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Abstract
A novel approach has emerged to enhance the efficiency and reliability of predictive maintenance
strategies, namely the taxonomy approach for defining types of production machines. This
innovative method represents a significant departure from traditional categorisation methods,
promising to improve how organisations manage and maintain their production equipment.
Organisations can reduce overall maintenance costs and minimise unplanned downtime through
proactive maintenance based on taxonomy-driven insights, increasing operational efficiency
and profitability. The article explores how the taxonomy approach leverages data analytics
and machine learning techniques to classify production machines into distinct categories
based on their operational characteristics, usage patterns, and maintenance needs. Doing
so offers several key advantages: improved precision, predictive maintenance customisation,
data-driven insights, and scalability. The taxonomy approach is based on data-driven insights,
allowing organisations to harness the power of big data and the Industrial Internet of Things
(IIoT). Maintenance teams can detect anomalies and issues by analysing real-time data from
production machines before they lead to breakdowns. In the discussion part, a brief overview
highlights the integration of predictive maintenance with Industry 4.0, the uniqueness of the
proposed method, and its potential implications for modern production systems.
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Introduction

Objective and scope of the study

As organisations strive to enhance the efficiency
and reliability of their predictive maintenance strate-
gies, Authors propose a novel solution as a taxonomy
approach for defining types of production machines.
This innovative method, a significant departure from
traditional categorisation methods, promises to rev-
olutionise how organisations manage and maintain
their production equipment. This approach enables
proactive maintenance by providing taxonomy-driven
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insights, reducing overall maintenance costs and min-
imising unplanned downtime. The result is increased
operational efficiency and profitability.

Predictive Maintenance in Industry 4.0

As one of the directions for developing maintenance
processes, the predictive maintenance approach was
the foundation of the Fourth Industrial Revolution.
Social, industrial, and technological changes caused by
the digital transformation of industry, forced by this
revolution, create new opportunities for defining new
formulas for ensuring the efficiency, operational readi-
ness, and safety of automated technical systems. Using
intelligent technologies enables the development of
innovative maintenance management mechanisms sup-
ported by digital solutions. In this way, technological
progress contributes to the dynamic changes in current
paradigms in the field of maintenance. The growing
role of digitalisation is also the reason for changes in
this regard, as traditional planning methods against
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the background of the possibility of using big datasets
assisted by intelligent algorithms make it possible to
monitor maintenance processes in real mode and even
ahead of potential adverse events. This creates inno-
vative approaches to maximising this new potential.
According to the EN 13306:2017 standard (CEN, 2017),
“maintenance is a combination of all technical, admin-
istrative and managerial actions during the life cycle
of an item intended to retain it in, or restore it to,
a state in which it can perform the required function”.
Maintenance strategies are grouped into two sub-

categories (Fig. 1):
1. Preventive maintenance is one of the pillars of To-

tal Productive Maintenance (TPM) (Bednarek &
Santana Villagra, 2017). It is a method of improv-
ing production efficiency to achieve zero failures,
losses, and defects. TPM includes improving the
overall equipment effectiveness of machinery or pro-
duction lines (OEE). In line with the EN 13306
standard, Condition-Based Maintenance (CBM) is
a form of “preventive maintenance which includes
assessment of physical conditions, analysis, and the
possible ensuing maintenance actions.”

2. Predictive maintenance (PdM), also known as con-
dition monitoring, involves measuring the condition
of a machine to predict and prevent failures. It is im-
portant to note that predictive maintenance should
not be used as a replacement for traditional main-
tenance management methods. Instead, it should
be considered a valuable supplement to a com-
prehensive maintenance programme. Data from
a predictive maintenance programme can be used
to schedule and plan plant outages; this lowers the
operating costs of predictive maintenance methods
so that any plant can implement this maintenance
management programme cost-effectively. Predic-
tive maintenance is a condition-driven preventive
maintenance programme (Mobley, 2001).

Monitoring and analysing resource efficiency to iden-
tify trends, predict failures, and optimise maintenance
schedules allow for achieving desired efficiency, min-
imising downtime, and aligning resource utilisation
with broader business strategies and specific objec-
tives. Resource conservation is also essential to ensure
a safe working environment in the manufacturing in-
dustry.
Managing a company that develops in line with

the paradigm of digital transformation to become an
Industry 4.0 organisation is often referred to as intelli-
gent management driven by the integration of business
intelligence analytics, big data, artificial intelligence
tools, and IIoT technologies for data acquisition in
decision-making. The core aspects of a manufacturing
company’s intelligent management also include the
integration of Enterprise Resource Planning (ERP)
systems, Manufacturing Execution Systems (MES),
and other digital tools, which enables better resource,
process, and supply chain management.
Taking predictive maintenance into account in the

implementation of TPM can be perceived, from the
point of view of change management, as a pathway to
reaching the highest, fifth level of digital transforma-
tion in the Advanced Manufacturing (ADMA) digital
maturity assessment model in terms of the specific
criterion for the area of advanced manufacturing
technologies. The organisation then achieves a level
of management of production technologies in the
maintenance field by “monitoring key components
in real time to focus intervention on moments of
potential loss of productivity” (‘ADMA scanner –
Future Industry Platform’, n.d.).
Real-time monitoring of production resources and

managing proactive maintenance processes using arti-
ficial intelligence is becoming a core functionality of
Enterprise Asset Management (EAM) systems. The
EAM functionality allows for resource knowledge man-

