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Obstructive sleep apnea hypopnea syndrome (OSAHS) is a prevalent and detrimental chronic condition.
The conventional diagnostic approach for OSAHS is intricate and costly. Snoring is one of the most typical
and easily obtained symptom of OSAHS patients. In this study, a series of acoustic features are extracted
from snoring sounds. A fused model that integrates a deep neural network, K-nearest neighbors (KNN), and
a random under sampling boost algorithm is proposed to classify snoring sounds of simple snorers (SSSS),
simple snoring sounds of OSAHS patients (SSSP), and apnea-hypopnea snoring sounds of OSAHS patients
(APSP). The ReliefF algorithm is employed to select features with high relevance in each classification model.
A hard voting strategy is implemented to obtain an optimal fused model. Results show that the proposed fused
model achieves commendable performance with an accuracy rate of 85.76 %. It demonstrates the effectiveness
and validity of assisting in diagnosing OSAHS patients based on the analysis of snoring sounds.
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1. Introduction

Obstructive sleep apnea hypopnea syndrome (OS-
AHS) is a chronic sleep-related disease with the high
incidence and great harm that is characterized by par-
tial or complete collapse of the upper airway during
sleep (Eckert et al., 2007; Friedman et al., 2004;
Izci, Douglas, 2012; Osman et al., 2018). There are
many contributors to the collapse, including an ineffec-
tive pharyngeal dilator muscle function during sleep,
a low threshold for arousal to airway narrowing during
sleep, and unstable control of breathing, which may
be caused by a narrow, crowded, or collapsible up-
per airway of OSAHS patients (Osman et al., 2018).
OSAHS not only adversely influences the sleep qual-

ity of patients, but also leads to hypertension, coro-
nary heart disease, diabetes, cerebrovascular disease,
other complications, and even causes sudden death at
night (Redline et al., 2010; White, 2005). The re-
cent epidemiological survey has found that the preva-
lence of OSAHS among the global population ranged
from 9 % to 38 % (Caron et al., 2017). The elderly
are the high incidence group that the prevalence rate
of OSAHS is as high as 90 % for older males and 78 %
for older females (Castillo-Escario et al., 2019).
Polysomnography (PSG) is the gold standard for di-
agnosing OSAHS by detecting respiratory disturbance
events that mainly include apnea and hypopnea events
(Minaritzoglou et al., 2008). The apnea-hypopnea-
index (AHI) is obtained by PSG to measure the aver-
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age number of respiratory disturbance events per hour
during sleep. According to the American Academy of
Sleep Medicine (AASM), subjects can be diagnosed as
a simple snorer, mild, moderate, and severe OSAHS
patient based on AHI ≤ 5, 5 < AHI ≤ 15, 15 < AHI ≤ 30,
and AHI > 30, respectively (Berry et al., 2012).
The PSG requires more than 15 sensors connected to
the patients that needs to be operated and checked by
professional doctors in the hospital to monitor multiple
biological signals of the test subject during sleep. The
expensive cost, inconvenient device, and complex pro-
cess limit the wide use of PSG that cause OSAHS to
be a serious disease with a low diagnostic rate (Got-
tlieb, Punjabi, 2020; Osman et al., 2018). The high
prevalence and low diagnostic rate make the OSAHS
be a public health problem that greatly influences the
life quality of patients. With the increasing concern
about sleep problems, researchers have been focused
on studying various physiological signals during sleep-
ing to assist in monitoring apnea and hypopnea events.
The AASM indicates that one or more physiological
signals, including oxygen, nasal airflow, electrocardio-
gram, electroencephalography, and snoring sound can
be applied to detect apnea and hypopnea events to
diagnose OSAHS (Berry et al., 2012).
Snoring is the most prominent symptom of OSAHS

