movements. To control the camera

Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 3, p. e153828, 2025 7



Kh. Gonchigsumlaa, Y.I. Kim, K.M. Yeo, S.H. Park, and Y.T. Lee

trajectory for optimal information gathering, measured through
entropy, we utilize the HJB equation, which is specifically de-
signed for solving optimal control problems that require contin-
uous decision making over time.

Resolving the HJB equation, we determine the optimal cam-
era path u𝑐𝑎𝑚 (𝑡) that ensures entropy 𝐻 (𝑡) is maximized over
time. The camera motion is dynamically adjusted based on the
current system state. The HJB equation guides how to modify
the camera drift u𝑐𝑎𝑚(𝑡) at each time step, optimizing future
entropy. This results in an adaptive control policy that ensures
that the camera moves consistently in a manner that effectively
explores regions with high uncertainty, where UAVs exhibit un-
predictable behavior.

For the numerical computation of the HJB equation, the do-
main is discretized in the same manner as implemented in the
solution of the FPE. This ensures consistency in the grid and
numerical methods applied across both equations.

The finite difference method, which proved effective for solv-
ing the FPE, is utilized here as well, and the pseudo-code ex-
pression to solve the HJB equation using FDM is illustrated
in Algorithm 2. The initial condition 𝑉 (r,0) is defined as the
squared Euclidean distance from the initial position of the cam-
era r to the target point r0:

𝑉 (r,0) = ∥r− r0∥2.

In this framework, the target position r0 is chosen as the average
position of all UAVs, calculated as

r0 =
1
𝑁

𝑁∑︁
𝑖=1

r𝑢𝑎𝑣𝑖 (0),

Algorithm 2. Algorithm for solving optimal camera control
using HJB Equation with differential entropy

1: Initialize parameters:
2: Define spatial grid: Δ𝑥, Δ𝑦 and time step: Δ𝑡
3: Set final time 𝑇 and initial value function 𝑉 (r, 𝑇 ) = 𝑉exit (r)
4: Define control set u𝑐𝑎𝑚 (𝑡 ) ∈ U𝑐𝑎𝑚 and apply boundary conditions:
5: 𝑉 (r, 𝑡 ) = 𝑉exit (r) for all r ∈ 𝜕Ω
6: Set initial condition 𝑉 (r, 0) at each grid point
7: for each time step 𝑛 = 𝑁𝑡 − 1 to 0 with step size Δ𝑡 do
8: for each grid point (𝑥, 𝑦) do
9: 𝑏𝑐𝑎𝑚← [𝜇𝑥 (𝑥, 𝑦, 𝑡 ) 𝜇𝑦 (𝑥, 𝑦, 𝑡 ) ]⊤

10: // Compute spatial gradient of 𝑉𝑛 at (𝑥, 𝑦)

11: ∇𝑉𝑛 (𝑥, 𝑦) ≈
[
𝑉 (𝑥+Δ𝑥,𝑦)−𝑉 (𝑥−Δ𝑥,𝑦)

2Δ𝑥
𝑉 (𝑥,𝑦+Δ𝑦)−𝑉 (𝑥,𝑦−Δ𝑦)

2Δ𝑦

]
12: // Solve Fokker-Planck equation to get �̄� (r, 𝑡𝑛 )
13: Update �̄� (r, 𝑡𝑛 ) using FDM, with boundary condition 𝜕�̄�

𝜕n = 0
14: // Compute entropy 𝐻 (𝑡𝑛 ) using �̄� (r, 𝑡𝑛 )
15: 𝐻 (𝑡𝑛 ) = −

∫
Ω
�̄� (r, 𝑡𝑛 ) log �̄� (r, 𝑡𝑛 ) dr

16: // Find optimal control by minimizing over camera control
17: u𝑛

𝑐𝑎𝑚 = argminu𝑐𝑎𝑚
{−𝐻 (𝑡𝑛 ) + ∇r𝑉

𝑛 · u𝑐𝑎𝑚}
18: // Update value function 𝑉𝑛+1 using the HJB equation
19: 𝑉𝑛+1 (𝑥, 𝑦) ←𝑉𝑛 (𝑥, 𝑦) +Δ𝑡 ·

