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Although noise and vibration measurements are widespread in the machine diagnostics, they are not used
in the diagnostics of the powertrain of motor vehicles. Our research aims to investigate the possibilities, advan-
tages, and drawbacks of using noise and vibration diagnostics performed for motor vehicles. In this paper, we
attempt to use vibroacoustic signals from a motor vehicle for diagnostic purposes. Ordinary audible malfunc-
tions, for example, misfiring in a passenger car, were artificially created. The differences between the normal
and faulty operating conditions were examined to identify evidence of failure in the vibration signal. Primarily,
evaluation through Fourier transformation was performed to provide a visual correlation between the fault and
the vibration behavior of the car. Detailed conclusions from the measurements and future research plans are
discussed.
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1. Introduction

In the automotive industry, vehicle noise and vi-
bration performance have become an important design
parameter, as in other technical fields. Sound quality is
one of the main factors that define the product itself,
making vibroacoustic control of motor vehicles a key
activity for automotive engineers. Furthermore, noise
and vibration pollution are regulated by standards,
making noise refinement during the predevelopment
stage essential to protect users from health problems
and other adverse effects. Malfunctions in the car’s mo-
tor and powertrain can increase overall noise levels,
and consequently, reduce good sound quality, leading
to a noisier and less refined auditory experience.
One of the most common problems in internal com-

bustion engines (ICEs) is an aged spark plug, which
causes weak ignition and results in misfiring. This issue
is particularly prevalent in older vehicles and results in
reduced fuel efficiency, and potentially causing serious
long-term engine damage. Nowadays, misfire detection
methods are built-in in every vehicle to comply with

environmental protection regulations. Some common
detection strategies include measuring cylinder pres-
sure or monitoring speed fluctuation in the crankshaft.
Unusual noises from a car can induce stress and feelings
of insecurity in drivers. However, this unwanted phe-
nomenon can also be utilized, since the vibration is sen-
sitive to all faults, whereas other physical parameters,
such as those monitored by onboard diagnostics sys-
tem (OBD), are sensitive only to specific faults. This
means that monitoring a vehicle’s vibration behavior
can identify potential failures.
Nevertheless, vibration diagnostics has its limita-

tions, as they depend on the product’s complexity, op-
eration mode, and the severity of the fault. Solely re-
lying on the overall sound pressure level (SPL) and
averaged vibration spectra does not give a sufficient
representation of sound quality. That is why the in-
troduction of psychoacoustic measurements is neces-
sary to gain a more comprehensive insight into human
sound perception. On the other hand, psychoacoustic
analysis can serve as a diagnostic tool for identifying
vehicle malfunctions since experienced mechanics can
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often diagnose certain malfunctions in cars by sound
alone. For example, at idle speed, a knocking noise
from beneath the valve cover may be clearly audible.
As the engine’s rotational speed increases the noise fre-
quency also increases, which indicates that the valve
clearance is too large.
At the Aachen University in Germany (Brecher

et al., 2011), a correlation analysis was conducted
between gear parameters and psychoacoustic values
based on noise measurements from different gear sets.
For the research, gear sets with different surface mi-
crostructure and pitch deviation were selected. The
study found that both the loudness and sharpness of
the noise increased with rotational speed. According
to the study’s findings, roughness proved to be the
most valuable parameter for identifying pitch devi-
ation failures in gears. Babu Devasenapati et al.
(2010) analyzed a four-stroke four-cylinder petrol en-
gine with a misfire problem. For problem identifica-
tion, they used statistical parameters of vibration sig-
nals, such as kurtosis, standard deviation, mean, etc.
A decision tree was developed that could extract the
most appropriate parameters for failure detection and
to classify various ICE misfire problems with 95 % ac-
curacy. Firmino et al. (2012) collected vibration and
acoustic data from a four-stroke spark ignition en-
gine with a misfire in one cylinder. After perform-
ing feature extraction using the fast Fourier transform
(FFT) algorithm, the data was used to feed different
artificial neural network (ANN) systems in order de-
tect the misfire failure. Both networks demonstrated
great results, achieving, accuracy of around 99 % in
misfire detection. Delvecchio et al. (2018) reviewed
the existing state-of-the-art vibroacoustic techniques
for diagnosing failures in ICEs, including misfires. Ac-
cording to this study, the most commonly used tech-
niques for ICE malfunctions are joint time-frequency
methods. However, these methods are mainly applied
to failure detection rather than condition monitoring
purposes.
Wojnar and Madej (2009) tested ICEs using vi-