patients that caused by the vibration of the upper
airway (Gislason, Benediktsdottir, 1995; Pev-
ernagie et al., 2010; Sowho et al., 2020; Ulualp,
2010). The acoustic features of snoring sounds can re-
flect the specific structure of the upper airway (Lu-
garesi et al., 1988). Studies have indicated that there
are obviously anatomical and non-anatomical struc-
tural differences of the upper airway between simple
snorers and OSAHS patients (Azarbarzin, Mous-
savi, 2013; Fiz et al., 1996;Markandeya et al., 2018;
Herzog et al., 2008). Early studies have indicated that
palatal snoring mainly occurs in simple snorers with-
out any obstruction of the upper airways, while non-
palatal snoring can be an indicator for OSAHS pa-
tients (Qian et al., 2021). Recent work by Sun et al.
(2023) has revealed that snoring sounds of OSAHS
patients exhibit higher formant frequencies. Perez-
Padilla et al. (1993) found that there was different
energy distribution around 800 Hz of snoring sounds
between simple snoring and those of OSAHS patients.
Based on this condition, studies have been focused
on identifying simple snorers and OSAHS patients.
Solà-Soler et al. (2007) classified simple snorers and
OSAHS patients based on AHI = 10, which yielded
93 % precision. Sun et al. (2023) applied two Gaus-
sian mixture models to explore the acoustic charac-
teristics of snoring sounds throughout the whole night
to classify simple snorers and OSAHS patients with
90.0 % accuracy. Ding et al. (2024) applied a fused
model obtained from different domain to classify snor-
ing sounds during the whole night of simple snorers

and OSAHS patients, which could exactly identify
OSAHS patients. Furthermore, researchers (Lee, El-
lis, 2012; Hou et al., 2019; Alshaer et al., 2019;
Cheng et al., 2022; Ding et al., 2023) have explored
the characteristics of snoring sounds obtained by differ-
ent sleep stages during the whole sleep to diagnose the
severity of OSAHS patients. Lee et al. (2012) showed
that there was different energy distribution of snor-
ing sounds during apnea-hypopnea events and simple
sleeping. Ding et al. (2023) proposed VGG19-LSTM
model to classify snoring sounds of simple snores and
OSAHS patients with 99.31 % accuracy and 99.13 %
sensitivity. A long short-term memory (LSTM) neu-
ral network was proposed to classify three-category
snoring sounds related to the severity of OSAHS with
81.6 % accuracy (Cheng et al., 2022). These studies
have demonstrated the effectiveness and convenience of
diagnosing OSAHS patients based on analysis of snor-
ing sound.
The aforementioned classification results of snor-

ing sounds have clearly demonstrated that the struc-
ture of the upper airway of OSAHS patients is obvi-
ously different from that of simple snorer. The abnor-
mal structure could cause the occurrence of apnea and
hypopnea respiratory events, as well as abnormal snor-
ing sounds, which provided a strong basis for the diag-
nosis of OSAHS based on snoring sounds. Few studies
(Cheng et al., 2022; Song et al., 2023; Sun et al.,
2023) focused on whether the abnormal upper airway
may influence the normal sleep process of OSAHS pa-
tients. Since the characteristic of snoring sounds could
reflect the structure of the upper airway, intuitively
classifying snoring sounds of simple snorers (SSSS),
apnea-hypopnea snoring sounds of OSAHS patients
(APSP), and simple snoring sounds of OSAHS patients
(SSSP) could explore the characteristics of the upper
airway in the different stages of sleep for simple snor-
ers and OSAHS patients, respectively. The classifica-
tion results could indicate that whether the abnormal
upper airway can be reflected by snoring sounds and
whether the abnormal upper airway influence the nor-
mal sleep for OSAHS patients. The existing studies
about snoring sound classification are based on a sin-
gle classification model, which had limited classifica-
tion accuracy and robustness. On this condition, the
snoring sound classification tasks based on a fusion
strategy might help to diagnose OSAHS patients more
accurately.
In this study, a fused model is proposed to classify

three kinds of snoring sounds, including SSSS, APSP,
and SSSP. A series of acoustic features were extracted
from snoring sounds. Three classifiers were first used to
classify these three kinds of snoring sounds based on
extracted acoustic features. Then a hard voting model
fusion strategy was applied to integrate these basic
models to obtain a model with relatively better classi-
fication performance and higher robustness.
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2. Material and methods

2.1. Dataset

The 46 subjects selected from the PSG-Audio
dataset are applied to validate the proposed method,
including 8 simple snorers and 38 OASHS patients
with different severities (Korompili et al., 2021). All
snoring sounds are collected clinically. When a sub-
ject undergoes the PSG (Alice 6), an ultra-linear mea-
surement condenser microphone (Berringer ECM800)
is placed approximately 1 m above the subject’s bed to
record snoring sounds during the whole night. Sound
signals are sampled at 48 kHz with 24-bit resolu-
tion and saved as WAV. All recorded signals are en-
hanced and segmented by the noise reduction algo-
rithm (Wang et al., 2017). These enhanced snoring
segments are labeled by ear-nose-throat (ENT) experts
as SSSS, SSSP, and APSP. In the experiment, there
are 73 373 effective snoring segments extracted from
all 46 subjects, including 12 967 SSSS, 44 748 simple
SSSP, and 15 658 APSP. These snoring sounds are di-
vided into a training set and a validation set by the
ratio of 4:1.

