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ABSTRACT    
Aerospace components use AMS 5643 stainless steel as a raw material. Material toughness and 

hardness are challenges in the roughing machining process on CNC lathes. We designed experiments 

combining Taguchi-Response Surface Method to optimize multi-response: cycle time, material 

removal rate, and cutting power. This study uses CAM Espirit TNG and Celos Tech software 

simulations as an experimental approach. Confirmation test results show that changing process 

parameters in simulation software is able to produce a response that is close to reality. This research 

succeeded in identifying the contribution of machining process factors and finding parameters with 

optimal multi-response. 
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Introduction 

As the aerospace industry develops, the use of 

aerospace-specific materials increases. Aerospace 

sector commonly uses AMS 5643 material, which is 

equivalent to 17-4PH stainless steel, for structural 

components (Gercekcioglu & Albaskara, 2023; 

Kovacs et al., 2023). AMS is an abbreviation for 
Aerospace Material Specification. AMS 5643 is a 

martensite precipitation-hardened stainless steel (An 

et al., 2023; Kovacs et al., 2023; Kultamaa et al., 

2023; Li et al., 2023) that used in aerospace and 

automotive (An et al., 2023; Giganto et al., 2022), 

chemical, nuclear, oil industry (Kultamaa et al., 

2022), and medical devices (Li et al., 2023). 

Chromium, nickel, and copper makes AMS 5643 has 

great mechanical properties. It is strong, tough, 

resistant to corrosion and fatique (Kultamaa et al., 

2022; Kovacs et al., 2023; Li et al., 2023), stiff, and 

can withstand high hot service temperatures (Kumar 

et al., 2018; Eliaz et al., 2020). AMS 5643 is suitable 

for aerospace components that require a combination 

of high strength and high resistance to corrosion and 

oxidation, as well as outstanding heat and flame 

resistance (Eliaz et al., 2020). Its strong and tough 

mechanical properties are a challenge for machining 

processes. These materials are more difficult to 
machine (Gercekcioglu & Albaskara, 2023) due to 

their high toughness and ductility (Gopal et al., 

2022). Obtaining good machinability in the 

machining process of stainless steel-type materials is 

a challenging task (Gupta, 2022). 

DMG MORI Indonesia is a machine 

manufacturing company, that offers programming 

services and product machining test processes, also 

known as test cuts, to prospective customers who 

require them. The test cut process aims to provide an 

overview of the product machining process 

parameters used to obtain: machining accuracy, 
surface roughness, cycle time, machine power 
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suitability, and the accuracy of the selected cutting 

tool. In turning process, the selection of optimal 

cutting parameters is very important to achieve high 

cutting performance and quality (Mutyalu et al., 

2021; Rathod et al., 2021). Poor parameter process 

results in non-optimal machine operation, resulting 

in a lower material removal rate and surface finish, a 

higher machining time, increased tool wear and 

energy consumption (Kumar et al., 2018; Santosh et 

al., 2021; Faisal et al., 2023). Cutting parameters, 

workpiece materials, and environmental parameters 
that influence the characteristic response in turning 

operations (Kumar et al., 2018). 

 

      

Fig. 1. Incomplete shape of yoke component 

Fig. 1 shows the design of yoke component, 

which is part of the spacecraft's cross joint. The 

hinge-like component serves as a connector that can 

move to form a certain angle. Fig. 1 only shows 

incomplete shape of yoke component, as the design 

remains confidential and is a proprietary product of 

potential customer. The large production quantities 

of yoke components encourage customers to use test 

cut information to select lathe machining process 
parameters that are suitable for the quality of the 

results, machine specifications, and cutting tools. 

Cylindrical work pieces commonly undergo turning 

(Rajbongshi, 2023), that spans major production and 

manufacturing industries (VeeraBhadraRao et al., 

2021). Optimizing machining processes akan 

increase productivity, it is crucial for maintaining 

competitiveness (Zhujani et al., 2023). Achieving 

good machining quality is an essential requirement 

in manufacturing industry, and it depends upon the 

optimal values of selected process parameters 

(Santosh et al., 2021).  
This research aids DMG Mori Indonesia in 

carrying out a comprehensive study of the CNC lathe 

parameters for AMS 5643 material. We hope that the 

results of this research will assist DMG Mori 

Indonesia in determining the optimal machining 

parameters to meet consumer time demands, based 

on the condition of available machines and 

determined cutting tools. Therefore, this research 

necessitates a scientific analysis of cycle time, the 

rate at which the cutting tool removes material, and 

the appropriate cutting force based on the actual 

conditions of the machine. 

This study focuses on the roughing stage of yoke 

component lathe machining process. Roughing 

operation aim to remove large amounts of material 

(Zahid et al., 2014) in a very short time (But, 2019). 

The roughing stage is the concern in this research, 

because it is more dominant than the finishing stage. 

Surface roughness response can be ignored because 

the roughing process does not require a high level of 

smoothness. The purpose of roughing process 
optimization is to obtain a fast cycle time process, 

supported by a large amount of material cutting but 

still within the tolerance range of machine power. 