broacoustic methods and concluded that relying only
on the FFT does not deliver sufficient results. They
emphasized the advantages of joint time-frequency
methods, particularly wavelet analysis. Wojnar and
Stanik (2010) compared vibration and acoustic sig-
nals for diagnosing car wheel bearings. Their investi-
gation revealed that bearing wear can be determined
through vibroacoustic methods. Szabó andDömötör
(2022) also investigated the wheel bearings of a passen-
ger vehicle with vibroacoustic methods, and confirmed
that these methods are effective for detecting bearing
faults.Wojnar et al. (2011) further investigated roller
bearing defects, focusing on non-dimensional factors
(e.g., impulse factor, crest factor, etc.). Their findings
showed that these parameters are sufficient for detect-
ing bearing faults.

Psychoacoustic quantities are not currently involved
in detection or monitoring actions. Analysis acoustic
data such as SPL obtained from a microphone, is
rarely used due to the masking effect of background
noise, making it unsuitable for detecting assembly
faults. However, joint techniques based on acoustic
signals remain useful for capturing and localizing
transient events in the time or angular domain,
especially when the noise characteristics cover a wide
frequency range and originate from different areas of
the engine. Such events in ICE could be knocking,
misfires, or injection problems. Using these methods,
more mechanical events that influence the vibroacous-
tic behavior of the engine can be captured in a single
measurement. On the other hand, misfires produce
structure-borne noise, which means that vibration
signals are effective for detecting such failures as well.
For purely airborne noise, the SPL signal is relevant
for: turbocharger, ventilation fan, or exhaust system;
however, for mechanical malfunctions, which are
structure-borne transmitted, the fault must be in
advanced stage to be detectable by acoustic signals.
Additionally, the use of transducers allows for targeted
examination of sub-components of the ICE, depending
on their positioning.
Time domain analysis focuses on observing the

shape of the time signal. The information that the time
domain contains can be described by the above men-
tioned statistical single values. While these values are
sufficient for detecting malfunctions, they are not ef-
fective for localizing failures. To use these values as
decision-making criteria in automated diagnostic sys-
tem, the time signal must be insensible to background
noise and should not contain unnecessary information.
The signal-to-noise ratio can be maximized by apply-
ing frequency band filters to the time signal.
The analysis can also be performed in the frequency

domain, where distinct frequency peaks and harmonics
correspond to different components. For this purpose,
FFT is applied, revealing the frequencies of various
events with different energy content. This algorithm
is effective only for cyclo-stationary signals, helping to
understand the cause of failure and providing reliable
information for condition monitoring and diagnostic
activities.
As a summary, the authors recommend performing

time-frequency analysis when the nature of the fault is
impulsive, with the consideration of the level of inves-
tigation and computational efforts required. For con-
dition monitoring and failure detection, it is common
practice to combine scalar parameters with 2D analy-
sis. In this case, the scalar parameter serves as input
for the decision-making algorithm, while the latter is
a visual representation for the user. It is important
to note that the scalar value must contain all the in-
formation stored in the 2D map to ensure accurate
diagnostics.
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2. Measurement arrangement

Based on our experience and the suggestions of the
above-mentioned authors, we performed a test series
on a real vehicle. The vehicle was a first-generation
Ford Focus passenger car (1998 model; front-wheel
drive, 5-speed manual transmission) with a 1.6 liter,
4-cylinder, four-stroke naturally aspirated petrol en-
gine. For data collection, a 4-channel Brüel & Kjaer
Photon+ DAQ system was connected through USB to
a notebook. The notebook itself was powered by its
built-in battery, which helped eliminate the potential
interference from the 50 Hz AC mains.
During the measurements, an easy installation of

the sensors (accelerometers and a microphone) without
dismantling the car was a key requirement. This was
based on the general requirement of workshop repair
personnel, to avoid excessive disassembly for a simple
test. To this end, one uniaxial acceleration sensor was
placed on the right front side of the car body, and an-
other was positioned on the connection bolt head be-
tween engine block and the gearbox housing (Fig. 1).
Additionally, a condenser microphone was placed at
the front passenger’s head level. The measurements
were repeated several times at idle speed with en-
gine speeds of 1000 rpm, 2000 rpm, 3000 rpm, and
4000 rpm, all without load. Furthermore, noise and vi-
bration were measured in accelerated mode under par-
tial open throttle (POT) conditions during a run-up
and run-down cycle from 1000 rpm to 5000 rpm and
back to 1000 rpm. The length of the run-up and run-
down time was controlled by the driver using the gas
pedal. During the measurements, the coolant temper-
ature was monitored via the onboard coolant tempera-
ture gauge, and it was kept around 90 ○C operat-
ing temperature during the tests. The acquired raw
time signal was later post-processed with the help of
Artemis Suite noise evaluation software.
To create a faulty condition in the engine, the op-

eration of one of the four cylinders was eliminated by

Fig. 2. Gearbox time history at ramp speed of 1500 rpm–4200 rpm.

