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The early detection of bearing faults is critical for ensuring the reliability and per-
formance of electromechanical systems. Vibration signals provide valuable insights
into fault characteristics. However, effectively extracting fault-related features remains
challenging due to issues like over-decomposition and mode mixing in traditional sig-
nal processing methods such as Empirical Mode Decomposition (EMD). To address
these challenges, this paper proposes an optimized Empirical Mode Decomposition
(OEMD) technique enhanced by cross-correlation (CC) and root mean square (RMS)
statistical analysis. The proposed method introduces three novel correlation-based
stopping criteria to ensure the independence of Intrinsic Mode Functions (IMFs) in
the decomposition result. Furthermore, an RMS-based selection strategy is imple-
mented to identify optimal IMFs that retain fault-related information. The proposed
approach is validated using real-world vibration signals from two datasets: an ex-
perimental bearing vibration dataset and a public dataset from the Case Western
Reserve University (CWRU). The results highlight the feasibility and effectiveness
of the method in accurately and automatically selecting the optimal Intrinsic Mode
Functions (IMFs) containing high-amplitude peaks at defect characteristic frequen-
cies. These findings demonstrate the robustness of the proposed method in both fault
detection and identification.
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1. Introduction

Induction machines (IM) are among the most used machines in the industry,
with over 60% of the industrial electricity was consumed by IMs. They play a
significant role in power generation, manufacturing, transportation, HVAC systems
and electric vehicles. Bearings are one of the critical components in IMs, with
mechanical failures related to bearing faults accounting for 42% of total mechan-
ical faults [1]. Hence, the early detection and analysis of faults are very important
to avoid the total breakdown of IM components. Various condition monitoring
techniques have been used to analyze and detect IMs faults, including chemical
analysis, thermal monitoring, acoustic noise measurement and vibration monitor-
ing. Due to the effectiveness and high accuracy of vibration analysis techniques
and their ability of detecting and distinguishing the most electrical and mechanical
faults, it is the most used in the industry [1].

The vibration signals acquired from IMs are non-stationary and nonlinear.
Therefore, to extract the useful information from these signals, several methods
have been used, such as Empirical Mode Decomposition (EMD) [2], Ensemble
Empirical Mode Decomposition (EEMD) [3], and Local Mean Decomposition
(LMD) [4]. Qin and Zhong [5], presented a mathematical model of Fourier trans-
form (FT), short time Fourier transform (STFT) and wavelet transform (WT) giving
theorical insights and also its application. Nevertheless, the mode mixing is one
of the significant limitations of these methods [6]. Albert and Nii [7], used the
correlation-coefficient between the original signal and the resulted IMFs for modes
selection. However, their proposed approach faced challenges in certain application,
especially in the presence of noise. Su et al. [8], introduced new method by com-
bining EMD with correlation-coefficient and spectral kurtosis for bearing fault de-
tection. A method that combines Empirical Mode Decomposition (EMD) with the
Hausdorff distance between the probability density functions (PDFs) of the noisy
signal and its modes is employed to select the most relevant modes [9]. EMD in-
terval thresholding denoising based on similarity measure to select relevant modes
is presented in [10]. Dragomiretskiy and Zosso [11], developed a new method
called Variational Mode Decomposition (VMD). Its primary challenge is to pre-
determine the optimal number of modes (𝐾). Therefore, many researches have been
introduced a solution for VMD limitation to enhance its efficacity and accuracy.
Yang, Liu and Zhang [12], developed a method which addressed the over- under
decomposition problem in VMD decomposition results. Ni et al. [13], introduced
a fault information-guided variational mode decomposition (FIVMD), for bearing
fault detection. Yahia et al. [14], developed a new method for bearing fault diagno-
sis (OVMD) based on cross-correlation and root mean square (RMS) algorithms
to allows the automatically estimation of the optimal mode number (𝐾) of VMD.