2.2. Proposed fused model

In the work, a fused model is proposed to classify
SSSS, SSSP, and ASSP to explore structures of the
upper airway of simple snorers and OSAHS patients
during sleeping. The overall structure of the proposed
model is shown in Fig. 1. A series of acoustic features
are firstly extracted to express snoring sounds. Three
basic classifiers, including the deep neural network –
DNN (Janiesch et al., 2021), K-nearest neighbors
– KNN (Zhang et al., 2017), and random under sam-
pling boost algorithm – RUSBoost (Seiffert et al.,
2010) are applied to classify these three types of snor-
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Fig. 1. Overall structure of the proposed system.

ing sounds. To adequately integrate these basic clas-
sifiers from different domains, a model fusion strategy
based on hard voting is used to fuse these classifiers.
That is to say, the final classification results of snoring
sounds were obtained by averaging the probability of
these three basic models.
The three basic classifiers used in this work are

DNN, KNN, RUSBoost. KNN is one of the most ma-
ture and simplest machine learning classification al-
gorithms with relatively high performance in differ-
ent domains. The basic idea of KNN is to calcu-
late the distance between the test sample and all
training samples to obtain its nearest neighbors and
then conduct KNN classification. Choosing the proper
K-value is an important part for training the KNN
model. The RUSBoost algorithm is an effective en-
semble method for the classification task with the un-
balanced sample distribution. RUSBoost incorporates
random under-sampling technology to remove sam-
ples from the majority class at each boosting iter-
ation of the Adaboost.M2 algorithm. Based on this
strategy, RUSBoost could adequately apply samples
of the majority class and solve the problem of un-
balanced sample distribution. The parameters that
RUSBoost needs to be trained are mainly concentrated
on Adaboost.M2, including a base estimator, the learn-
ing rate, n-estimators, and so on. DNN is a useful tech-
nology for the classification task with large samples. In
this work, a DNN structure with two hidden layers is
constructed to classify snoring sounds. There are 100
neurons in the first hidden layer and 5 neurons in the
second hidden layer. The loss function and the acti-
vation function used in the DNN are the logistic cost
regression function and the sigmoid function, respec-
tively. The optimizer used for training is Adam. The
batch size and the learning rate are set as 64 and 0.05,
respectively.
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2.3. Feature extraction

In the work, a series of acoustic features from the
time and frequency domains are extracted to express
snoring sounds. There are 16 features with 45 di-
mensions, including the Mel-frequency cepstral coeffi-
cient (MFCC), the linear prediction coefficient (LPC),
800 Hz power ratio (PR800), the crest factor (CF), the
fundamental frequency (F0), the pitch, formants, and
a series of spectrum related features. Since the gen-
eration process of snoring sounds has a significant ef-
fect on its high frequency band and a smaller effect
on the low frequency band, all snoring sounds are con-
ducted pre-emphasizing that aims to compensate for
the loss of high frequency components before the fea-
ture extraction. These pre-emphasized snoring sounds
are framed by a hamming window with length of 20 ms
and 50 % overlap. All features are firstly extracted
for each frame. Statistic functions, including mean,
minimum, maximum, and variance, are calculated by
frames for each snoring segment to describe the feature
distribution for each snoring segment.

2.3.1. Mel-frequency cepstral coefficient

The extraction of MFCC can be divided into five
parts (Zheng et al., 2001). Firstly, preprocessing, in-
cluding pre-emphasis, and framing aims to compen-
sate for the loss of high-value components. Then, per-
forming fast Fourier transform on each frame signal
to transform the time-domain signal into a frequency-
domain signal. The spectral energy of each frame is
calculated. Finally, the Mel filter is applied to trans-
form frequency-domain signal into Mel-frequency scale
to describe the human ear perception of frequency. The
Mel-frequency (fmel) could be obtained from the real
liner frequency (freal) by the equation:

fmel = 2595 ⋅ log (1 +
fmel

700
). (1)

In this study, the average of all frames of an audio
segment are taken as features. MFCCs with dimension
of 13 were extracted.