Fig. 1. Maintenance strategies, based on EN 13306
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agement for the entire life cycle of the device, including
the planning, performance monitoring, and recording
of maintenance activities for all three types of main-
tenance strategies: preventive, predictive and reactive
(‘Predictive Maintenance – Maximo Application Suite
|IBM’, n.d.).

Structure of the study

The study is divided into three parts:
1. The structured literature review presents the ratio-

nale for a new approach to predictive maintenance.
2. The proposed authors’ approach to determining

the so-called predictive variables that characterise
sets of machinery and equipment using group tech-
nology and a taxonomy approach to redundancy
in the number of variables is presented.

3. The discussion part is a brief overview highlighting
the integration of predictive maintenance with In-
dustry 4.0, the uniqueness of the proposed method,
and its potential implications for modern produc-
tion systems.
These three defined key areas offer a comprehen-

sive solution to the scientific problem and indicate the
cognitive gap that is the concept of an innovative pre-
dictive maintenance method for advanced production
systems.

Literature review

Evolution of maintenance strategies

In a broad sense, the strategy is a plan that consid-
ers future actions with a specific purpose and direction.
In terms of time, the strategy generally refers to long-
term actions. The modern approach to management
involves dividing areas within the system into smaller
components, including both subjects and objects of
management. In this context, operational processes
exemplify the latter. An approach based on separating
areas under management means that assessing the
efficiency and effectiveness of activities may cover not
so much particular organisational units but, in partic-
ular, these processes, which are crucial for achieving
ambitious values of high-performance organisation in-
dicators. This type of management approach means
that organisations that use this approach focus on
maximising process efficiency to achieve ambitious
goals in sales, costs, and individual operational pro-
cesses, exemplified by maintenance processes in service
and goods production companies. They are increas-
ingly formulated as a strategic decision component in
the company’s corporate strategy and business model
(Velmurugan & Dhingra, 2015).

Maintenance processes refer to technical facilities
that require assurance that their reliability and oper-
ational readiness are at the expected level. Still, these
levels depend at least on the type of facility, its ap-
plication, construction, and functionality. For each
technical facility, in the context of the conditions of
the entire technical system it belongs to, it is neces-
sary to develop an appropriate maintenance strategy.
Approaches to implementing the maintenance strategy
of technical facilities, especially in terms of the func-
tioning of manufacturing companies, are evolving and
depend on technical progress, information systems and
the demand for the expected level of reliability. The
choice of a specific maintenance strategy is usually de-
termined by the assessment of additional investments,
the scope of activity, the structure of costs and the
possession of a set of maintenance skills. This should
be considered when selecting these strategies (Sielaff
& Lucke, 2021). The experience of recent years has
proven the widespread use of solutions that fit into
automation and robotisation strategies in the context
of broad digital transformation. In this context, two
core approaches emerge that trigger new solutions in
the field of maintenance strategy, namely planning and
predictive methods. The planning paradigm is broadly
described and embedded in management theory and
practice, as well as the work organisation and opera-
tion of technical systems, while the predictive approach
is constantly evolving with the emergence of new so-
lutions resulting from advances in the field of digital
technologies. In this situation, the physical condition
of the equipment is monitored, and maintenance work
can be undertaken based on the expected or current
condition of the object (Hernández et al., 2022).

The classic maintenance strategy typology includes
at least four groups of defined maintenance strategies,
namely (Özcan et al. 2021):
1. Corrective maintenance strategy based on action in

the event of a failure. It is performed as a corrective
action or when a probability of failure is detected.
This maintenance aims to restore the system to
a state where it can perform the required function
in the shortest possible time.

2. Preventive (periodical) maintenance strategy per-
formed according to predetermined periods or pre-
scribed criteria.

3. The predictive maintenance strategy assumes re-
duced downtime and maintenance costs on the site.
The goal is to achieve zero failures by monitor-
ing the equipment’s operating state and predicting
when it may fail.

4. A revision maintenance strategy requires positive
changes to the design, operating methods, op-
erating conditions, installations, schedules, and
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individual maintenance methods of a given ma-
chine/device to achieve its expected functions at
the highest level.