Currently, artificial intelligence (AI) methods are being used for mechani-
cal and electrical faults monitoring (AI- based fault diagnosis), these methods
are being integrated with traditional monitoring techniques. Li et al. [15], pro-
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posed a novel fault diagnosis method, named VGAIC-FDM, which integrates a
variational autoencoder generative adversarial network with an improved convo-
lutional neural network. The results demonstrate that this method enhances fault
diagnosis performance, particularly when addressing unbalanced datasets, thereby
achieving higher accuracy. Zhao Huimin, Gao Yongshun, and Deng Wu [16], de-
veloped a lightweight defect detection model for turbine blades, utilizing Single
Shot Multibox Detection (SSD) based on ShuffleNetv2 and Coordinate Attention
(SN-CA-SSD) within the context of IoT. The results demonstrate that the algorithm
significantly improves accuracy, detection efficiency, and the capability to detect
small targets, achieving a balance between precision and efficiency. Furthermore,
by integrating the model with an interpretable algorithm, the decision-making
process is analyzed through representation visualization, thereby enhancing the
interpretability of the algorithm. Huimin et al. [17], proposed a novel paramet-
ric time redistribution multisynchronous compression transform method, referred
to as GTMSST. The results indicate that GTMSST achieves high time-frequency
energy concentration and demonstrates superior performance under varying noise
levels and operating conditions. Furthermore, it proves to be effective in diagnosing
bearing faults. Ran et al. [18], introduced an innovative automatic K-means cluster-
ing algorithm, named HGA-FACO. They validated the superiority of HGA-FACO
over conventional K-means clustering (KMeans) and other intelligent clustering
approaches, including ACO-KMeans, GA-KMeans (GAK), Particle Swarm Opti-
mization KMeans (PSOK), and ACO-GAK. Huang et al. [19], presented a novel
CSO with dynamic multi-competitions and convergence accelerator, namely DM-
CACSO. Song et al. [20], proposed a dual-time dual-population multi-objective
evolutionary algorithm (DTDP-EAMO) to address the challenges encountered by
multi-objective differential evolution algorithms in solving complex optimization
problems. Shah et al. [21], introduced a combination of EMD and an artificial neu-
ral network (ANN) for bearing fault diagnosis. Shady et al. [22], developed a new
approach for three phase induction motor based on EMD and ANN to decompose
stator signal and pattern classification, the results show that it can effectively detect
outer race fault of bearing. Ali et al. [23], presented an application of EMD and
ANN for automatic bearing fault diagnosis without human intervention. Amarouay-
ache et al. [24], developed an intelligent fault diagnosis approach based on EEMD
and a convolutional neural network (CNN), the results demonstrate the effective-
ness of the deep learning model that identifies and can successfully classify and
locate the faulty bearing vibration signals. Lee, Ahn and Koh [25], proposed a fault
monitoring method based on EEMD, particle swarm optimization (PSO), princi-
pal component analysis (PCA) and Isomap for bearing fault classification. Nishat
Toma, Cheol-Hong and Jong-Myon [26], introduced a method for multiple faults
classification based on EEMD and CNN.

To overcome the limitations of the Empirical Mode Decomposition (EMD)
method, this paper introduces an optimized EMD (OEMD) approach for bearing
fault detection. The proposed method integrates two complementary algorithms.



108 Y. BOUSSELOUB, F. MEDJANI, A. BENMASSOUD, N. BENAMIRA, A. BELHAMRA

The first algorithm utilizes cross-correlation statistical analysis to enhance the
EMD process by incorporating three novel conditions. These conditions ensure
the independence of all Intrinsic Mode Function (IMF) components within their
respective center frequencies, effectively mitigating the issue of mode mixing.

The second algorithm employs root mean square (RMS) histogram analysis
to identify IMFs containing relevant information for vibration signal analysis,
particularly those associated with fault characteristic frequencies. By estimating
the RMS of each mode and determining a corresponding threshold, the algorithm
automatically selects IMFs with RMS values above the threshold.

Experimental studies validate the effectiveness of the proposed approach for
bearing vibration analysis. The method was applied to analyze bearing defects
using two datasets: one collected experimentally and the other sourced from the
Case Western Reserve University (CWRU) Bearing Data Center [27]. In the first
dataset, the vibration signal clearly exhibits pronounced peaks at the characteristic
frequency of the inner race fault ( 𝑓𝑖 = 134.27 Hz) and its harmonics (2 𝑓𝑖 , 4 𝑓𝑖).
Similarly, in the second dataset, the inner race fault is effectively identified at ( 𝑓𝑖 =
159.48 Hz), along with its harmonics (2 𝑓𝑖, 4 𝑓𝑖, 6 𝑓𝑖, 8 𝑓𝑖). The results demonstrate
that the proposed approach successfully eliminates low-energy IMFs and addresses
the limitations of the EMD method, enabling accurate detection and identification
of bearing faults.