2.3.2. Linear prediction coefficient

The basic concept of a linear prediction is that the
current sampling value of audio can be approximately
replaced by a linear combination of several past sam-
pling values (Sun et al., 2022). A unique set of predic-
tion coefficients can be obtained by approximating the
minimum mean square error of the actual audio sam-
pling value and the linear prediction sampling value.
LPC have the advantages of fast calculation and ef-
fective prediction. The 12-element LPC parameters of
each sound segment were extracted, and the average
value for each frame of every segment is calculated as
the feature vector.

2.3.3. Power ratio

The PR is the ratio of power below and above
a certain frequency f0. It can roughly reflect the power
distribution of audio signals divided by a certain fre-
quency (Sun et al., 2023). The PR can be expressed by:

PRf0 = log

⎛
⎜⎜⎜⎜⎜
⎝

f0

∑
fi=0

(Yi)2

fC

∑
fi=f0

(Yi)2

⎞
⎟⎟⎟⎟⎟
⎠

, (2)

where fC and Y are the cutoff frequency and spectrum
of the audio signal, respectively. In this work, f0 is set
as 800 Hz. Four statistic features, including PRmean,
PRmin, PRmax, PRvar are calculated to express PR.

2.3.4. Fundamental frequency

The definition of F0 is the lowest oscillation fre-
quency in a free oscillation system or the lowest
frequency in a composite wave. It can reflect the open-
ing and closing time of the vocal cords. In this work,
the normalized autocorrelation function is applied to
calculate F0 values for each frame audio signal. The
average of all frames of an audio segment are taken as
features.

2.3.5. Pitch

The tone is related to the fundamental frequency of
the sound, reflecting the information of pitch. The av-
erage, minimum, maximum, and variance of all frames
of an audio segment are taken as features, which are ex-
pressed as Pitchmean, Pitchmin, Pitchmax, and Pitchvar,
respectively.

2.3.6. Crest factor

The CF is defined as the ratio of the waveform peak
to the effective value (Qian et al., 2016):

CF = Vm

Ve
, (3)

where Vm is the maximum absolute value of an audio
signal amplitude, and Ve is the root mean square value
of the audio signal amplitude absolute value. It reflects
the amplitude of changes in the audio signal in the
time domain. The mean value of the peak factor of
each frame of the signal is taken as a feature.

2.3.7. Spectrum related features

Spectrum related features are widely used in the
analysis of snoring sounds. It can reflect impor-
tant details of snoring sounds with different types.
In this work, spectral cut-off frequency, spectral skew-
ness, spectral slope, spectral variance, spectral kurto-
sis, spectral entropy, and spectral flux are extracted for
further analysis (Sun et al., 2023).
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Spectral skewness is a measure of the direction and
degree of skewness in the distribution of statistical
data, which is a numerical characteristic of the degree
of asymmetry in the distribution of statistical data. It
is defined as the third-order standard moment of the
sample, and the calculation formula is as follows:

Skewness(X) = E [(X − µ
σ
)
3

] = k3
σ3
= k3

k
3/2
2

, (4)

where k2 and k3 represent the second- and third-order
central moment, respectively.
Spectral slope is a measure of the speed at which

the spectrum of an audio signal tilts towards high fre-
quencies, typically calculated using linear regression.
Spectral variance is used to measure the degree of dis-
persion of a sound signal. This can be expressed as
follows:

Var = 1

n

n

∑
i=1

(xi − x)2. (5)

For spectral variance, which can reflect the inter-
ference of noise on data, this paper uses a noise power
function of the carrier frequency, and the spectral vari-
ance of the signal can be obtained by the Fourier trans-
form of its autocorrelation function:

V (Ω) = 1

2π

∞

∫
−∞

ei2πΩτ ⟨y(t)y(t + τ)⟩dτ. (6)

Spectral kurtosis can be used to measure the steep-
ness of the probability distribution of random vari-
ables. Take the average of the obtained results to ob-
tain the average kurtosis in this work. In this work,
the sample entropy is calculated for the entire effec-
tive snoring signal. Spectral traffic records the sum
of squares of the normalized amplitude differences be-
tween two frames, which can describe the changes in
adjacent frames. Its definition is

Fli,i−1 =
Wl

∑
k=1

(Ei(k) −Ei−1(k))2 , (7)

Ei(k) =
xi(k)

Wl

∑
n=1

xi(n)
, (8)

where Ei(k) is the normalized amplitude, and Wl is
the sampling window length.