The roughing operation can be considered one of the 

time-consuming processes that involves massive 

material removal (Zahid et al., 2014). Zhujani et al. 

(2023) state that higher material removal rate (MRR) 

directly influences production costs and the 

machining hour rate. Thus, this research aims to 

optimize the cycle time response, material removal 

rate, and cutting power. Research to date has not 
specifically addressed the optimization of machining 

process parameters in aerospace component 

manufacture. 

Optimization techniques, including statistical and 

soft computing, are available to optimize the 

parameters of machining process (Gupta et al., 

2022). The experiment was designed using the 

Taguchi method with Orthogonal Array L32 (4^2 

and 2^1). We performed studies utilizing a 

simulation methodology and licensed CAM 

software. The Esprit TNG CAM program simulates 

the turning and milling processes (Hoesen et al., 
2024). We utilized Esprit TNG CAM software to 

acquire cycle time and cutting power answers and 

Celos Tech Calc software to compute material 

removal rate responses. We integrate these tests with 

machining simulation software to improve 

machining quality and efficiency (Hoesen et al., 

2024), reduce time, and lower the cost of acquiring 

machining process data. CAM helps businesses 

make sure the numerical control process is correct by 

checking it thoroughly and objectively. This stops 

many mistakes from happening during the process 
and improves the quality and efficiency of 

production (Pan et al., 2021). 

We used ANOVA to analyze the impact of 

cutting parameters [30] (Rathod et al., 2021) and to 

determine the importance of machining parameters 

(Modi et al., 2021). This ANOVA and Taguchi 

combination analysis are useful in measuring the 

percentage contribution of factors to the response 

(Ninggar et al., 2023). We use the Response Surface 
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Method to form a regression model and obtain 

machining process parameters that optimize multiple 

responses simultaneously. The Taguchi, ANOVA, 

and RSM techniques were the most effective and 

easy methods for optimizing the turning parameters 

(Faisal et al., 2023). Most researchers have tested 

performance statistical techniques, such as response 

surface methodology (RSM) and Taguchi 

methodology (TM), to model and optimize complex 

manufacturing processes (Ismartaya et al., 2023). 

This research applies the parameters: feeding, 
cutting speed, and depth of cut, because these 3 

parameters have a significant influence in the 

machining process optimization, based on the 

literature review that has been carried out. Cycle 

time, removal rate, and cutting power responses were 

applied in this research. Minimum cycle time is 

needed to increase the competitiveness of 

manufacturing process in industry. Removal rate and 

cutting power response are needed to maintain 

optimal quality when using the machines and cutting 

tools offered to DMG Mori Indonesia consumers. 
The novelty of this research is 1) conducting 

research with a combination of responses that suit 

the actual needs of the industry; 2) reviewing the 

optimization of machining process for AMS 5643 as 

a material for aerospace industry; and 3) this 

research combines the use of licensed CAM software 

with statistical methods as an approach to solving 

actual problems, which has not been carried out in 

previous research. 

The research began by applying CNC lathe 

machining parameters at various levels in 

experiments to evaluate the impact of parameter 
changes on the machining process. We processed the 

experimental results using ANOVA to determine the 

influence of factor levels on responses. In this 

research, we optimize multi-responses using the 

Response Surface Method to obtain the best 

parameters. Furthermore, we test the selected 

parameters to confirm their practical implementation 

capabilities. Parameters that can be applied and 

actually produce the best response value are the final 

output of this research. 

The rest of the paper is structured as follows. The 
relevant literature is covered in Section 2. Section 3 

describes the research method and materials used in 

this study. The obtained results using Taguchi-RSM 

with CAM Simulation Approach are discussed in 

section 4. The discussions of the results are covered 

in section 5. Last, section 6 provides the conclusion 

of this study. 

Literature review 

Research on the optimization of lathe-machining 

process parameters has been widely conducted. 

Machining cutting factors include cutting speed, feed 

rate, and depth of cut (Rathod et al., 2021), as well as 

tool variables such as tool material, tool radius, rake 

angle, cutting edge geometry, tool vibration, tool 

overhang, tool point angle, and so on (Zhujani et al., 

2023). Research by Prasath et al., 2018; Manuela-

Roxana & Gheorghe, 2019; Vasudevan et al., 2019; 
Karim et al., 2020; Mukkoti et al., 2020; 

Viswanathan et al., 2020; VeeraBhadraRao et al., 

2021; Rathod et al., 2021; Gupta et al., 2022; 

Daniyan et al., 2023; Zhujani et al., 2023 used 3 

cutting factors, namely feed (mm/turn), cutting speed 

(m/min), and depth of cut. Kumar et al., 2018; Gupta 

et al., 2022; Singh, 2021; Modi et al., 2021; Mutyalu 

et al., 2021; Santosh et al., 2021; Faisal et al., 2023 

used similar 3 cutting factors, but the cutting speed 

factor was converted to spindle rotation speed (rpm). 

Some studies added other factors, such as cutting 
tools (Sivam et al., 2019; Abhang & Hameedullah, 

2021; Gopal et al., 2022; Ramadhani et al., 2022; 

Altin, 2023; Rajbongshi, 2023; Vadivel et al., 2023). 