This study distinguishes itself from OVMD [14] in several significant ways.
Specifically, it implements cross-correlation and root mean square (RMS) algo-
rithms within the theoretical frameworks of two distinct methodologies: Empirical
Mode Decomposition (EMD) and Variational Mode Decomposition (VMD). More-
over, in real-time analysis, the Optimized Empirical Mode Decomposition (OEMD)
method demonstrates significantly greater efficiency, achieving a 9-to-10-fold im-
provement in optimal mode extraction speed compared to OVMD. Additionally,
OEMD requires less memory than OVMD, further enhancing its practicality for
real-world applications.

This article is organized as follows. In Section 2, the main motivation and
contribution is presented. The proposed methodology is presented Section 3. Then
its experimental validation is presented in Section 4. In Section 5, comparative
analysis with other decomposition methods is presented. Finally, the conclusion is
presented in Section 6.

2. Motivation and contribution

Recent studies have increasingly focused on diagnosing bearing faults using
signal decomposition techniques [14–20, 25, 26]. However, the precise selection of
optimal modes within the decomposition process provides deeper insights into the
nature of the defects. In this work, a novel optimization of the EMD method, based
on cross-correlation (CC) and root mean square (RMS) algorithms, is proposed for
enhanced bearing fault identification. The effectiveness of the method is validated
using an experimental setup for data acquisition through vibratory signals.
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3. Methods

3.1. Empirical mode decomposition method

The EMD technique is based on the premise that every time series is composed
of distinct and elementary sub-modes. The fundamental principle of the approach is
to identify these IMFs in the data, by empirical observation of their distinctive time
intervals, and then decompose the data appropriately. By using the technique of
sifting, it is possible to remove the majority of riding waves, which are oscillations
that do not have any zero crossings between their highest and lowest points (mono-
tonic signals). The EMD algorithm examines the oscillations of the signals at a
highly localized level and decomposes the input signal into sun-components that do
not overlap with each other in a local context. Fig. 1 present the flowchart of EMD.

Fig. 1. EMD diagram
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The signal 𝑦(𝑡) is decomposed into its constituent Intrinsic Mode Functions
(IMFs) that adhere to two certain conditions [2]:

• The IMF exhibits a single extremum between two consecutive zero crossings,
meaning that the difference between the number of local minima and maxima
is at most one.

• The IMF has a mean value equal zero, which is defined by local minima and
maxima.

For a given signal 𝑦(𝑡), the algorithm of EMD is presented as follows [3]:
Step 0: Determine all local extrema and minima of 𝑦(𝑡).
Step 1: Apply cubic spline interpolation to connect all local maxima and min-

ima, thereby obtaining the upper envelope 𝑈 (𝑡) and the lower envelope 𝐿 (𝑡),
respectively.

Step 2: Calculate the mean of the envelopes:

𝑚𝑖 (𝑡) = (𝑈 (𝑡) + 𝐿 (𝑡))/2. (1)

Step 3: Subtract 𝑚𝑖 (𝑡) from the 𝑦(𝑡):

ℎ𝑖 (𝑡) = 𝑦(𝑡) − 𝑚𝑖 (𝑡). (2)

Step 4: If: ℎ𝑖 (𝑡) verify the two certain conditions mentioned above, ℎ𝑖 (𝑡) =

IMF1(𝑡) considered as the first IMF.
Else: 𝑦(𝑡) = ℎ𝑖 (𝑡), repeat the steps 0–4.

Step 5: Separating IMF1(𝑡) from 𝑦(𝑡), we get the following:

𝑟1(𝑡) = 𝑦(𝑡) − IMF1(𝑡). (3)

From this step, 𝑟1(𝑡) will be the new input signal and repeating the sifting
process 𝑛 times and the result is given as follows:

𝑟𝑛 (𝑡) = 𝑟𝑛−1(𝑡) − IMF𝑛 (𝑡). (4)

Step 6: When 𝑟𝑛 (𝑡) is a monotonic function, the decomposition is stopped.
The original signal 𝑦(𝑡) is the sum of the decomposed modes and the residue 𝑟𝑛 (𝑡).

𝑦(𝑡) =
𝑛∑︁
𝑖=1

IMF𝑖 + 𝑟𝑛 (𝑡). (5)

3.1.1. EMD application on simulated signal

The over-decomposition in signal processing techniques refers to resulting
IMFs contain unnecessary or redundant information, increasing noise and compu-
tational complexity.
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In this section, EMD method has been used to decompose a simulated signal
𝑦(𝑡) which is presented in Fig. 2, it is constructed with 3 harmonics 𝑓1 = 2 Hz,
𝑓2 = 24 Hz and 𝑓3 = 288 Hz.