2.3.8. Formants

Formants are areas in the spectrum of audio sig-
nals where energy is relatively concentrated. It reflects
the physical characteristics of the vocal tract, namely
the degree of contraction of the throat. The first three
formant frequencies of snoring sounds are extracted in
this work, including the first formant (F1), the second

formant (F2), and the third formant (F3). The aver-
age value of all frames is applied to express a piece of
snoring sound.

2.4. Feature selection

Studies have indicated that extracted features not
only determine the performance of a classification
model, but also determine the complexity of the model
and influence its computation cost (Kursa, Rud-
nicki, 2010; Li et al., 2017). Selecting effective fea-
tures with high discriminability and low complexity is
an important step for machine learning. It can reduce
the dimension of features and the complexity of the
proposed classification model. In this work, the Reli-
efF algorithm is applied to select features by calculat-
ing the contribution of each feature to the classification
task (Wu et al., 2020).
The idea of ReliefF algorithm can be simply ex-

pressed as: if a feature has the same category to its
nearest neighbor (with similar numerical values), the
feature weight will be reduced; if the feature is different
from its nearest neighbor category, increase its weight.
The specific calculation method for the weight W is as
follows. Firstly, setting the weights of all features W
to 0. When calculating the weight of the j-th fea-
ture, an observation value xo is randomly selected from
the feature and the k-observation values are found
in the dataset of each category of the feature that are
closest in value to the observation value. Updating the
weight of the feature parameter by the relationship
between each nearest neighbor (xn) and the observed
value (xo). Then repeating the iterative calculation un-
til all parameters of the feature are traversed. The spe-
cific calculation formula is as follows:

1) when the observed value xo is of the same category
as the nearest neighbor xn:

W i
j =W i−1

j − ∆j(xo, xn)
m

⋅ don; (9)

2) when the observed value xo is different from the
category of the nearest neighbor xn:

W i
j =W i−1

j + pyn

1 − pyo

∗ ∆j(xo, xn)
m

⋅ don, (10)

where W i
j is the weight of the i-th iteration of the

j-th feature; ∆j(xo, xn) is the relative difference
between xo and xn, where Fj represents the set
of the j-th feature parameter, then the expression
for ∆j(xo, xn) is

∆j(xo, xn) =
∣xo − xn∣

max (Fj) −min (Fj)
, (11)

where don is the formal distance function between
xo and xn:
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don = d̃on
k

∑
r=1

d̃or

, (12)

d̃on = exp

⎡⎢⎢⎢⎢⎣
−( rank(o, n)

sigma
)
2⎤⎥⎥⎥⎥⎦
, (13)

where rank(o, n) is the corresponding position of
a certain nearest neighbor xn in the total nearest
neighbor sorting table of xo after sorting KNN by
distance. Calculate sigma in Eq. (13) to change
the scaling ratio, pyo is the prior probability of
the category to which the observed value xo be-
longs, pyn is the prior probability of the category
to which the nearest neighbor xn belongs.

3. Result

3.1. Feature selection

A strategy of feature selection based on the ReliefF
algorithm is applied to select features with high robust-
ness and low redundancy. Figure 2 displays the normal-
ized weight value of each feature to the related label.
Most features make significant contributions to this
classification task, especially for MFCC and pitch fea-
tures. The importance weights of MFCC1 to MFCC13
are higher than 0.1, which indicates that there is evi-
dently different energy distribution on each frequency
band divided by the Mel filter. The MFCC5 to MFCC8

Feature names

W
ei

gh
ts

Fig. 2. Normalized weights of each feature obtained by ReliefF algorithm.

yield the highest weights more than 0.14. These re-
sults show that the differences of snoring sounds
of simple snorers, normal snoring sounds of OSAHS
patients, and abnormal snoring sounds of OSAHS pa-
tients mainly concentrated on the low and middle fre-
quency bands. Pitchvar also has relatively high weight
values, which means that the three kinds of snoring
sound have different pitches.
Furthermore, the relationship between the dimen-

sion of selected features and the classification results is
explored to select optimal features. Figure 3 shows the
relationship between the dimension of selected features
and the accuracy based on the KNN, RUSBoost, and
DNN classifiers. The dimension of features has great
influence on the classification results for all classifi-
cation models. With the increase of the dimension of
selecting features, the accuracy of classifiers gradually
increases and tends to be stable. When the feature di-
mension exceeds the optimal one, the classification re-
sult will not increase with the increase of the feature
dimension. The redundant features not only cannot im-
prove the model classification performance, but also
increase the computational complexity of the model.
For different classification models, there are significant
differences in the degree of influence of features and
the dimension of optimal features. The optimal fea-
ture dimension is 16, 18, and 37 for KNN, RUSBoost,
and DNN classifier, respectively. The related accuracy
of KNN, RUSBoost, and DNN model with optimal
features are 85.44 %, 84.45 %, and 83.91 %, respec-
tively.
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Fig. 3. Relationship of cross-validation average accuracy of KNN, RUSBoost, and DNN
with the selected feature dimensions.