This research applies three treatment factors: cutting 

speed, feed rate, and depth of cut, because these 

factors are vital elements (Rathod et al., 2021). 

These three factors play a crucial role in the turning 

process, ensuring the desired results (Ramadhani et 

al., 2022). Industries still use it today due to its 

simplicity, superior control over work motion 

parameters like cutting speed, feed, depth of cut, for 

higher productivity (VeeraBhadraRao et al., 2022). 
Optimization of machining parameters is a 

technical activity that aims to reduce production 

costs while producing the desired quality of results 

(Zhujani et al., 2023). Some studies combine the 

surface roughness quality response with the material 

removal rate response, such as Kumar et al. (2018), 

Prasath et al. (2018), Vasudevan et al. (2019), Karim 

et al. (2020), Mukkoti et al. (2020), Gupta et al. 

(2022), and Zhujani et al. (2023). Sivam et al. (2019) 

and Viswanathan et al. (2020) used a combination of 

surface roughness, feed rate, and cutting power 
response. Gopal et al. (2022) and Ninggar et al. 

(2023) combined surface roughness and cycle time 

responses, while Rathod et al. (2021) optimized 

cycle time and tool life responses for cutting tools. 

The studies conducted Manuela-Roxana & Gheorghe 

in 2019, Viswanathan et al. in 2020, Modi et al. in 

2021, and Altin in 2023 specifically focused on 

optimizing surface roughness and cutting power 

responses. Abhang & Hameedullah (2021) and 
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Vadivel et al. (2023) specifically addressed the 

optimal response for cutting power, tool life, and 

cutting temperature. 

Certain researchers (e.g., Prasath et al., 2018; 

Sivam et al., 2019; Karim et al., 2020; Modi et al., 

2021; Mutyalu et al., 2021; Ramadhani et al., 2022; 

Rathod et al., 2021; Singh, 2021; VeeraBhadraRao et 

al., 2021) have employed Taguchi methods and 

ANOVA in their studies. Ramadhani et al. (2022) 

designed the Taguchi technique as a statistical 

engineering approach to enhance product quality 
while minimizing production costs and resource 

utilization. ANOVA assesses the statistical 

importance of process elements or parameters 

affecting performance attributes (Altin, 2023; 

Rajbongshi, 2023). Nevertheless, Taguchi's failure to 

optimize many replies requires the implementation 

of advanced methodologies (Ismartaya et al., 2023). 

Vasudevan et al. (2019), Viswanathan et al. (2020), 

Rathod et al. (2021), and Gupta et al. (2022) utilized 

gray relationship analysis to enhance multiple 

replies. Abhang and Hameedullah (2021) as well as 
Gupta (2022) employed VIKOR to enhance the 

answers. [23, 31, 11] Mukkoti et al. (2020), Santosh 

et al. (2021), and Gopal et al. (2022) have each 

utilized the Response Surface Method (RSM) 

independently. RSM is an optimization method that 

develops a regression model to achieve optimal 

multi-response outcomes (Ismartaya et al., 2023). A 

number of researchers, such as Sivam et al. (2019), 

Modi et al. (2021), Altin (2023), Faisal (2023), 

Ismartaya (2023), Ninggar (2023), and Zhujani 

(2023), have integrated the RSM approach with 

Taguchi to enhance multi-response optimization. The 
integration of the Taguchi-ANOVA-RSM technique 

is the most efficacious approach for optimizing 

machining parameters (Faisal et al., 2023). 

Materials & Methods 

Material and Simulation 

AMS 5643 or 17-4PH is same type of stainless 

steel, that used in medical devices, cars, and the 

aerospace industry (Gercekcioglu & Albaskara, 
2023; Li et al., 2023). The carbon content of 17-4PH 

stainless steel is low, around <0.07% by weight 

(Kultamaa et al., 2022; Li et al., 2023). Specifically, 

the chemical composition of 17-4PH material is Cr 

16.51%, Cu 3.95%, Ni 4.35%, Nb 0.3%, Si 0.43%, 

and Mn 0.62%. The composition provides 

mechanical characteristics: tensile strength of 190 

ksi, yield strength of 170 ksi, and hardness of 388–

444 HB. The raw material size used is 1.625 inches 

in diameter and 63 mm in length. This research 

focuses on yoke product dimensions for the roughing 

process on CNC lathes. Fig. 2 displays the 

dimensions and contours of the roughing process for 

the yoke product, which is applied in this research. 

       

Fig. 2. Roughing dimensions and contours of yoke 

Computer-aided manufacturing (CAM) solutions 

assist industries in processing certain complex 

components and optimizing manufacturing 

processes, as stated But in the year 2019. By using a 

computer instead of a machine, CAM software 
verifies each cutting tool path. Employing feature-

based CAM software can assist enterprises in 

reducing machining and part programming duration 

(Biradar et al., 2014). This facilitates the writing of 

NC codes for intricate shapes and models that may 

encounter issues with CNC-manufactured items 

(Hoesen et al., 2024). CAM can minimize machine 

faults that lead to incidents, thereby dedicating more 

time to the production process instead of performing 

direct program tests on the machine. In 2021, Pan et 

al. conducted research employing digital twin 
technologies to simulate, analyze, and enhance 

manufacturing processes. Concurrently, But (2019) 

employed TEBIS-CAM software in his study. 