(
−

(
−𝐻 (𝑡𝑛 ) + ∇r𝑉

𝑛 · u𝑛
𝑐𝑎𝑚

) )
20: end for
21: end for
22: Output: Optimal value function 𝑉 (r, 0) and control trajectory
{u𝑐𝑎𝑚 (𝑡 ) }𝑇𝑡=0

where 𝑁 is the total number of UAVs. This choice of target
position allows the camera to optimize its trajectory toward the
central area where UAVs are likely to be found, thus improving
capture efficiency.

Considering two cameras, denoting their respective control
inputs as 𝑢cam1 and 𝑢cam2, these inputs correspond to the dif-
ferent trajectories that the cameras may follow while aiming
to optimize UAV capture. The HJB equation, derived from the
value function obtained in the FPE, guides the optimization of
the camera paths based on the calculated probabilities of UAV
encounters at each time step.

The interplay between the FPE and the HJB equation pro-
vides a structured framework for dynamically modeling camera
trajectories. This framework is crucial to ensure that optimal
controls adapt in real-time to probability distributions derived
from FPE solutions, explores the relationship between the FPE
and HJB equations, providing insight into how these equations
can be solved in tandem to model controlled processes effec-
tively [39]. By moving in the opposite direction of the gradient
of the value function 𝑉 (r, 𝑡), the system naturally aligns with
the gradient descent direction, which is essential for minimizing
𝑉 (r, 𝑡) and achieving optimality under the HJB framework, cov-
ers the role of gradient descent in optimal control and dynamic
programming, including how the HJB equation is minimized
through gradient-based approaches in [40].

This direction of gradient descent is central to satisfying the
minimization condition inherent in the HJB equation, as it en-
sures that the camera trajectories continuously adjust to reduce
the cost associated with each state in real-time, and methodology
for implementing gradient descent in the context of stochastic
control problems can be found [41]. Consequently, this direc-
tional adjustment leads to control strategies that reflect real-time
updates in probability densities, yielding a robust model for UAV
encounter scenarios. This dynamic approach enhances capture
and engagement strategies by allowing the camera to continu-
ously move toward optimal observational positions while mini-
mizing exposure and maximizing efficiency.

The results of camera drift trajectories are shown in Fig. 6. For
10 UAVs: The camera drift, denoted as u𝑐𝑎𝑚(𝑡), is substantial,
leading to extensive movement of the camera across the domain.
This high drift level suggests that when UAV density is lower, the
camera control needs to respond more dynamically to monitor
UAV positions effectively. This requires the camera to span
larger distances and cover diverse directions, aligning with the
need to capture more sparse information across the domain. For
15 UAVs: The camera drift decreases compared to the case with
10 UAVs. This reduced drift implies that a moderate increase in
UAV density allows the camera control policy to stabilize. With
more UAVs filling the space, the likelihood of UAVs covering
critical regions increases, requiring less camera repositioning.
This configuration reflects a more stable monitoring scenario,
where the camera is less pressured to adjust drastically. For 20
UAVs: The camera drift is minimal, with the camera exhibiting
shorter, less frequent movements.

As UAV density increases, the need for extensive camera
repositioning is reduced, as the UAVs are likely to cover the
domain more comprehensively. Here, the camera drift is nearly
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Fig. 6. Camera Drift Trajectories, Top: 10 UAVs, Center: 15 UAVs,
Bottom: 20 UAVs

minimized, suggesting an optimal UAV density where the cam-
era can remain relatively stationary while ensuring domain-wide
surveillance.