3.2. Classification results

Table 1 shows the classification results of SSS,
SSSP, and ASSP based on KNN, RUSBoost, DNN
classifiers under the original feature set. The accuracy
obtained by KNN, RUSBoost, and DNN are 84.81 %,
83.80 %, and 83.67 %, respectively. Under the same
feature set, different classifiers may have different em-
phases. KNN and DNN achieve much higher recall for
SSSS and SSSP and lower recall for ASSP than RUS-
Boost. Specifically, the recall of SSSS, SSSP, and ASSP
obtained by DNN are 97.53 %, 91.94 %, and 48.54 %,
respectively. The recall of SSSS, SSSP, and ASSP ob-
tained by KNN are 99.14 %, 91.26 %, and 54.50 %,
respectively. The recall of SSSS, SSSP, and ASSP ob-
tained by KNN are 97.99 %, 84.60 %, and 69.75 %, re-
spectively.

Table 1. Classification results of SSS, SSSP, and ASSP
based on different classifiers under the original feature set.

Snoring
type

Evaluation KNN RUSBoost DNN Fused
model

Accuracy 0.8481 0.8380 0.8367 0.8556

SSSS
Recall 0.9914 0.9799 0.9753 0.9954

Precision 0.9799 0.9704 0.9900 0.9847

F1 0.9856 0.9751 0.9826 0.9900

Recall 0.9126 0.8460 0.9194 0.9083

SSSP Precision 0.8515 0.8886 0.8314 0.8655

F1 0.8810 0.8667 0.8732 0.8864

Recall 0.5450 0.6975 0.4854 0.5938

ASSP Precision 0.6939 0.6179 0.6839 0.6987

F1 0.6105 0.6553 0.5678 0.6420

To obtain classification results with higher robust-
ness and stableness, the three basic models KNN,

RUSBoost, and DNN are further fused by the vot-
ing strategy. The fused model adequately fuses the
advantage of the three basic models. It achieves
85.56 % accuracy, which increases nearly 2 % com-
pared with RUSBoost and DNN. The fused model
not only maintains the relatively high recall for
SSSS, but also significantly increases the recall of
ASSP. The recalls obtained by the fused model are
10.84 % and 4.88 % higher than DNN and KNN, re-
spectively. The recalls of SSSS and SSSP of fused
model are 99.57 % and 90.21 %, respectively, which
indicates that there are evident differences between
SSSS and SSSP. The classification results imply that
the upper airway structure of OSAHS patients on the
normal sleep is different from that of simple snorers.
To obtain model with lower complexity and high

performance, the feature selection strategy is applied
in the model. Table 2 shows the classification results
of SSS, SSSP, and ASSP based on KNN, RUSBoost,
and DNN classifiers under the selected feature set with

Table 2. Classification results of SSS, SSSP, and ASSP
based on different classifiers under the selected feature set.

Snoring
type

Evaluation KNN RUSBoost DNN Fused
model

Accuracy 0.8544 0.8445 0.8391 0.8576

SSSS
Recall 0.9926 0.9840 0.9775 0.9957

Precision 0.9859 0.9830 0.9909 0.9856

F1 0.9892 0.9835 0.9842 0.9906

Recall 0.9090 0.8521 0.9127 0.9021

SSSP Precision 0.8617 0.8930 0.8385 0.8709

F1 0.8847 0.8721 0.8740 0.8862

Recall 0.5841 0.7072 0.5143 0.6162

ASSP Precision 0.6974 0.6257 0.6782 0.6931

F1 0.6357 0.6639 0.5850 0.6524
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the dimension of 16, 18, and 37, respectively. Compar-
ing Tables 1 and 2, the progress of feature selection
not only reduces the complexity of the proposed fused
model, but also improves the classification of SSSS,
SSSP, and ASSP. Compared with the original fea-
ture set, the recall of ASSP obtained by the fused
model conducting the feature selection improves value
of 2.24 %.
Tables 3 and 4 illustrate the confusion matrices of