Hoesen et al. conducted a study in 2024 with Esprit 

TNG CAM software, which efficiently optimizes the 

machining process. Each CAM approach has its own 

unique philosophy and varying capabilities, as noted 

by But (2019). This research utilizes the official 

Esprit TNG CAM software, synchronized and 

operational at DMG Mori Indonesia, to reproduce 

the machining process. Espirit TNG CAM replicates 
many machining processes, including turning, 

drilling, and milling, demonstrating that each 

procedural step functions correctly (Hoesen et al., 

2024). The system depends significantly on 

workpiece simulation, rendering efficient and precise 

modeling a vital factor in the development process 

(Pan et al., 2021). We implemented modifications in 

machining process parameters within the same 

machining strategy to analyze differences in cycle 

times, material removal rates, and cutting power 

responses. We can modify the cutting parameter 

settings in the Esprit TNG CAM program to align 
with the factor levels established in the research, thus 
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allowing us to observe every minor variation in the 

estimated processing time (cycle time). 

Fig. 3 shows the simulation stage in Espirit TNG 

CAM software. The simulation is carried out in 4 

steps, namely: 1) designing the contour and 

dimensions of the product; 2) setting the dimensions 

of raw materials; 3) simulating machining strategies 

and parameter settings; 4) simulate the machining 

process. 

 

Fig. 3. Simulation stage in CAM software 

Material Removal Rate and Cutting Power 

The first roughing operation involves removing 
material until it reaches the furthest possible surface 

or completely cuts the workpiece (Zahid et al., 

2014). The roughing operation demands to remove 

large quantities of material as quick as possible to 

minimize the process cycle time (But, 2019). It is 

possible to run roughing operations with a series of 

different orientations aiming to achieve high volume 

removal (Zahid et al., 2014). In the turning process, 

the material removal rate (MRR) is the volume of 

material removed per unit time, measured in mm³ per 

minute (Prasath et al., 2018; Zhujani et al., 2023). 
The machining process is designed to obtain a high 

material removal rate so that the material reduction 

process proceeds quickly. Modern cutting tools 

enable high-speed cutting, thus increasing the 

number of chips removed per unit time (Modi et al., 

2021). Zhujani et al. (2023) employ a larger the-

better characteristic of S/N Ratio to achieve optimal 

material reduction and high MRR. The MRR value 

in this study was calculated using Celos Tech Calc 

software. Celos Tech Calc software is specifically 

designed for machine-specific calculations aimed at 

optimizing productivity and effectiveness of 
industrial operations. 

Cutting forces and power consumption are some 

of the common machinability indicators (Gupta et 

al., 2022). This study defines cutting power as the 

amount of cutting load that the spindle detects during 

the cutting process. According to the studies, the 

development of forces on cutting tools directly 

influences the cutting energy and power usage in 

machining (Vadivel et al., 2022). Cutting forces will 

affect the quality and productivity of a product in a 

manufacturing industry, so optimization of cutting 

force is the most important aspect in any 

manufacturing industry (Mutyalu et al., 2021). The 

research used a CNC lathe brand, DMG Mori 

NLX2000 500SY, with a maximum machine power 

of 14 kW. The maximum allowable cutting power in 

programming and test-cut planning is 80% of the 
machine power value (11 kW). We apply this to 

ensure the machine's durability. Customer specified 

Tungaloy DNMG150608-SH as the cutting tool. 

Design of Experiment 

The design of experiments helps us eliminate 

parameters that do not affect the performance of the 

turning process (Singh, 2021). The taguchi technique 

can be a robust and simple optimization technique to 

generate parameters by reducing their variation 
(Ninggar et al., 2023). The Taguchi technique is 

useful in engineering applications and academic 

studies on experimental design because of its 

orthogonal arrangement, which significantly reduces 

the number of tests (Rathod et al., 2021; Daniyan et 

al., 2023; Rajbongshi, 2023) and seeks to eliminate 

the influence of uncontrollable elements on test 

results (Modi et al., 2021; Zhujani et al., 2023). 

Researchers vary the cutting parameters to observe 

performance characteristics and identify the optimal 

machining parameter results (Mutyalu et al., 2021). 
Cutting speed and feedrate are not the only factors 

that determine quality in turning (Ramadhani et al., 

2022). This study used feedrate (mm/rev.), cutting 

speed (m/min), and depth of cut (mm). Orthogonal 

array L32 (4^2 and 2^1) was used with the 

composition as shown in Table 1. 

Table 1. Factors and levels in Orthogonal Array L32 

Factors 
Levels 

1 2 3 4 

A - Feeding (mm/rev) 0.3 0.6 - - 

B - Cutting Speed (m/min) 50 80 110 140 

C - Depth of Cut (mm) 1 2 3 4 

 

Rajbongshi (2023) used ANOVA to find out how 

important process factors are in determining 

performance characteristics (Viswanathan et al., 

2020; Santosh et al., 2021; Altin, 2023). ANOVA is 

used by researchers to figure out how much each 

independent factor affects output and to group 
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statistically significant process parameters (Mukkoti 

et al., 2020; Modi et al., 2021; Rathod et al., 2021). 