Condition-based Maintenance (CBM) approach has
been a significant trend in developing maintenance
strategies since the 1950s of the XX century. CBM
typically uses state detection systems to collect
information from sensors built inside the production
system. In this way, a system production degradation
model is constructed to assess the condition of the
equipment and adopt targeted maintenance strategies
(Li et al., 2023a).

In addition, this approach may be based on data-
driven CBM optimisation, which combines machine
learning (ML) model prediction and reinforcement
learning (RL) method based on reliability with the
method for estimating the remaining useful life (RUL).
This method minimises the average maintenance cost
by maximising the system’s RUL while maintaining
low maintenance costs. In this approach, the system
learns from the random forest (RF) predictive model
introduced into RL (Mikhail et al., 2024). As system
components and their interactions become more com-
plex, problems with the reliability of the entire system
under assessment arise. Therefore, individual compo-
nents should be identified and ranked in terms of their
significance and impact on the configuration and func-
tionality of the maintained system (Chen et al., 2022).
Thus, due to differences and interdependencies be-
tween components, various maintenance sequences can
lead to significant differences in the effectiveness of
system performance restoration (Zhang et al., 2022). It
is also crucial to monitor the work state of the object
in real time. The state depends on the function of
time. Knowledge of the state of transition is used to
describe the ageing and deterioration of the system.
The transition probability and the ageing indicator are
then estimated based on historical data (Chen, 2011).
The maintenance strategy currently being devel-

oped is Approximate Dynamic Programming (ADP),
proposed by P. J. Werbos in 1968 (Werbos, 2007). The
ADP approach uses selected simulations in conjunction
with the implemented functions. The value function or
policy function is updated with the states achieved in
the simulation instead of analysing all states in the sys-
tem operating space (Jin et al., 2023). An interesting
trend in maintenance strategy development is strategy
optimisation based on multi-agent deep reinforcement
learning. This method uses a deep neural network to
evaluate the state of devices in the operating space.
Another approach is presented by Goal Programming
(GP), which is aimed at defining the most cost-effective
maintenance method. This approach is iterative and
based on the search for the optimal solution using

analytical methods. It can be supported by methods
that support decision-making processes, such as
the Analytic Hierarchy Process (AHP) or Failure
Mode and Effects Analysis (FMEA). It is also worth
paying attention to specific maintenance strategies
appropriate for individual sectors of the economy. For
example, separate, dedicated maintenance strategies
are being developed for the rail transportation sector
based on a deep understanding of the sector’s specifics.
A standard solution is to adopt a maintenance
strategy based on time-dependent system reliability
and life cycle cost analysis. During each maintenance,
all critical failure modes and components are identified
and repaired to reduce the probability of system
failure below an acceptable level (Zhang et al., 2023).
The possibility of using simulations for these models
if they imitate real-world conditions is essential for
their usefulness (H-Nia et al., 2023).
The presented maintenance strategies prove that

this topic is very complex and includes concepts based
on both an analogue approach, where planning and pre-
ventive approaches dominate, and a digital approach,
where automation and robotisation make it possible
to monitor the performance of maintenance objects
through dedicated sensors and predict how these sys-
tems will behave in the future. These approaches in-
clude analytics supported by various iterative tools
to uncover knowledge of the condition of the devices
undergoing maintenance. All these approaches are fun-
damental to ensure business continuity, the expected
reliability, operational readiness, and safety of the
maintained technical facilities.

Systemic Approach to Maintenance

The object of maintenance is increasingly considered
a complex system. It is created by building a network
system. Then, it is subject to maintenance and is
represented as a multi-agent of the network. Thus,
maintenance strategies based on data generated by
sensor systems are being widely developed. At the same
time, the concept of predictive maintenance (PdM)
based on machine learning (ML), now recognised as one
of the most well-known data-driven solutions, begins
to dominate. PdM aims to reduce equipment failure
rates and minimise operating and investment costs
by maximising the equipment’s life. In this respect,
a predictive maintenance strategy based on machine
learning algorithms is economically viable compared
to traditional repair maintenance (Arena et al., 2022).

In this context, increasingly widespread technologies
such as cyber-physical systems (CPS), the Internet of
Things (IoT) and big data are essential in developing
intelligent and efficient manufacturing. The underlying
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strategy for achieving predictive efficiency is based on
the data functions from a diagnostic system oriented
on the rapid recognition of the health status of the
equipment while influencing the time of starting main-
tenance activities. Some authors point out that the
predictive maintenance strategy is based on risk be-
cause based on the online monitoring technique allows
for the mitigation of the risk of loss of fitness of the de-
vice. Moreover, predictive maintenance employs tech-
niques such as state-of-the-art signal processing based
on pattern recognition and machine learning, neural
networks, fuzzy logic, and other methods (Chinta et
al., 2023). An interesting trend in modern maintenance
strategies is presented by the concept of opportunis-
tic maintenance, which is a widely accepted strategy
for maintaining multi-unit systems and has gained
many supporters. This leads to the development of
a group maintenance concept, in which the units of
a multi-unit system are grouped according to specific
rules. When any unit in a group requires maintenance,
all units in this group are maintained simultaneously.
On the other hand, selective maintenance selects some
units in a multi-system system for limited maintenance.
Fewer resources are then employed to ensure the sys-
tem’s reliability and meet the expected maintenance
requirements. Opportunistic maintenance means that
while maintaining one unit in a multi-unit system,
other units that require maintenance in the short term
are maintained in advance. Therefore, opportunistic
maintenance is more flexible than group and selective
maintenance. It can make better use of the ability to
support multiple units simultaneously and achieve the
goal of saving maintenance costs (Li et al., 2023b).