𝑦(𝑡) = 1
4

cos(2𝜋 𝑓1𝑡) +
1
3

cos(2𝜋 𝑓2𝑡) +
1
2

cos(2𝜋 𝑓3𝑡). (6)

Fig. 2. The simulated signal 𝑦(𝑡)

Fig. 3 and Fig. 4, present the decomposition results of the simulated signal 𝑦(𝑡)
using EMD. It can be observed that IMF1, IMF3 and IMF4 have the same center
frequencies as 𝑦(𝑡), with 𝑓1 = 288 Hz, 𝑓3 = 24 Hz and 𝑓4 = 2 Hz, respectively.
In contrast, IMF2 and IMF5 can be considered as noise, as they have smaller
amplitudes compared to the other IMFs and exhibit new center frequencies.

Fig. 3. EMD decomposition result for 𝑦(𝑡) in time domain
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Fig. 4. EMD decomposition result for 𝑦(𝑡) in frequency domain

Therefore, to extract the exact component of 𝑦(𝑡), IMF2 and IMF5 can be
eliminated. The over decomposition problem in the decomposition results occurs
due to the inappropriate stopping criteria in EMD algorithm and its sensitivity to
noise.

In certain applications, where the signal is no-stationary and no-linear in nature
and in the presence of noise, EMD face a significant challenge, especial in real-
time vibration signal analysis. Therefore, it is important to optimize the EMD
algorithm to enable automatic decomposition and optimal selection of the useful
modes for any input signal. To this end, we have developed a novel approach called
the optimized empirical mode decomposition (OEMD) to address this issue.

3.2. The proposed method

Enhancing the Empirical Mode Decomposition (EMD) algorithm through the
integration of novel constraints is essential. The proposed approach comprises two
distinct algorithms. The first algorithm is grounded in cross-correlation conditions,
which serve as new stopping criteria for the EMD algorithm to ensure that the
Intrinsic Mode Functions (IMFs) remain independent within their respective center
frequencies. To automatically select the optimal IMFs for any given input signal
and address the limitations of EMD in the decomposition results, three cross-
correlation-based conditions are introduced.
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The first condition prevents over-decomposition of the residual signal and stops
the decomposition when the residue no longer contains significant information. The
second and third conditions are specifically designed to address the issue of mode
mixing.

These conditions are applied as follows [14]:
• The cross-correlation between the original signal and the residual signal

must be less than 0.09, as determined through experimental evaluation.
• The cross-correlation between IMF𝑖 and its subsequent mode, IMF𝑖+1, must

be below a threshold value of 0.1, as evaluated experimentally.
• Finally, the correlation of each IMF𝑖 with the original signal must be greater

than the correlation of IMF𝑖 with its subsequent IMF𝑖+1.
The implementation steps of this algorithm follow next.

Algorithm 1: EMD optimization based on CC

(1) Initialize k = 2;
(2) Do: K = k + 1;
(3) Initialize𝑈 (𝑡), 𝐿 (𝑡);
(4) for k = 1: K,

if 𝐶𝐶1 > 0.1 stop decomposition;
elif 𝐶𝐶1 > 𝐶𝐶2 stop decomposition;

Update 𝑚𝑖 (𝑡) and ℎ𝑖 (𝑡):
𝑚𝑖 (𝑡) = (𝑈 (𝑡) + 𝐿 (𝑡))/2,
ℎ𝑖 (𝑡) = 𝑦(𝑡) − 𝑚𝑖 (𝑡),
𝑟𝑖 (𝑡) = 𝑟𝑖−1(𝑡) − IMF𝑖 (𝑡),
𝐶𝐶1 = cross correlation (IMF𝑖 , IMF𝑖+1) ,
𝐶𝐶2 = cross correlation (IMF𝑖 , 𝑦) .

(5) repeat steps (2)–(8), until
𝐶𝐶3 = cross correlation (𝑟𝑖 (𝑡), 𝑦(𝑡)) ,
𝐶𝐶3 < 𝜎, with 𝜎 = 0.09.