KNN, DNN, RUSBoost, and its related fused model
under the original feature set and selected feature
set. There is a substantial distinction between snoring
sounds of simple snorers and snoring sounds of OSAHS
patients. For all classification models, recalls of SSSS
are higher than 98 %. Under all test conditions, a cer-
tain amount of ASSP and SSSP are mislabeled, result-
ing in relatively lower recall and precision. The results
of Tables 3d and 4d indicate that the proposed fused
method could effectively merge the advantage of dif-
ferent classifiers and different features to relatively ac-
curate SSSS, SSSP, and ASSP.

Table 3. Confusion matrices of SSS, SSSP, and ASSP based
on different classifiers under the original feature set.

Real label
Predict label

Recall [%]
SSSS SSSP ASSP

a) KNN-under the original feature set

SSSS 3213 23 6 99.1

SSSP 43 10 209 935 91.3

ASSP 23 1758 2133 54.5

Precision [%] 98 85.2 69.4 –

b) RUSBoost-under the original feature set

SSSS 3189 24 28 98.4

SSSP 27 9532 1628 85.2

ASSP 28 1118 2768 70.7

Precision [%] 98.3 89.3 62.6 –

c) DNN-under the original feature set

SSSS 3161 78 2 97.5

SSSP 26 10 285 876 91.9

ASSP 6 2008 1900 48.5

Precision [%] 99 83.1 68.4 –

d) Fusion-under the original feature set

SSSS 3226 11 4 99.5

SSSP 28 10 161 998 90.8

ASSP 22 1568 2324 59.4

Precision [%] 98.5 86.6 69.9 –

Table 5. Literature reviews about snoring sounds classification of OSAHS patients.

Author Subjects Feature Validation method Accuracy [%]

Cheng et al. (2022) 44 MFCC, LPC, Fbanks LSTM 81.60

Ding et al. (2023) 50 Mel-spectrogram VGG19+LSTM 85.21

Song et al. (2023) 40 Mel-spectrogram CNN, ResNet, and XGBoost fused model 83.44

Shen et al. (2020) 32 MFCC, LPCC, and LPMFCC LSTM 87.00

Hou et al. (2019) 120 MFCC GMMs 80.00

This work 40 A series of acoustic features KNN, RUSBoost, and DNN fused model 85.76

Table 4. Confusion matrices of SSS, SSSP, and ASSP based
on different classifiers under the selected feature set.

Real label
Predict label

Recall [%]
SSSS SSSP ASSP

a) KNN-under the selected feature set

SSSS 3217 20 4 99.3

SSSP 30 10 169 988 90.9

ASSP 16 1612 2286 58.4

Precision [%] 98.6 86.2 69.7 –

b) RUSBoost-under the selected feature set

SSSS 3176 37 28 98

SSSP 63 9464 1660 84.6

ASSP 34 1150 2730 69.8

Precision [%] 97 88.9 61.8 –

c) DNN-under the selected feature set

SSSS 3168 70 3 97.8

SSSP 25 10 210 952 91.3

ASSP 4 1897 2013 51.4

Precision [%] 99.1 83.9 67.8 –

d) Fusion-under the selected feature set

SSSS 3227 12 2 99.6

SSSP 29 10 092 1066 90.2

ASSP 18 1484 2412 61.6

Precision [%] 98.6 87.1 69.3 –

4. Discussion

In this study, a fused model based on KNN, RUS-
Boost, and DNN is proposed to classify SSSS, SSSP,
and APSP. The ReliefF algorithm is applied to se-
lect optimal features in each basic model. The hard
voting strategy is employed to fuse the three basic
models. The feature selection and model fusion strate-
gies evidently improve the classification performance of
the proposed model. Experiment results show that the
proposed model achieves 85.76 % accuracy. The recall
and precision of SSSS are 99.57 % and 98.56 %, respec-
tively. The recall and precision of SSSP are 90.21 %
and 87.09 %, respectively. The recall and precision of
ASSP are 61.62 % and 69.31 %, respectively.
Table 5 displays details of studies on the identifica-