In general, these models are formulated within two
main frameworks (Yang et al., 2018), namely, time-
based maintenance (TBM) and condition-based main-
tenance (CBM).
This strategy allows for selecting system compo-

nents to replace or undergo maintenance repairs based
on the effect of importance measure concepts (IMC).
IMC models are then based on determining each com-
ponent’s contribution. A component’s significance is
assessed regarding the degree of success or failure,
considering the probability that the components will
remain in operation under different conditions and
the distribution of these components in the system
structure (Rebaiaia & Ait-Kadi, 2022).

Datafication for Maintenance

Datafication is an information technology-driven
sense-making process that involves transforming var-
ious aspects of the world into data for analysis and
decision-making (Lycett, 2013). Modern analytics

based on big data is integral to the Industry 4.0 con-
cept. Digital transformation policies rapidly change
industry and society (Greco et al., 2019). The so-called
Industry 4.0 paradigm has shifted public interest to-
wards technologies designed to deliver intelligence to
industrial processes (Para et al., 2019). Monitoring
events in a complex network-based system creates
the conditions for making flexible returns to improve
the efficiency of customer-oriented manufacturing pro-
cesses. Data collection and analytical processes are
used to implement a strategy for improving produc-
tion processes. The subject of analysis of production
processes within the framework of the concept of In-
dustry 4.0 can be the processes themselves and their
elements. These elements, as well as technical and op-
erational resources, include human cognitive abilities,
occupancy, and time of human processing of correct
information, referred to as qualitative performance
(Cavallo et al., 2021). The amount of data in produc-
tion grows, providing process information and thus
enabling autonomous monitoring, control, and optimi-
sation for value-creation processes. Modern systems
based on the assumptions of Industry 4.0 allow for the
registration and detection of assessed parameters and
the prediction of different wear conditions on the test
bench with an accuracy exceeding 95%. Such systems
can reliably detect wear states in the current profile
and be used in an industrial environment. For exam-
ple, the Lean Data approach enables the deployment
of decentralised algorithms for pre-processing signals
close to real-time. It also allows using machine learn-
ing methods in computational systems with limited
resources (Küfner et al., 2021). An interesting applica-
tion of analytics in production processes is predictive
analytics in quality control based on the value of ma-
chine sensors during production. Therefore, it makes
it possible to use specialised machine learning models
in a controlled environment (Burggraef et al., 2023).
Very often, dedicated analytical platforms supporting
production and maintenance processes are used. Then,
relevant data analytics is used, while big data process-
ing tools and currently available industrial solutions
within cloud computing platforms are applied (Kabugo
et al., 2020). Better analytics is possible thanks to more
easily accessible advanced techniques such as machine
learning (ML) or artificial intelligence (AI) (Hammer
et al., 2017). The application of relevant data analy-
sis strategies to increase the intelligence of complex
production systems is a condition for improving the
efficiency of companies and achieving an even higher
level of production excellence. Therefore, the broad
application of the analytical tools creates new possi-
bilities for analysing maintenance processes, focusing
on predictive maintenance.
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Proposed Methodology

Conceptual Description of the Novel
Predictive Maintenance Method

Predictive operation is an essential pillar of Total
Productive Maintenance (TPM), one of the most fre-
quently implemented maintenance systems derived
from KAIZEN, the philosophy of continuous improve-
ment (Bednarek & Santana Villagra, 2017). In addition
to the widely used autonomous service, predictive oper-
ation displaces scheduled operation due to lower costs
(Kabugo et al., 2020). It is observed in the relevant
literature that the authors of the presented prediction
solutions focus on the one used in individual types of
devices and machines. There is not found in the litera-
ture identified an approach to the prediction that seeks
and attempts to create a universal model adapted to
the production structure and, based on its codification
and classification due to historical and measurement
data, effectively infer the possibility of system failure
from real-time data.
Quantitative and qualitative variables characterise

predictive processes. To assess the impact of variables
on processes, the authors propose using a taxonomy
method (Florek et al., 1951), which also allows for se-
lecting the most relevant variables for efficient predic-
tion. For this purpose, the predictive operation process
of the selected device is described as a function of the
Xik -variables forming a row of matrix (1).