The objective of the second algorithm is to automate the identification of
Intrinsic Mode Functions (IMFs) that contain valuable information for vibration
signal analysis. This process selects the optimal IMFs without human intervention.
By estimating the Root Mean Square (RMS) of each mode in the frequency domain
and calculating the corresponding threshold, the algorithm enables the selection
of IMFs with RMS values exceeding the threshold. Consequently, the second
algorithm serves as a useful tool for comparing the energy content of different
IMFs, facilitating the elimination of those that do not contribute useful information
for bearing fault detection. The process is summarized as follows [14]:

1. The first algorithm is used to decompose the input signal it to a series of
IMF𝑠(𝑡).
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2. Fast Fourier Transform (FFT) is applied to convert the modes from time
domain to frequency domain.

IMF( 𝑓 ) =
𝑁−1∑︁
𝑛=0

IMF(𝑛)𝑒− 𝑗2𝜋 𝑓 𝑛/𝑁 . (7)

Here, IMF( 𝑓 ) represents the mode in frequency domain, 𝑓 is the frequency
index, 𝑛 is the time index and 𝑗 is the imaginary unit.

3. The RMS is calculated for each mode (IMF( 𝑓 )).

IMF( 𝑓 )RMS =

√√√
1
𝑛

𝑖=𝑚∑︁
𝑖=1

[IMF(𝑖)]2, (8)

where IMF(𝑖) is the amount of vibration signals at the sampling frequency 𝑖,
and 𝑚 is the total number of sampling frequency used.

4. The expected RMS percentage for each mode is estimated .
5. The threshold (𝜀) is determined.
6. Modes with RMS values above the threshold are selected.
7. The signal 𝑦( 𝑓 ) is reconstructed by summing the selected modes(IMF( 𝑓 )).

𝑦( 𝑓 ) =
𝑖=𝐾∑︁
𝑖=1

IMF𝑖 ( 𝑓 ). (9)

The reconstructed spectrum 𝑦( 𝑓 ) allows for the identification of high-ampli-
tude peaks at characteristic fault frequencies, which correspond to defect types. The
peak corresponds to the maximum amplitude in the signal and can be expressed as:

Peak = max |𝑦( 𝑓 ) | . (10)

The algorithm can be presented as follows:

Algorithm 2: Mode’s selection based on RMS

n: the length of modes.
K: The number of modes given by the first algorithm
(1) for i = 1: K,

IMFrms𝑖 =

√︂
IMF𝑖 [0]2 + IMF𝑖 [1]2 + IMF𝑖 [2]2 + . . . + IMF𝑖 [𝑛]2

𝑛
. (11)

(2) Find the largest value among rms values;

rmsmax = max
��IMFrms𝑖

�� . (12)

(3) Calculate the expected percentage of IMFs;

IMFrms𝑖 (%) =
IMFrms𝑖 × 100

rmsmax
. (13)
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(4) Calculate the average;

𝛼 =

𝐾∑︁
𝑖=1

IMFrms𝑖 (%)
𝐾

. (14)

(5) Calculate the threshold;
𝜀 = 𝛼 × 0.8. (15)

(6) if IMFrms𝑖 (%) > 𝜀, IMF𝑖 is a selected mode;
else, drop off all the remained IMFs.

The flowchart of the proposed approach is presented in Fig. 5.

Fig. 5. OEMD flowchart
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3.2.1. OEMD application on simulated signal

To verify the validity of the proposed approach, we have analyzed the same
simulated signal 𝑦(𝑡) with OEMD and compared with EMD decomposition results.
As presented in Eq. (6), the signal contains three sub-components (3 harmonics).
Table 1 present the calculated RMS of each IMFs using the proposed method.

Table 1. The estimated RMS for each mode using OEMD algorithm

Modes IMF1 IMF2 IMF3 IMF4 IMF5

RMS [m/s2] 1.119 0.403 0.550 0.584 0.129

RMS (%) 100 36.056 49.195 52.202 11.595

Based on the RMS histogram in Fig. 6, the energies of IMF3, IMF4 and IMF5
are above the energy threshold level of 39.84%, indicating that the modes number 2
and 5 should be eliminated. Indeed, form Fig. 7, it can be observed that OEMD
extracts the exact harmonics in the simulated signal ( 𝑓1 = 2 Hz, 𝑓2 = 24 Hz,
𝑓3 = 288 Hz).