The optimal trajectory lengths for two cameras were cal-
culated as follows: (10842𝑚 15871𝑚), (8572𝑚 7862𝑚), and
(2514𝑚 3231𝑚) for 10, 15, and 20 UAVs, respectively. The
computation time was approximately 8 minutes. The required
angular speed varies with the distance, ranging from 3𝑜 < 𝜃 < 8𝑜,
where 𝜃 = 𝑣/ 𝑓 ; here, 𝑣 represents the speed of the centroid within
the camera FOV, and 𝑓 denotes the maximum distance of the
camera near FOV, Fig. 2, which is between 200𝑚−400𝑚 in our
computations.

Commercial PTZ cameras can achieve rotational speeds up
to 300° per second, a specification typical of professional-grade
PTZ cameras used in security, broadcasting, and live event track-
ing. Therefore, the required tracking speed for this application
falls well within the capabilities of most high-quality commer-
cial PTZ cameras, which can comfortably handle these rotational
requirements.

3.3. Cover trajectory maximizing control for increasing
UAVs capture through UAVs encounter probabilities

In this section, a comprehensive exploration is undertaken to un-
ravel the intricate dynamics governing the interaction between

UAVs and cameras, focusing specifically on the nuanced interde-
pendence shaped by the camera motion trajectory. The inquiry
delves into the probability distribution spanning the spatial do-
main where the camera captures UAV movements within the
surveillance area over the entire operational time frame. The
evaluation of this probability is executed as a discerning met-
ric, illuminating the complex nature of the correlation between
UAVs and cameras.

Select different drift terms b1
𝑐𝑎𝑚 𝑗

, b2
𝑐𝑎𝑚 𝑗

,... that represent var-
ious camera behaviors such as constant drift, where the cameras
move at a constant velocity, spatial dependent drift, where the
cameras move faster near certain areas, and time-varying drift,
where the cameras change their velocity depending on a time.
For each drift term b𝑘

𝑐𝑎𝑚 𝑗
, solve the FPE to obtain the cor-

responding probability density, then compute the cumulative
probability

𝑃𝑘 (r) =
𝑇∫

0

𝑝𝑘 (r, 𝑡) d𝑡, (7)

where 𝑝𝑘 (r, 𝑡) is the solution to FPE under the drift b𝑘
𝑐𝑎𝑚 𝑗

.
Define the probability 𝑃∗ (r) as

𝑃∗ (r) = max
𝑘
{𝑃𝑘 (r)}.

This selection of 𝑃∗ (r) ensures that the drift term b𝑘
𝑐𝑎𝑚 𝑗

which
maximizes the cumultive probability is chosen, representing
optimal camera trajectory based on probability distribution.

To evaluate 𝑃𝑘 (r) the solution to equation (4) needs to be de-
rived for various camera trajectories. For this purpose, three dis-
tinct trajectories are focused: 1) zigzag, 2) spiral, and 3) random
selected based on their differing predictability rates from the
UAV perspective due to their distinct geometric features. Con-
sidering two adjacent areas for computational analysis, these
three trajectories can produce three additional unique combi-
nations. Visual representations of these trajectories are shown
in Fig. 7. The characteristic Zigzag pattern exhibits a regular
and predictable structure owing to its repetitive sharp turns. In
contrast, the Archimedean spiral displays a more continuous
and gradually changing structure as it emanates from a cen-
tral point, moving with a constant speed along the boundary of
the surveillance area, which rotates at a constant angular veloc-
ity. In the case of the camera motion, it initiates its trajectory
in a random direction, subsequently bouncing off the boundary.
Consequently, its unpredictability is notably higher compared to
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Fig. 7. Trajectories of the camera to cover the surveillance area,
Left: zigzag, Center: spiral, Right: random-start
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other motion patterns. The camera effectively covers the entire
surveillance area following these three trajectories. The average
time required for the camera to traverse the region along these
paths is approximately 8 minutes. To estimate the camera-driven
probability 𝑃𝑘 (r), the solution of the governing equation (4) is
used concerning evolution time and its drift and diffusion terms.