X =


x11 . . . . . . . . . . . . . . . . . . . . . x1n

x21 . . . . . . . . . . . . . . . . . . . . . x2n

. . . . . . . . . . . . . . . . . . . . .

xw1 . . . . . . . . . . . . . . . . . . . . . xwn

 . (1)

Each row of the matrix represents critical values
of diagnostic parameters measured while the device
is operational. Parameters are relevant for prediction
based on Bednarek’s classification and codification
of machines using the Group Technology approach
(Bednarek & Rybak, 2021). The proposed method
was elucidated using the intricate structure of a group
of machines, specifically machine tools utilised in
the production system. A notable subset within
this collection is a group of cutting machine tools
for metal, distinguished by a variety of structural
solutions stemming from their diverse purposes
and applications. These machine tools are involved
in shaping by altering the form or properties of
the input material, thereby achieving the desired
appearance, surface texture, and coarseness, among
other mechanical properties (Fig. 2).

Fig. 2. Cutting machine tools

The variables in the matrix (1) are heterogeneous
because they describe different properties of operation
processes; hence, they occur in various units of mea-
surement. Therefore, they should be standardised (2).

Zik =
Xik −Xk

Sk
, (2)

where:
• arithmetic mean of observation on variable Xk

Xk =
1

w

W∑
i=1

Xik, (3)

• standard deviation

Sk =

√√√√ 1

w

W∑
i=1

Xik − x2k. (4)

The next step involves identifying groups of machine
tools that share similarities in their operational pro-
cesses and relationships between variables. This step
aims to determine the predictor variables for these
groups, expressed by subsets of diagnostic variables.
To achieve this, a detailed classification of the machine
tools described in the different rows of the matrix (1)
will be carried out. The ultimate goal of this activity is
to use predictive actions to improve the performance
of the machine tools. The bullet method will divide
the objects into homogeneous groups, indicating the
predictive variables.
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We have a set of observations in the form of a ma-
trix (1). To standardize this matrix, we use the for-
mulas (2), (3), and (4). As a result, we obtain a new
matrix of standardized observations called Z. Based
on a standardised matrix of diagnostic variables Z, we
calculate the distance matrix C, which we define as
follows:

C = [Crs] r, s = 1, 2, . . . , w, (5)

where:

Crs =

√√√√ 1

n

n∑
k=1

(Zrk − Zsk)
2
, (6)

• Zrk is diagnostic variable for r, k = 1, 2, . . . , w;
• Zsk is explanatory variable for r, s = 1, 2, . . . , w.
Appropriate transformations of the matrix (5) allow

for the definition of such subgroups of objects (machine
groups) that there are similar objects in each subgroup
by diagnostic (correlated) variables, which define their
predictive operation processes. The division of
diagnostic variables into sets of correlated variables
aims to determine so-called predictive variables for
each set, i.e., reducing the number of these variables
that will need to be observed and analysed during the
predictive operation process. This is done using the
centre of gravity method. Subsequently, we determine
ranking coefficients for predictive variables. The higher
the value of the ranking coefficient ∈ 0 ≤ λ ≤ 1, the
more critical the variable for the correct operation of
the predictive subgroup of machine tools. In this way,
a predictive operation is performed only considering
observations of fluctuations in the values of variables
with the highest values of their ranking coefficients λ.
To do this based on the observation matrix X (1), the
matrix C (7) of correlation coefficients is calculated
after its standardisation.

C = [Crs] for r, s = 1, 2 . . . , n, (7)

where:
Crs = 1− |rrs| . (8)

In addition:

rrs =

W∑
i=1

(xir − xr) (xis − xs)

W · Sr · Ss
. (9)

Next, it is necessary to determine the values of the
so-called ranking coefficients λi for individual predic-
tive variables, which allow variables to be differentiated
in their significance in the prediction process. There-
fore, it is required to calculate the distance between

variables according to the formula for observation ma-
trix X (1) and after its standardisation according to
formulas (2), (3) and (4), and then calculate the dis-
tance matrix C (10) between variables according to
formula (11).

C = [Cij ] i, j = 1, . . . , N, (10)

Cij =

√√√√ w∑
k=1

(zki − zkj)2, (11)

where: N – number of predictive variables.
In matrix C (10) with calculated distances between

predictive variables, their relationship in the form of
a dendrite should be established (Florek et al., 1951).
Completing the calculations, the found dendrite of the re-
lationships between variables will be used to determine the
numerical values of ranking coefficients, i.e. coefficients
λi for each predictive variable. The ranking coefficients
calculated in this way are standardised values (12)

0 ≤ λi ≤ 1. (12)

The higher the value of the ranking coefficient λi,
the more critical the ith predictive variable for the pre-
dictive operation process is. Matrix (1) can be created
for each group of devices using Group Technologies and
the basics of Technology, i.e. technological or geometric
similarity. Taxonomy will allow for the development
of universal standards of conduct when applying pre-
dictive operations for production structures.