Researchers have used Response Surface 

Methodology (RSM), a scientific statistical software 

package, to analyze experimental results (Abhang & 

Hameedullah, 2021). Researchers (Altin, 2023; 

Faisal et al., 2023) used RSM in conjunction with a 

modeling system to establish an empirical correlation 

between the various processing factors and their 

responses. Desirability function analysis determines 

the optimal operating parameters (Modi et al., 2021). 
The complete research flow is depicted in Fig. 4 

below. This research structure provides a logical 

sequence of activities carried out to solve the 

problem. 

Input Parameter

Cutting speed;

Depth of cut;

Feed speed

Machining set up 

for roughing 

process

Response variable

Cycle time;

Material removal rate;

Cutting power

Roughing process of AMS 5643 materials 

in CNC lathe machine

Experiment ssing CAM software simulation appoach

Analysis with ANOVA;

Multi-response optimization with RSM

Confirmation test

Result and Discussion  

Fig. 4. Research methodology 

Results 

This study applied the entire treatment process in 

accordance with Taguchi experimental design in 

simulation software CAM Espirit TNG and Celos 

Tech Calc. The software simulation generated 

response data of cycle time (sec.), material removal 

rate (cm3/min.), and cutting power (kW) for each 

treatment. Table 2 shows the response data for 
simulation results. 

Table 2. Factors and levels in Orthogonal Array L32 

Runs 

Parameters Result 

A B C 
Cycle 

Time (s) 

Material 

Removal Rate 

(cm3/min) 

Cutting 

Power 

(kW) 

1 1 1 1 209.6 15 0.684 

2 1 1 2 109.8 30 1.36 

3 1 1 3 79.6 45 2.05 

4 1 1 4 64.4 60 2.73 

5 1 2 1 134.6 24 1.09 

6 1 2 2 70.8 48 2.18 

7 1 2 3 50.6 72 3.28 

8 1 2 4 40.4 96 4.37 

9 1 3 1 100.6 33 1.5 

10 1 3 2 52.8 66 3.01 

11 1 3 3 38.6 99 4.51 

12 1 3 4 30.4 132 6.01 

13 1 4 1 81.6 42 1.91 

14 1 4 2 42.8 84 3.83 

15 1 4 3 31.6 126 5.74 

16 1 4 4 25.4 169 7.66 

17 2 1 1 109.6 30 1.19 

18 2 1 2 56.8 60 2.38 

19 2 1 3 41.6 90 3.57 

20 2 1 4 33.4 120 4.76 

21 2 2 1 71.6 48 1.9 

22 2 2 2 37.8 96 3.81 

23 2 2 3 27.6 144 5.71 

24 2 2 4 21.4 192 7.62 

25 2 3 1 54.6 66 2.62 

26 2 3 2 28.8 132 5.24 

27 2 3 3 20.6 198 7.86 

28 2 3 4 16.4 264 10.48 

29 2 4 1 45.6 84 3.33 

30 2 4 2 23.8 168 6.66 

31 2 4 3 17.6 252 10 

32 2 4 4 13.4 336 13.33 

 
Response values in experimental results will be 

analyzed to form a mathematical equation, or in this 

case a regression model. We then statistically 

analyze the regression model to determine its 

coefficient of determination. The coefficient of 

determination will indicate how much a regression 

model can explain the variance in the response 

variable (Ismartaya et al., 2023). Equations 1, 2, and 

3 below display the regression model for each 

response. 

 

 (1) 

  

 (2) 

  

 (3) 
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Table 3 displays the ANOVA test results for 

cycle time response. The analysis results form a 

model that describes the influence of feeding, cutting 

speed, and depth of cut factors on cycle time 

response. (4) Experimental analysis of the cycle time 

response produces a mathematical model as in 

Equation 1. This model has an R2 value of 0.8834 

and an adjusted R2 value of 0.8555, indicating that 

the independent variables in the equation explain 

88.34% of the cycle time response variability. 

Table 3. ANOVA for cycle time response 

Source DF Seq. SS F P-value 
Contribu-

tion (%) 

Model 6 47059.43 31.58 < 0.0001  

A-Feed 1 9214.03 37.10 < 0.0001 17.29 

B-CS 1 11919.76 47.99 < 0.0001 22.37 

C-DOC 1 20326.57 81.84 < 0.0001 38.15 

AB 1 1316.76 5.30 0.0299 2.47 

AC 1 1842.81 7.42 0.0116 3.45 

BC 1 2439.51 9.82 0.0044 4.57 

Res. 25 6209.43    

Total 31 53268.86    

 