Fig. 1. Sensor positions.

disabling the ignition in cylinder 1 (on the side of the
timing drive). The effect of the misfire was clearly no-
ticeable by ear in the immediate vicinity of the car. The
goal of the measurements was to analyze the vibration
behavior of the engine in the presence of a misfire fault.
Based on this analysis, the potential for detecting and
localizing failures should be investigated.

3. Analysis

In the course of the analysis, the raw time signals
were post-processed by the FFT algorithm. The pur-
pose of the analysis was to find acoustic patterns which
may refer to a malfunctioned part in spectrums and
spectrograms.
Initially, the time signals were analyzed. We can

state that the microphone signal recorded during the
run-up tests provided more promising outputs from
a diagnostic perspective, since time domain signal ob-
tained from the microphone’s measurement showed
better separation (Fig. 3) in sound pressure between
healthy (blue) and faulty (red) conditions, compared
to the acceleration signal recorded on the gearbox
(Fig. 2).
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Fig. 3. Microphone time history at ramp speed of 1500 rpm–5000 rpm (POT).

In Fig. 3, the form of the acoustic signal is charac-
terized by the components directed toward the passen-
ger’s seat, with different frequency-dependent damping
properties. The constant-speed measurements do not
seem to be very useful for distinguishing failure modes.
However, an interesting effect is observable, especially
at higher rotational speed and is evident only in the
microphone signal, see Fig. 4.
The shape of the time signal shows a very slow,

pure sinusoidal, strong modulation (1.5 Hz–2 Hz). This
modulation effect becomes stronger when the engine is
misfiring. In our opinion, it is caused by fluctuations
in the engine crankshaft’s rotational speed, as one can
see in Fig. 5. This effect can be explained by differ-
ent cylinder pressures caused by the misfire. However,
it is important to note that combustion engines have
a certain speed fluctuation, unlike electric motors. The
rpm signal (Fig. 5) was created with an rpm genera-
tor, which is a built-in function in the noise evaluator
software.

Fig. 4. Microphone time history at constant speed of 4000 rpm.

Fig. 5. Rpm curves at constant 4000 rpm derived from the microphone’s signal.

The time interval between the distinct peaks is
around 0.0075 seconds, which corresponds to a calcu-
lated frequency of 133.33 Hz. This is the ignition fre-
quency at 4000 rpm (Fig. 4), which can be calculated
for a 4-stroke internal combustion engine using the fol-
lowing formula:

fignition =
1

2
⋅ rpm
60
⋅ cylinders [Hz], (1)

where rpm is the motor crankshaft speed in [1/min],
and “cylinders” refers to the number of cylinders (four
in this case) and it is divided by two, since two ignition
is required to rotate the crankshaft 360○ as two cylin-
ders move together at the same time. As the engine
construction is fixed, this frequency depends only on
the rotational speed.
The motor frequency can be easily calculated as

fmotor =
rpm

60
[Hz]. (2)
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The camshaft is connected to the crankshaft
through a belt drive. This shaft activates the cylinders’
intake and exhaust valves, thus controlling the com-
bustion process. The transmission ratio between the
shafts is usually 2:1, which means that the camshaft’s
rotation speed is half of the motor shaft. Therefore,
the camshaft frequency is

fcamshaft =
rpm/2
60

[Hz], (3)

which is the same frequency as the motor 0.5th order.
It is observable in the spectrogram of every sensor,
but the best representation of the failure can be de-
rived from the microphone’s signal. Table 1 presents
the first-order fundamental frequencies of the motor
at different speeds for comparison in the analysis.

Table 1. Fundamental frequencies of the engine [Hz].