While different trajectories are assigned to the camera motion,
fixed terms are applied for the UAV drift and diffusion. Since the
different trajectories are given for computing the drift term in
solving equation (4), the simple differential is applied for consid-
ering the camera drift term. Then, the conventional trapezoidal
rule is used to obtain the final probability.

Table 2
Two pair of coverage trajectory UAV capture probability estimation

Pair.Traj 𝑃(r) 𝑃(r) > 0.5

ZZ

SS

RR

ZS

SR

RZ
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Additionally, denote Zigzag, Spiral, and Random trajectories
as Z, S, and R, then due to the commutative property in the
divergence of equation (4), six different pairs of trajectories can
be generated for two adjacent areas with two cameras, such as
ZZ, SS, RR, ZS, SR, and RZ. For example, SR implies a pair
of trajectories for two cameras: the first camera moves along the
Spiral trajectory, the second camera moves the Random trajec-
tory, and so on for other pairs. Table 2 compares the computa-
tional results of equation (7) concerning all pairs of cameras.
An essential contribution of this study lies in its ability to iden-
tify the best pairs of cameras for many different purposes. Using
10 drones as UAVs with consistent tracks and speeds across
all six considered scenarios, notable variations in results were
observed, underscoring the impact of camera trajectories.

To elaborate, regions with a probability exceeding 𝑃𝑘 (r) >
0.5 were selected and are presented in column 3 of Table 2.
Let 𝑆(pair trajectories) be the proportion area of the probability
area at level 𝑐, the 𝑆(𝑃𝑘 (r) = 𝑐) represents the joint probabil-
ity distribution area at the level 𝑐. To compute this area, the
Shoelace method is applied and facilitates the computation of
regions with probabilities greater than 0.5, and to ascertain the
pair of camera trajectories with a joint probability distribution,
the analysis evaluates the distribution area across three distinct
levels, 𝑐 = 0.5, 0.7 and 0.9. Based on the calculation results, the
effectiveness of trajectory pairs for camera motion can be ranked
as follows: 1. ZS, 2. SS, 3. RR, 4. SR, 5. RZ, and 6. ZZ. These
experiments indicate that the most effective trajectory is S-type.

The Python plotting tool, MATLAB, and LATEX pgfplot pack-
ages were used throughout the paper results and visualizations.

4. CONCLUSION
This research has successfully modeled the joint distribution of
interaction between UAVs and surveillance camera movements
using a fundamental differential equation.

The model incorporates UAV movement, tailored to accom-
modate the unique flight patterns of UAVs, and its reliability test
was successful. In particular, varying the number of UAVs and
the capture ratio of each camera slope resulted in values of 11.2
and 6.7, with intercepts of 9.56 and 34.63, respectively. The first
camera is more sensitive than the second, which implies that the
UAV starting position is closer to the first camera. The second
camera higher intercept indicates a larger field for capture.

The two scenarios were carefully evaluated for simulation
compatibility with computational and real-world constraints to
determine the optimal camera path. An entropy-maximizing
method was successfully applied, yielding the optimal cam-
era path based on the number of UAVs and effectively bridging
computational results with real-world interpretation. For exam-
ple, the ratio of the two camera path lengths in relation to UAV
counts were 1.26 2.01; 3.40 2.43; and 4.31 4.91 for 10/15, 15/20,
and 10/20 UAVs, respectively. Given the same surveillance area
and UAV runtime, these results allow us to estimate the speed
requirements for each camera. Moreover, this algorithm demon-
strates strong potential for application in control systems.

Additionally, a probability-based method was used to identify
optimal coverage paths for two pairs of cameras, resulting in six

different trajectory configurations across two adjacent areas. The
paths denoted asZS (a combination of zigzag and spiral) and SS
(a combination of spiral and spiral) showed significantly better
performance, achieving coverage efficiency up to 1.29–3 times
higher than other trajectory pairs.

This indicates that utilizing these models could enhance the
probability of success. Therefore, our future work will focus
on real-time detection and world-coordinate optimization for
anti-UAV systems, building upon the methods proposed in this
study.
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