Fig. 6. The RMS histogram of each mode with threshold 𝜀 = 39.84%

Fig. 7. The selected modes using OEMD for the simulated signal 𝑦(𝑡)
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4. Experimental study

The proposed approach was applied to analyze vibration signal defects from
two datasets. The first dataset, obtained experimentally from the Electromechanical
System Laboratory (LSEM), involved measurements under varying conditions
using the setup shown in Fig. 8 for bearing vibration signal acquisition. The second
dataset is sourced from the Case Western Reserve University (CWRU) Bearing
Data Center [27], which serves as a widely recognized reference for testing new
diagnostic algorithms.

Fig. 8. The experimental test strip

4.1. Bearing vibration signal acquisition

The test rig for vibration signal acquisition is presented in Fig. 8. The vibration
signals are generated by a three-phase induction motor (0.37 kW) through an elastic
clow coupling, a PC, an accelerometer, a balanced flywheel (load), a bearing unit
contain bearing type 6004-2RSH SKF, USB measuring device, and a control unit.
The faulty vibration signal (inner race fault) is measured at 8 kHz, for two rotational
speeds of 25 and 33 rps.

The characteristic frequencies of bearing faults can be represented as:
• Inner race fault frequency

𝑓𝑖𝑟 =
𝑛 × 𝑓𝑟

2

(
1 + 𝑑

𝐷
cos 𝜑

)
. (16)

• Outer race fault frequency

𝑓𝑜𝑟 =
𝑛 × 𝑓𝑟

2

(
1 − 𝑑

𝐷
cos 𝜑

)
. (17)
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• Roling element fault frequency

𝑓𝑟𝑒 =
𝐷 × 𝑓𝑟

2𝑑

(
1 −

[
𝑑

𝐷
cos 𝜑

]2
)
, (18)

where 𝑓𝑟 is the shaft speed, 𝑛 is the number of rolling elements, 𝜑 is the angle of the
load from the radial plane, 𝐷 is bearing pitch diameter and 𝑑 is the rolling element
diameter. The characteristics bearing fault frequencies values are established in
Table 2.

Table 2. Characteristics bearing fault frequencies
Rotational speed 25 rps 33 rps

𝑓𝑖𝑟 134.27 Hz 179.01 Hz
𝑓𝑜𝑟 90.73 Hz 120.96 Hz
𝑓𝑟𝑒 62.16 Hz 82.88 Hz

4.1.1. Results and discussions

The measured vibration signal of inner race fault is presented in Fig. 9, and its
decomposition using algorithm 1 (EMD optimization based on CC) is presented in
Figs. 10 and 11.

Fig. 9. The measured inner race vibration signal

From Fig. 10 and Fig. 11 the occurrence of over-decomposition is clearly
observable. Notably, IMF7, IMF8, and IMF9 display substantially lower amplitude
levels in comparison to the other modes. Since these modes lack meaningful
information, they are identified as noise and should be discarded. As a result, it is
concluded that only the first six modes are relevant for analysis. This conclusion
is further validated by the second component of the proposed approach (the RMS-
based algorithm), which automatically selects the useful IMFs, as demonstrated in
Fig. 12.

Based on Table 3 and the RMS histogram in Fig. 12, it can be concluded that
the last three modes should be eliminated, as their RMS percentages fall below the
threshold of 𝜀 = 35.90%.
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Fig. 10. The decomposition results of the first algorithm in time domain IMF(𝑡)

Table 3. The estimated RMS for each mode using OEMD algorithm

Modes IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9

RMS [m/s2] 3.808 2.703 2.337 1.965 1.804 1.447 0.625 0.393 0.297

RMS (%) 100 71.00 61.37 51.61 47.37 38.00 16.43 10.33 7.80

The reconstructed spectrum in Fig. 13 reveals a prominent peak at a frequency
of 136 Hz, which closely aligns with the characteristic frequency of the inner
race fault ( 𝑓𝑖 = 134.27 Hz). Additionally, its harmonics (2 𝑓𝑖, 4 𝑓𝑖) are clearly
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Fig. 11. The decomposition results of the first algorithm in frequency domain IMF( 𝑓 )

identified. These results confirm the feasibility and effectiveness of the proposed
method in accurately identifying inner race faults. The automatic selection of modes
containing valuable fault-related information for bearing inner race fault detection
is thus demonstrated.

To validate the effectiveness and robustness of the proposed method in selecting
useful modes from bearing vibration signals, it is applied to analyze signals from
the CWRU database. The results are presented in the following section.
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Fig. 12. The RMS representation of each mode with threshold = 35.90%

Fig. 13. The selected modes using OEMD for inner race vibration signal

4.2. CWRU database analysis

In this study, we utilized vibration data from the CWRU database. The ex-
perimental setup consists of an electric motor and two bearings [27]. The key
characteristics of the vibration signals analyzed in both healthy and faulty states
for the two cases are summarized in Tables 4 and 5.