Process of implementation

The sequence diagram (Fig. 3) pictures the taxon-
omy of variables based on the PDM implementation
process. This will involve multiple entities and
subprocesses, illustrating the flow of actions for
implementing predictive maintenance based on the
taxonomy method.
The diagram illustrates the generalised pattern of

conduct consisting of fourteen key actions defining
the scope, subject matter and core assumptions for
a proposed solution as follows:
1. Using the taxonomy method, identify the technical

object(s) that will be affected by implementing
predictive maintenance.

2. Codify and classify production structure using his-
torical data and real-time data metering on the
possibility of failure in the system.

3. Collect historical and real-time data.
4. Describe predictive operation processes using quan-

titative and qualitative variables.
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5. Select important quantitative and qualitative vari-
ables that are most important for efficient prediction.

6. Create matrices based on a set of critical (variable)
diagnostic parameters measured during the opera-
tion of the device/devices relevant for prediction.

7. Standardise defined variables to unify the units
which describe them.

8. Separate similar object groups in terms of the re-
lationships between variables, which describe the
processes of their operation and predictive opera-
tion, and indication of predictive variables.

9. Separate subgroups by the predictive operation of
subgroups based on diagnostic (correlated) vari-
ables, which define the processes of their predictive
operation.

10. Optimise by reducing the number of variables that
must be observed and analysed during the predic-
tive operation process.

11. Rank the importance of variables for the correct
operation of the predictive subgroup of devices
based on the observations of fluctuations in the
values of variables with the highest values of their
ranking coefficients.

12. Dendrite relationships between variables are deter-
mined using mathematical methods to determine
the numerical values of ranking coefficients for each
predictive variable. The greater the ranking coeffi-
cient’s resulting value for a given variable, the more
critical it is for the predictive operation process.

13. Implement universal standards of conduct for ap-
plying the predictive operation for production
structures based on the described methodology.

14. Perform predictive maintenance.

The sequence of twelve tasks presented above com-
prehensively describes the proposed methodology of
predictive maintenance, constituting the assumptions

System Engineer Maintenance Engineer Data Engineer Production System Data Repository Predictive Model

1. Identify technical objects using taxonomy

Technical objects identified

2. Codify and classify production structure

Production structure codified and classified

3. Collect historical and real-time data

Data collected

4. Describe predictive operation processes

Predictive operation processes described

5. Select important quantitative and qualitative variables

Critical variables selected

6. Create matrices based on diagnostic parameters

Matrices created

7. Standardise defined variables

Variables standardised

8. Separate similar object groups

Object groups separated

9. Separate subgroups based on diagnostic variables

Subgroups separated

10. Optimise by reducing the number of variables

Number of variables reduced

11. Rank the importance of variables

Variables ranked

12. Determine dendrite relationships between variables

Dendrite relationships determined

13. Implement universal standards

Universal standards implemented

14. Perform predictive maintenance

Maintenance performed

Fig. 3. Sequence diagram of taxonomy-based PDM implementation process
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for a universal model of maintenance of groups of de-
vices adapted to the production structure that meets
the requirements of the Fourth Industrial Revolution.
Due to its algorithmic nature, the proposed solution
can be easily implemented by employing digital econ-
omy technologies and be included in the scope of in-
telligent automation and industrial robotics systems.

Relevance to Industry 4.0-Driven
Manufacturing Environments

Shaping the production environment is the funda-
mental condition of the process of improving the effi-
ciency of the functioning of this type of complex organ-
isational and technical system. Technological progress
and the related scope of innovation implementation
involve the search for solutions that will ensure a high
level of automation and robotisation of intelligent man-
ufacturing systems. In this way, the conditions for cre-
ating assumptions for production companies are devel-
oped using the following triple-element model: the tech-
nical system – operator – working environment system.
Industry 4.0 brings a paradigm shift in production

through decentralisation and automation. It is based
primarily on machines’ collective intelligence. This en-
ables smart manufacturing, which describes the ability
of machines to change the layout of tasks and ad-
just operational parameters based on criteria such as
cost, resource availability, and demand requirements.
Industry 4.0 includes the concept of smart factories,
cyber-physical systems, robotics, and cloud manufac-
turing systems (Rohini & Krishnan, 2017).
One of the objectives of Industry 4.0 is to improve

management practices and build competitiveness by
creating a functioning physical and digital environ-
ment. The Industry 4.0 environment employs driving
technologies, such as Cyber-Physical Systems (CPS),
Big Data, IIoT, Robots, Augmented Reality, and Addi-
tive Manufacturing (Silvestri et al., 2022). Industry 4.0,
as part of industrial production, is evolving towards
high flexibility, diversity, adaptation, and dynamics.
It is an intelligent production system scenario that
deals with planning complex production processes and
multi-level products in a dynamic and flexible work-
shop environment (Zhang et al., 2021). The aim of
Industry 4.0 is to combine production, information
technology and the Internet. Thus, the latest informa-
tion and communication technologies combine with
the classic model of the functioning of industrial pro-
cesses. This idea shows a fundamental paradigm shift
– from centralised to decentralised control to ensure
high flexibility in producing non-standard products
and services (Pasetti Monizza et al., 2018). There-
fore, with the advent of cyber-physical systems (CPS)

and the Fourth Industrial Revolution, the focus is
on identifying distributed architecture, coordination,
and extensive communication between all system ele-
ments. Modern industrial production is based mainly
on flexible production.