For high-quality production, it is critical to know 

and control the factors that contribute to the process 

[36] (VeeraBhadraRao et al., 2021). The percentage 

of contribution indicates an even distribution of each 

factor's contribution in cycle time response. The p-

value of all factors is less than 0.05, which supports 

this. However, depth of cut (C) is the largest 
contributor, with 38.15%. Therefore, machining time 

predictions are crucial as they depend on process 

variables such as cutting speed, feed rate, cutting 

depth, and tool (Gopal et al., 2022). According to 

Rathod et al. (2021), the depth of cut and cutting 

speed play the most significant roles in achieving the 

optimum production time. Researchers use the 

"smaller the better" characteristic for cycle time 

response, anticipating results with the smallest cycle 

time (Ninggar et al., 2023). A small cycle time value 

signifies a swift roughing process on turn machines, 

which can potentially lower machining cost. 
Fig. 5 is the main effect plot, which illustrates 

how factors influence the response. Fig. 5 shows that 

the depth of cut factor has the greatest influence on 

cycle time response, according to ANOVA results in 

Table 3. Fig. 5 shows that higher values of depth of 

cut, cutting speed, and feeding result in a shorter 

process cycle time response. This conclusion is in 

line with the research of Rathod et al. (2021), Gopal 

et al. (2022), and Ninggar et al. (2023), which 

showed a decrease in cycle time along with an 

increase in depth of cut, feeding, and cutting speed. 

Thus, parameter A0.6-B140-C4 provides the most 

minimal cycle time response in the roughing process 

on turn machines. 

 

Fig. 5. Main plot effect for cycle time 

 

Fig. 6. Interaction plot effect for cycle time 

Fig. 6 shows the interaction between factor 

levels. Changes in feeding factor show the same 

trend when combined with cutting speed and depth 

of cut factors. The level of change in the 

combination of depth of cut and cutting speed factors 

significantly affects the change in cycle time 
response. Compared to other treatment levels, cutting 

speed (B) of 50 m/min and minimal depth of cut (C) 

significantly improved the cycle time response.Table 

4 displays the ANOVA test of material removal rate 

response. An experimental analysis of the removal 

rate response yields a mathematical model, as shown 

in Equation 2. This model's R2 is 0.9946, and its 

adjusted R2 is 0.9933. These results show that the 

independent variables in the equation can account for 

99.46% of the diversity in material removal rate 

responses. 
Table 4. ANOVA for material removal rate response 
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Source DF Seq. SS F P-value 
Contribu-

tion (%) 

Model 6 181700.00 762.60 < 0.0001  

A-Feed 1 40541.28 1020.82 < 0.0001 22.19 

B-CS 1 45663.81 1149.80 < 0.0001 24.99 

C-DOC 1 73230.81 1843.93 < 0.0001 40.08 

AB 1 5028.81 126.62 < 0.0001 2.75 

AC 1 8079.81 203.45 < 0.0001 4.42 

BC 1 9173.35 230.98 < 0.0001 5.02 

Res. 25 992.86      

Total 31 182700.00    

 
ANOVA in Table 4 show that depth of cut (C) 

factor of 40.08% has the largest contribution to 

material removal rate response. All factors have a p-

value <0.05, indicating that all factors significantly 

affect to material removal rate response. In line with 

Zhujani et al. (2023), which state that in order, depth 

of cut factors, are significantly affecting MRR, 

followed by cutting speed and feed rate factors. The 

characteristics used are larger-the-better to maximize 

the material removal rate response. 

Fig. 7 demonstrating that the depth of cut factor 
has the greatest influence on the material removal 

rate response, consistent with the ANOVA results in 

Table 4 and the studies conducted by Zhujani et al. 

(2023), Viswanathan et al. (2020), and Prasath et al. 

(2018). ANOVA reveals that the depth of cut 

significantly influences MRR when turning on a 

CNC lathe (Prasath et al., 2018). The feeding factor 

and cutting speed are quite influential on MRR 

response, in accordance with the research of Sivam 

et al. (2019), Vasudevan et al. (2019), Mukkoti et al. 

(2020), and Karim et al. (2020). 

 

 

Fig. 7. Main plot effect for material removal rate 

Fig. 7 shows that higher values of cut depth, 

feeding, and cutting speed affect the material 

removal rate response. The relationship between 

cutting parameters and material removal rate (MRR) 

response parameters is linear (Zhujani et al., 2023). 

Thus, parameter A0.6-B140-C4 gives the maximum 

material removal rate response in roughing process 

on lathe. Fig. 8 shows that material removal rate 

increased significantly at 0.6 mm/rev. MRR response 

increases as cutting speed and feeding speed increase 

(Mukkoti et al., 2020). 

 

 

Fig. 8. Interaction plot for material removal rate 

Table 5 displays the results of an ANOVA test on 

cutting power response. It is formed a model with an 

R2 value of 0.9959 and an adjusted R2 value of 

0.9950. The mathematical model is shown in 

Equation 3. The independent variables account for 
99.59% of the variation in the cutting power 

response. The ANOVA results show that all factors 

contribute to the material removal rate response, as 

evidenced by a p-value of less than 0.05. According 

to Gopal et al.'s (2022) research, the feeding factor, 

cutting speed, and depth of cut all have a significant 

impact on the change in material removal rate 

response. The largest contributor to the material 

removal rate response is depth of cut (C) 

(44.60%). The characteristic used is that the target is 

best; to fulfill the maximum machine power limit 

used, it is 80%. 