Table 4. Vibration signal characteristic

Bearing type Operating speed Operating load Sampling frequency
SKF 6205-2RS JEM 1772 rpm 1491.4 Nm/s 48000 Hz

Table 5. Fault characteristics

Fault types Fault diameter Coefficient 𝑓𝑖

BPFI 0.177 mm 5.415 159.48 Hz

The characteristic frequency of inner race fault can be represented as:

𝑓𝑖 = BPFI × Shaft speed(RPS) = 159.48 Hz. (19)
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4.2.1. Results and discussions

The healthy bearing vibration signal (CWRU) is presented in Fig. 14, and its
decomposition using Algorithm 1 (EMD optimization based on CC) is presented
in Figs. 15 and 16.

Fig. 14. Healthy state of vibration signal

Fig. 15. The decomposition results of the healthy bearing vibration (CWRU) using the proposed
approach (Algorithm 1) in time domain
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Fig. 16. The decomposition results of the healthy bearing vibration (CWRU) using the proposed
approach (Algorithm 1) in frequency domain

From Fig. 15 and Fig. 16 the presence of over-decomposition is evident.
Specifically, IMF6, IMF7, and IMF8 exhibit significantly smaller amplitude levels
compared to the other modes. As these modes do not contain valuable information,
they are classified as noise and should be eliminated. Consequently, it is determined
that only the first five modes should be considered. This conclusion is further
validated by the second component of the proposed approach (the RMS-based
algorithm), which automatically selects the useful IMFs, as demonstrated in Fig. 17.

Based on the data presented in Table 6 and the RMS histogram in Fig. 17,
it can be concluded that the last three modes should be excluded, as their RMS

Table 6. The estimated RMS for each mode using OEMD algorithm

Modes IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

RMS [m/s2] 0.652 0.745 0.490 0.477 0.446 0.300 0.141 0.071

RMS (%) 87.51 100 65.74 63.97 59.83 40.36 18.99 9.58
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Fig. 17. The RMS histogram for inner race vibration signal with threshold 𝜀 = 44.60%

percentages fall below the threshold of 𝜀 = 44.60%. Furthermore, Fig. 18 illustrates
the effectiveness of the proposed method in automatically selecting modes that
contain valuable information.

Fig. 18. The selected modes using OEMD for healthy state vibration signal (CWRU)

In the faulty state of the bearing, the vibration signal for the inner race fault is
illustrated in Fig. 19. The decomposition results using the proposed approach (the
first algorithm) are shown in Figs. 20 and 21.

Fig. 19. Faulty state of vibration signal

In the decomposition of the faulty state, shown in Figs. 20 and 21, over-
decomposition occurs as the three last modes exhibit significantly lower amplitude
levels compared to IMF1, IMF2, IMF3, and IMF4. These modes are thus regarded
as noise and should be excluded, as they do not provide meaningful information.
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Fig. 20. The decomposition results of the healthy bearing vibration (CWRU) using the proposed
approach (Algorithm 1) in time domain

Therefore, it is concluded that only the first four modes should be considered in this
case. This conclusion is corroborated by the second component of the proposed
approach (the RMS algorithm), which facilitates the automatic selection of useful
Intrinsic Mode Functions (IMFs), as detailed in Table 7 and Fig. 22.

Table 7. The estimated RMS for each mode using OEMD algorithm

Modes IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

RMS [m/s2] 1.883 1.616 1.125 0.821 0.565 0.333 0.171

RMS (%) 100 85.82 59.74 43.63 30.01 17.69 9.10

Fig. 23 demonstrates the automatic selection of modes containing valuable
information. Additionally, the characteristic frequency of the inner race fault,
𝑓 (𝑖) = 159.48 Hz along with its harmonics (2 𝑓𝑖, 4 𝑓𝑖, 6 𝑓𝑖, 8 𝑓𝑖), has been accu-
rately identified, thereby validating the feasibility and effectiveness of the proposed
method.