tion of APSP. Since there is no open snoring dataset
with label, studies of analysis of snoring sounds
are based on dataset collected and labeled by their
own labs. The unavoidable situation makes it impos-
sible to compare the performance of different classifica-
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tion models directly. As Table 5 shows, these studies
are capable of classifying snoring sounds with apnea-
hypopnea events or without apnea-hypopnea events.
Specifically, Cheng et al. (2022) extracted acoustic
features including MFCC, LPC and used LSTM to
classify SSSS, normal snoring sounds of OSAHS pa-
tients, and post-apnea snoring sounds of OSAHS
patients with accuracy of 81.6 %. Their work had
high recall for SSSS and normal snoring sounds of
OSAHS patients and low recall for post-snoring sounds
of OSAHS patients with value of 88.1 %, 93.4 %, and
63.5 %, respectively. The classification model proposed
by this work achieved recall with values of 99.87 %,
90.21 %, and 61.26 % for SSSS, SSSP, and APSP,
which are relatively better than the mentioned stud-
ies. The comparison demonstrates that the fused model
yields higher classification result and better robust-
ness. Since the snoring sound is generated by the
vibration of the upper airway, the classification re-
sults of SSSS, SSSP, and APSP demonstrate that the
structure of the upper airway is evidently different
from that of OSAHS patients. Obesity, smoking, and
other pathological reasons cause the upper airway of
OSAHS patients gets narrow (Ghosh et al., 2021).
The narrow upper airway is the main reason for the
occurrence of apnea and hypopnea events of OSAHS
patients. The classification results of simple snoring
sounds of OSAHS patients and apnea-hypopnea snor-
ing sounds of OSAHS patients indicate that OSAHS
patients snore continually throughout the whole night,
which is caused by the narrow upper airway. It can be
said that the narrow upper airway not only induces
hypopnea and apnea events during sleep, but also neg-
atively influences the normal sleep qualities and fre-
quently causes snoring sounds. Furthermore, the high
recall and precision of SSSS show solid experimental
verification for identifying simple snorers and OSAHS
patients based on analysis of snoring sounds. These
studies mentioned in Table 5 are concentrated on dis-
tinguishing simple snoring sounds of OSAHS patients
and apnea-hypopnea snoring sounds of OSAHS pa-
tients (Cheng et al., 2022; Ding et al., 2023; Shen
et al., 2020; Song et al., 2023). The accuracies of all
classification model are higher than 80 %. These re-
sults indicate that there are evident differences among
snoring sounds occurred in different sleep stages for
OSAHS patients.
Song et al. (2023) proposed a CNN, ResNet, and

XGBoost fused model to classify snoring sounds oc-
curred in different sleep stages and achieved 83.44 %
accuracy. The classification model may be only con-
centrated on differences at one latitude and achieve
limited classification results. The model fusion strat-
egy based on different fusion methods is proposed to
fuse basic classification models that has been widely
used in different kinds of classification tasks. In this
work, a hard voting fusion strategy is applied to fuse

KNN, RUSBoost, and DNN classifiers. This method
significantly increases classification recall and precision
of SSSS, SSSP, and ASSP. It also improves the effec-
tiveness and robustness of the proposed model. Exper-
iment results show promising foreground for diagnos-
ing severities of OSAHS patients based on analysis of
snoring sounds.
There are also some limitations of the proposed

model. Firstly, validation experiments of this work are
conducted based on subject dependence. It mainly fo-
cuses on exploring differences among these types of
snoring sounds. Further subject independent experi-
ments should be conducted to validate the generation
error and robustness of the proposed model. Moreover,
the proposed model just focuses on exploring differ-
ences among snoring sounds occurred in different sleep
stages. The relationship between apnea-hypopnea
snoring sounds and apnea-hypopnea events should be
studied to identify apnea-hypopnea events and esti-
mate AHI values of OSAHS patients.

5. Conclusion

In this work, a fused model based on KNN, RUS-
Boost, and DNN is proposed to classify SSSS, SSSP,
and APSP. Firstly, a series of acoustic features are
extracted to express snoring sounds. Three classifiers
KNN, RUSBoost, and DNN are independently trained.
The ReliefF algorithm is applied to select features in
each classification model. A hard voting strategy is
used to obtain an optimal fused model. Experiment
results show that the proposed fused model achieves
high performance with accuracy of 85.76 %. The recalls
of SSSS, SSSP, and APSP obtained by the proposed
model are 99.87 %, 90.21 %, and 61.26 %, respectively.
It demonstrates the effectiveness and validity of assist-
ing in diagnosing OSAHS patients based on analysis of
snoring sounds.
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