Table 5. ANOVA for cutting power response 

Source DF Seq. SS F P-value 
Contribu-

tion (%) 

Model 6 283.22 1023.07 < 0.0001  

A-Feed 1 46.43 1006.33 < 0.0001 16.32 

B-CS 1 79.07 1713.75 < 0.0001 27.80 

C-DOC 1 126.84 2749.08 < 0.0001 44.60 

AB 1 5.76 124.87 < 0.0001 2.02 

AC 1 9.28 201.22 < 0.0001 3.26 
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BC 1 15.83 343.17 < 0.0001 5.56 

Res. 25 1.15 1023.07 < 0.0001  

Total 31 284.37    

 

Fig. 9 is a main plot effect, showing that depth of 

cut has the greatest influence on material removal 

rate response, followed by cutting speed and feeding 

factors. It is in accordance with ANOVA results as 

well as the research of Mutyalu et al. (2021) and 

Altin (2023), which states that depth of cut shows a 

major effect on cutting force, and the feed rate and 

speed show less effect compared to DOC. 

 

Fig. 9. Main plot effect for cutting power 

 

Fig. 10. Interaction plot for cutting power 

Fig. 9 shows that high levels of depth of cut, 

cutting speed, and feeding increase the cutting power 

response. Meanwhile, Modi et al. (2021) argue that 

cutting forces (Fz) increase with increasing feed and 

depth of cut. Fig. 10 shows that cutting power value 

increased significantly at 0.6 mm/rev. 

Multi-response Optimization 

The application of TM-RSM hybrid approach has 

been widely used by researchers to model and 

optimize processes (Ismartaya et al., 2023). The 

multi-response optimization process was performed 

using Response Surface Method in Design Expert 13 

software. The parameter settings to obtain the 

optimal multi-response are shown in Table 6. 

Table 6. Parameter set in multiresponses optimization 

Name Goal 
Lower 

Limit 

Upper 

Limit 
Importance 

A:Feed is in range 0.3 0.6 3 

B:CS is in range 50 140 3 

C:DOC is equal to DOC 1 4 3 

CT minimize 13.4 209.6 5 

MRR maximize 15 336 1 

CP is target = 11 0.684 13.33 3 

 

Every 0.5 mm difference in cutting depth is set 

for the optimization process. The objective is to 

gather parameter data that yields the best response 

for each variation in depth of cut. We set the cycle-

time response to shortest value. The cycle time 
response is given an importance weight of 5 because 

it is the top priority that must be optimized 

(consumers expect the roughing process to be done 

in less than 32 seconds). We set the material removal 

rate response at maximum goal value and assign it a 

low importance weight of 1. We set the cutting 

power response at 11 kW, which is 80% of the 

machine's maximum cutting power of 14 kW, and 

adjust the chuck clamping force accordingly. We 

assigned a weight of 3 to the cutting-power response, 

recognizing its medium importance. Table 7 displays 
the results of multi-response optimization. Table 7 

displays three optimization outcomes in the form of 

optimal process parameters and depth of cut changes. 

The desirability value defines the optimal parameter 

(Ismartaya et al., 2023). Each answer Yi(x) assigns a 

value between 0 and 1 to the Desirability Function 

di(Yi). If di(Yi) is 0 or near to 0, the value of Yi(x) is 

absolutely unsatisfactory; if di(Yi) is 1 or close to 1, 

the value of Yi(x) is optimal or acceptable (Modi et 

al., 2021; Ismartaya et al., 2023). We rate the process 

parameters from highest to lowest attractiveness 

value, and then use them in the confirmation test. 

Table 7. Three best parameters with optimum result 

Parameters Response value (pred.) Desirabi-

lity value 

(Rank) 
Feed CS DOC CT MRR CP 

0.51 133.9 4.0 13.40 269.64 11.0 0.975 (1) 

0.57 139.9 3.5 16.52 274.36 11.0 0.968 (2) 
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0.60 140 3.0 18.86 248.65 9.8 0.915 (3) 

Confirmation Test 

We conduct confirmation tests to verify the 

optimization results, determine the actual application 

of selected parameters, and produce the best 

response values. On CNC turning machine, the 

confirmation test applies the process parameters 

from highest to lowest rank. We carry out the 

confirmation test until we apply the best parameters 
and produce an optimal response. The machine 

interface presents load meter value that identifies the 

largest load received by machine and cutting tool 

during the machining process. Table 8 displays the 

results of confirmation test. 

Table 8. Parameter set in multiresponses optimization 

P
a

r
a

m
e
te

r
 r

a
n

k
 

Actual Result Test 

Status 
Trial 

number 
Cycle 

Time 

(sec.) 

Material 

Removal 

Rate 

(cm3/min.) 

Cutting 

Power 

(kW) 

1 - 273.2 11.62 

cutting 

tool is 

damaged 

1st trial 

2 - 279.6 11.90 

cutting 

tool is 

damaged 

1st trial 

3* 20.5 252 10.92 success 1st trial 

3* 20.5 252 11.06 success 2nd trial 

3* 20.7 252 10.64 success 3rd trial 

 
The actual application of rank 1 (A0.510-B133.9-

C4) and rank 2 (A0.571-B139.9-C3.5) process 

parameters on the machine was a failure. The 

process using rank 1 and rank 2 parameters caused 

damage to material and cutting tools (Fig. 11). The 

actual cutting load exceeded the safe cutting tool 

threshold (Table 8), causing the damage. The cutting 

load’s actual values were 5.63% and 8.18% higher 

than the predicted value in Table 7 (11.00 kW). 