As part of the work environment, a combination of
solutions and techniques for improving production pro-
cesses, such as information and communication tech-
nologies, computing technology, operations technology,
sensors and data acquisition technologies, and human-
machine interaction, is used (Ghodsian et al., 2023).
This approach enables technology development in In-
dustry 4.0 to represent a qualitative change in produc-
tion strategies, allowing companies to produce custom-
made products (Partearroyo et al., 2023). What is
essential is that Industry 4.0 transforms the manufac-
turing sector into dynamic, networked, and complex
industrial environments, which generate vast amounts
of data and employ intelligent manufacturing technolo-
gies and artificial intelligence (AI) to achieve efficient
and sustainable manufacturing processes (Alenizi et
al., 2023). Cyber-physical systems and data exchange
in Industry 4.0 transcend traditional organisational
boundaries, requiring an intelligent, interconnected,
and flexible value chain (Caiado et al., 2021). How-
ever, the effectiveness and efficiency of implementing
the Industry 4.0 concept depends on the company’s
digital maturity level (Senna et al., 2023). This affects
the functioning of processes and the development of
products and business models in the manufacturing
industry and aims to design material and informa-
tion flows efficiently along the value chain network
(Dillinger et al., 2022). Such a work environment is
conducive to improving the efficiency of a distributed
operation system, which is closer to the work theory
than system theory. Decentralisation and the role of
communication technologies shape a new paradigm of
planning and implementation of manufacturing pro-
cesses, significantly increasing its capabilities.

Discussion

The article explores how the taxonomy approach
leverages data analytics and machine learning tech-
niques to classify production machines into distinct
categories based on their operational characteristics,
usage patterns, and maintenance needs. Doing so offers
several key advantages: improved precision, predictive
maintenance customisation, data-driven insights, and
scalability. Unlike generic categorisations, the taxon-
omy approach provides a highly nuanced and accurate
classification of production machines. This precision
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enables maintenance teams to tailor their strategies to
the specific needs of each type of machine. With a more
granular understanding of machine types, organisa-
tions can develop customised predictive maintenance
plans considering machine age, usage intensity, and
criticality. The taxonomy approach is based on data-
driven insights, allowing organisations to harness the
power of big data and the Industrial Internet of Things
(IIoT). Maintenance teams can detect anomalies and
issues by analysing real-time data from production
machines before they lead to breakdowns. As compa-
nies expand their production facilities, the taxonomy
approach easily scales to accommodate new machine
types and evolving maintenance requirements. It can
adapt to changing industry standards and technologi-
cal advancements.

The taxonomy approach represents a paradigm shift
in predictive maintenance, empowering organisations to
optimise their production machine management strate-
gies for a more sustainable and competitive future.
A widely recognised approach for PDM includes

integrating sensors into equipment and utilising dash-
boards for real-time monitoring of conditions, which
can offer a comprehensive view of asset health, en-
abling proactive maintenance actions and minimising
unexpected failure. However effective, it is limited
due to focusing separately on each production asset.
Meanwhile, the proliferation of flexible manufactur-
ing systems in the production industry brings a new
perspective on condition-based maintenance: the dy-
namic nature of technological march routes and the
variability of products leverage predictive maintenance
from a sequence of machines’ paradigm to a network
of production assets.

The proposed solution is characterised by versatility,
scalability, and relatively low implementation costs
due to the method architecture, which enables the fol-
lowing: defining any production system for predictive
maintenance using a generalised description method,
modularity, integration with the company’s IT infras-
tructure, and the possibility of integration with the
cloud in the software as a service (SaS) model.
Attention should be paid to the limitations of the

proposed model, which result from the following condi-
tions: first, the number of typological groups is usually
unknown, which may give rise to problems resulting
from the identification of the range of analysed vari-
ables. Secondly, since objects in the same group should
be as similar as possible, this raises issues of reliable
determination of the similarity criteria and subjec-
tive assessment. The dendrite method, named the
Wrocław taxonomy, was used to develop this model by
constructing the dendrite as a multi-stage procedure.
The dendrite is completed when all the interconnected

clusters form a coherent graph. This complex process
is exposed to calculation deviations depending on the
number of iterations used. The problem is the separa-
tion of subsets of homogeneous objects in terms of stud-
ied characteristics to reliably specify the factors that
determine the reliability of the analysed phenomena.
Due to the above limitations, some possible chal-

lenges should be mentioned as follows:
• The taxonomy approach may introduce unnec-
essary complexity and rigidity into maintenance
strategies for production machines. By focusing
on highly nuanced categorisations, maintenance
teams may struggle to adapt quickly to changing
operational needs and find managing many distinct
machine categories challenging.