The results show that the proposed method effectively and autonomously se-
lects the optimal modes containing relevant information, successfully reducing the
impact of noise. Moreover, it accurately identifies the characteristic frequency and
its harmonics associated with the faulty condition, specifically the inner race defect.
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Fig. 21. The decomposition results of the faulty bearing vibration (CWRU) using the proposed
approach (Algorithm 1) in frequency domain

Fig. 22. The RMS histogram for inner race vibration signal with threshold 𝜀 = 39.54%

Fig. 23. The selected modes using OEMD for inner race vibration signal (CWRU)
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5. Comparative analysis with other decomposition methods

To assess the efficacy of the proposed method for analyzing bearing vibration
signals, this section presents a comparison of both the maximum center frequency
observation (MCFO) and the center frequency statistical analysis (CFSA) methods.

The MCFO methodology is based on analyzing the distribution of the high-
est center frequencies associated with the modes. Within the framework of the
variational mode decomposition (VMD) technique, it is observed that the center
frequency of each intrinsic mode function (IMF) increases progressively with the
mode number. The threshold at which the maximum center frequencies stabilize
serves as an indicator for determining the optimal mode count [29].

The primary concept underlying the CFSA method involves calculating the
frequencies of modes that exceed the mean frequency value. This calculated figure
is then regarded as the optimal mode count. The procedural steps of the algorithm
are outlined as follows [29]:

Algorithm 3: CFSA algorithm

1. Initialize the VMD parameters (𝑘, 𝛼).
2. Extract the intrinsic mode functions (IMFs) from the input signal using

VMD.
3. Estimate the center frequency for each IMF.
4. Create a histogram of the center frequencies.
5. Calculate the mean of the center frequencies and count the number (𝑁) of

frequencies that exceed the average.
6. Repeat steps 1–5 with (𝑘 = 𝑘 + 1) until the count of exceeding frequencies

no longer increases; this will indicate the cessation of decomposition, at
which point the optimal IMF value is 𝑁 .

The CFSA and MCFA methods are applied to both states of vibration signals
(healthy and faulty states) and the results are presented in Fig. 24 and Fig. 25,
respectively.

Fig. 24. Center frequency histogram for healthy and faulty states
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Fig. 25. MCFA trend of bearing vibration signal in healthy and faulty states

Fig. 24 illustrates that there are five dominant center frequencies exceeding
the average count (𝑛 = 3.66) in the healthy state, while four dominant center
frequencies surpass the average count (𝑛 = 4.88) in the faulty state. Consequently,
based on the CFSA method, the optimal mode count is determined to be five in the
healthy state and four in the faulty state.

The outcomes from the implementation of the MCFO method are depicted in
Fig. 25. In the healthy state, it is noted that the center frequencies of the modes
stabilize at 𝐾 = 3, suggesting that the optimal number of intrinsic mode functions
(IMFs) is 3. Additionally, in the faulty state the center frequencies of the modes
stabilize at 𝐾 = 6, indicating that the optimal number of IMFs is 6.

Table 8 summarizes the results of determining the optimal mode count in both
healthy and faulty states of the vibration signal.

Table 8. The optimal mode number for each method

The method Optimal number
in healthy state

Optimal number
in faulty state

MCFO 3 6
CFSA 5 4
OEMD 5 4

6. Conclusions

In this paper, we introduce a novel method for bearing fault detection, based
on cross-correlation (CC) and root mean square (RMS) algorithms, developed to
overcome EMD limitations in the decomposition results. The proposed approach
is applied to real-world vibration signals, obtained from an experimental study
of bearing vibration dataset and a public online dataset from the Case Western
Reverse University (CWRU) to assess its feasibility and the effectiveness. The re-
sults demonstrate that the proposed method can automatically and accurately select
the optimal modes containing high-amplitude peaks at the defects characteristic
frequencies, thereby enabling both the detection and the identification of faults.
In the first case, the vibration signal exhibits very high amplitude peaks at the
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characteristic frequency of the inner race fault ( 𝑓𝑖 = 134.27 Hz) and its harmonics
(2 𝑓𝑖, 4 𝑓𝑖). In the second case, the inner race fault at 𝑓𝑖 = 159.48 Hz along with its
harmonics (2 𝑓𝑖, 4 𝑓𝑖, 6 𝑓𝑖, 8 𝑓𝑖), is also clearly determined.

However, the online application of the proposed approach for bearing faults
diagnosis is limited by the computer’s available memory, preventing continuous
analysis of long time series. Nevertheless, future work will demonstrate the potential
of analyze and interpret large, complex time series and extend the application of
this method to diagnosing various types of faults.
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