Increased depths of cut might increase the risk of 

tool failure because the tool can easily deflect due to 

cutting forces generated (Zahid et al., 2014). In rank 
1 parameter, the actual material removal rate value 

increased by 1.32%, and in rank 2 parameter, it 

increased by 1.91%. This encourages a greater 

cutting load during turning process, resulting in tool 

and material damage. We successfully conducted 

tests with rank 3 (A0.6-B140-C3) process parameters 

(Table 8). We successfully conducted three times 

confirmation tests using feeding parameters of 0.6 

mm/rev, a cutting speed of 140 m/min, and a depth 

of cut of 3 mm. These process parameters resulted in 

actual cycle time responses between 20.5 and 20.7 

sec, a material removal rate of 252 mm3/min, and 

cutting power between 10.64 kW and 11.06 kW. Fig. 

12 shows process results clearly demonstrate the 

successful application of rank 3 parameters on the 

CNC lathe. 

 

     
Fig. 11. Damaged materials and cutting tools in rank 1 and 

rank 2 parameter tests 

 

Fig. 12. Successful result of parameter test rank 3 

Discussion 

Response surface methodology was used to 

investigate and optimize the cutting parameters  

(Ninggar et al., 2023). Figures 13, 14, and 15 display 

surface response graphs resulting from the 

machining process with rank 3 parameters, which 

consist of feeding 0.6 mm/rev., cutting speed 140 

m/min., and depth of cut factor 3 mm (A0.6– B140–

C3). 

Fig. 13 shows a statistical picture of the best spot 

for cycle time response. Parameter A0.6-B140-C3 
produces an actual cycle time response of 20.7 

seconds, or 1.84 seconds longer than the predicted 

value. This result is acceptable, as the expected cycle 

time is less than 32 seconds (35.31% faster). 
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Fig. 13. Response surface for cycle time 

 

Fig. 14. Response surface for material removal rate 

 
Fig. 15. Response surface for cutting power 

Fig. 14 depicts the statistically best location of 

material removal rate in relation to feeding factor, 

cutting speed, and depth of cut. Parameter A0.6-

B140-C3 results in an actual material removal rate 
response of 252 mm3/min, which exceeds the 

expected value of 248.659 mm3/min. Fig. 15 shows 

a statistical picture of where the cutting power 

should be in relation to feeding, cutting speed, and 

depth of cut factors for A0.6–B140–C3. Parameter 

A0.6-B140-C3 resulted in an actual cutting power 

response between 10.64 kW and 11.06 kW. This 

value is 7.63% to 11.88% greater than predicted 

value of 9.8853 kW. Variation in cutting power 

values is due to other factors such as material 

density, cutting tool condition, or other reasons. This 
parameter’s actual cutting power value is still 

acceptable because it only slightly exceeds the 

specified threshold (11 kW). In addition, there is no 

negative impact on the quality of machining results, 

cutting tool condition, or machine condition. 

Fig.16 depicts the overall interaction between 

treatment factor and response in parameter A0.6-

B140-C3. The graph shows that depth of cut factor 

has a greater influence on cycle time, material 

removal rate, and cutting power responses compared 

to another treatment factors. The interaction plot 

shows that material removal rate and cutting power 

values have similar response characteristics to 

process parameter but are inversely proportional to 
cycle time response. We adjusted the factors to 

achieve optimal response results. The models 

developed using statistical and soft computing 

techniques fully satisfy the given machining 

conditions (Abhang & Hameedullah, 2021). 

 

 

Fig. 16. Interaction plot of A0.6-B140-C3 turning 
parameter for all responses 

Conclusions 

This research succeeded in applying CAM Espirit 

TNG and Celos Tech software simulations to 
determine the parameters of the roughing process for 

AMS 5643 material in CNC lathe machining. 

Confirmation tests showed that the use of software 

simulation in experiments was able to produce 

responses that were close to actual machining 

conditions and results. The combination of 

experimental methods with Taguchi, ANOVA, and 

the Response Surface Method resulted in parameters 

with multi-optimal responses. The feeding factor, 

cutting speed, and depth of cut all have a significant 

impact on cycle time, material removal rate, and 
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cutting power responses. The depth of cut factor 

significantly contributes to the overall response. 

When the turning process was set to feeding 0.6 

mm/rev., cutting speed 140 m/min., and depth of cut 

3 mm, the best multi-response was achieved, with a 

maximum cycle time of 20.7 sec., a material removal 

rate of 252 mm3/min., and a maximum cutting power 

of 11.06 kW.  

The confidentiality of the final product form is a 

limitation in this research. Using other types of 

cutting tools may be able to further optimize 
machine performance. Further research can focus on 

the product finishing process, particularly on radius 

and hole contours. 
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