• The reliance on data-driven insights and real-time
analytics may not always guarantee accurate pre-
dictions or early detection of issues, as anomalies
in machine behaviour can still go undetected or
misinterpreted.

• While innovative, the Wrocław taxonomy method
may introduce computational complexities and un-
certainties due to the iterative nature of the den-
drite construction process.
These challenges could hinder the taxonomy ap-

proach’s practical application and scalability in real-
world production environments, limiting its effective-
ness in optimising maintenance strategies and machine
management.

To address these challenges, researchers are explor-
ing the integration of machine learning algorithms and
artificial intelligence techniques to enhance the accu-
racy and efficiency of anomaly detection and predictive
maintenance in industrial settings. The integration con-
cept is based on developing domain-specific language
(DSL) and an appropriate execution engine to simplify
mirroring and monitoring the production system with
the proposed novel method. A Domain-Specific Lan-
guage is a specialised programming language finely
tuned for addressing a particular set of problems. This
type of language leverages the principles and regula-
tions inherent to a specific field or domain. DSLs are de-
signed to simplify the coding process by providing spe-
cialised syntax and semantics tailored to the particular
requirements of the targeted domain, allowing develop-
ers to express solutions more concisely and effectively.
The domain-specific language and a transformation
engine can be customised to accommodate specific
industry requirements and production system com-
plexities, ensuring a tailored solution for each unique
operational environment. Moreover, the low-code na-
ture of DSL and interoperability of the execution en-
gine by design would allow for seamless integration
with existing MES and SCADA systems through UPC
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UA servers to maintain bidirectional data and control
signals exchange. As a result, it would be possible
to implement a digital twin-based solution enabling
proactive decision-making and timely interventions
to prevent costly downtime. Furthermore, integrat-
ing advanced analytics capabilities within the digital
twin framework can provide predictive maintenance
insights, optimise asset performance, and maximise
operational efficiency.

Conclusions and future avenues

An attempt was made to create a universal model
for the predictive maintenance of complex production
systems. The model is adapted to the production struc-
ture, subject to the codification and classification of
predictive variables, and is intended to neutralise ad-
verse events in the production system. Maintenance
objects are now considered complex systems developed
by building a network system. From this perspective,
the taxonomy method is becoming a productive way
to identify all predictive variables of the maintenance
system and create a consistent measurement model. In
this way, the shaped work environment is conducive
to improving the efficiency of a distributed operation
system, which is closer to network theory than system
theory. Decentralisation and the role of communication
technologies shape a new paradigm for planning and
implementing manufacturing processes, significantly
increasing their capabilities.

Against this background, the presented model of pre-
dictive maintenance of complex production systems
is based on the taxonomy method. The concept com-
prises fourteen implementation tasks and comprehen-
sively describes the predictive maintenance method-
ology. It constitutes the assumptions for a universal
model of maintenance of groups of devices adapted to
the production structure, meeting the requirements
of the Fourth Industrial Revolution. Due to its algo-
rithmic nature, the proposed solution can be easily
implemented by employing digital technologies and
included in the scope of intelligent automation and
industrial robotics systems.
Future research and challenges arising from the

developed concept should relate to empirical testing
of the model using the experimental method in an
actual production environment. The future research
plan includes:
• collecting and preparing data from real production

systems,
• choosing the software framework suitable for the
rapid development of a prototype computational
model,

• using developed procedures and mathematical mod-
els to implement the proposed method.

• computational experiments to validate the applica-
bility of the proposed method sourced from data
from the actual production system.
Furthermore, the research will also focus on devel-

oping domain-specific language employing both a tax-
onomy approach and an ontology of production ma-
chines aimed at condition-based maintenance purposes
to make possible future cost-effective and scalable im-
plementation of the proposed method across different
industrial sectors to assess its broader impact and
potential for widespread adoption.

In conclusion, developing a universal model for pre-
dictive maintenance in complex production systems
is crucial for enhancing efficiency and productivity in
the Fourth Industrial Revolution era. The taxonomy
method identifies predictive variables and creates a con-
sistent measurement model for maintenance systems.
This model presents a new paradigm for planning and
implementing manufacturing processes by leveraging
communication technologies and decentralised oper-
ations. Future research should focus on empirically
testing the model in real production environments and
developing a digital twin-like software framework to
implement presented concepts fully.
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