2000 rpm 3000 rpm 5000 rpm

Crank frequency 33.33 50 83.33

Camshaft frequency 16.66 25 41.66

Ignition frequency 66.67 100 166.67

The ignition frequency is recognizable in both
healthy and faulty cases. It means that even under
normal conditions, the ignition phenomena character-
ize the vibration behavior of the motor. Since the time
signal during the ramp speed measurements can visu-
alize the problem, single statistical values – such as
root mean square (RMS), crest factor, standard devia-
tion, kurtosis, etc., should show a high deviation factor
between the two conditions. The RMS value of a given
set of discrete data points can be calculated by the
following formula:

RMS =
√

x2
1 + x2

2 + x2
3 + ... + x2

n

n
. (4)

First, the data points are squared, then the average
of all the squared values is taken. After that, the square
root of the average is calculated. This process tells us
how much energy is contained in the waveform.
The skewness shows the asymmetry of a distribu-

tion. If the skewness value is zero, the distribution is
symmetrical. A normal distribution has a zero skew.
The easiest method to check the skewness is to plot
the data on a histogram. If the distribution has right
(positive) skew, it means the distribution is shifted to
the right relative to the axis of symmetry. Conversely,
in the case of left (negative) skew, the distribution is
longer on the opposite side (Turney, 2022). The skew-
ness values obtained from the gearbox acceleration sen-
sor and the microphone signal show that the skewness
value is negative, while the sensors on the car body
yield positive values. The equation for skewness is as
follows:

Skewness = n

(n − 1)(n − 2)∑(
xi − x

s
)
3

. (5)

The mean value was calculated with the following
equation:

Mean = x1 + x2 + x3 + ... + xn

n
. (6)

The standard deviation is a measure of the spread
around the mean value. A low standard deviation
means the data are clustered around the mean, while
a high standard deviation indicates data are more
spread out. The formula used to calculate standard
deviation is

Standard deviation =
√
∑(xi − x)2

n − 2 . (7)

The peak amplitude derived from the RMS is given by:

Peak = 2√
2
RMS. (8)

The peak-to-peak amplitude is the difference be-
tween the highest positive and the lowest negative am-
plitude in the waveform:

Peak to peak amp. =max{xi} −min{xi} . (9)

The crest factor gives the ratio of the peak values to
the effective value, showing how prominent the peaks
are in the waveform. A crest factor of 1 indicates no
peaks, while a higher crest factor indicates peaks. The
crest factor is calculated as

Crest factor = Peak

RMS
. (10)

The statistical parameter called kurtosis is a mea-
sure of the “peakedness” of a random signal:

Kurtosis = { n(n + 1)
(n − 1)(n − 2)(n − 3)∑(

xi − x
s
)
4

}

− 3(n − 1)2
(n − 2)(n − 3) . (11)

Unfortunately, the statistical single values of the
microphone’s time signal do not provide adequate dif-
ference between the bad and good conditions (Fig. 6).
The same statement is true for the crest factor val-

ues: the failure shows no separation in this parame-
ter compared to the original condition (Fig. 7). How-
ever, in certain engine speed ranges (around 2700 rpm
and above 4000 rpm) the kurtosis parameter indicates
a small deviation between the conditions (Fig. 8).
Nevertheless, the result is not conclusive due to the

low distinction of the individual overall values. To bet-
ter understand the malfunction, joint time-frequency
(FFT vs. time) analysis was performed at both con-
stant and ramp speeds. Joint analysis is the repre-
sentation of series of Fourier transformations over dif-
ferent time periods (or at different rotation speeds),
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Fig. 6. Time domain statistical single values derived from the microphone’s signal on 4000 rpm.
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Fig. 7. Crest factor in the function of time derived from the microphone’s signal at 4000 rpm.
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Fig. 8. Kurtosis as a function of engine rotation speed derived from the microphone’s ramp signal.

mapping a 1D time domain into a 2D diagram that
shows energy (color scale) versus time (x-axis) and fre-
quency (y-axis). This analysis helps to understand how
the energy content of frequencies varies over time or
as a function of rotation speed. As shown in Fig. 9, it
is clear that the sound pressure level increases at spe-
cific motor frequencies. The sound pressure at the igni-
tion frequency is a dominant contributor to the overall
sound pressure level inside the car, even in healthy con-

dition, where only vibrations below 2000 Hz are signif-
icant. The dominance of the ignition frequency is ob-
servable at the other measurement points as well. The
motor subharmonics create abnormal colormap picture
in the case of a misfire issue. Among the topological
integer motor frequencies, the motor half-orders (sub-
harmonics) appear with higher energy. This leads to
the assumption that the motor 0.5th order (17.58 Hz)
causes modulation in the signal. One possible reason
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Fig. 9. Microphone spectrogram (10 Hz–2000 Hz) in healthy (left) and faulty (right)
conditions during ramp speed (1500 rpm–5000 rpm).

for this is that the engine crankshaft rotation becomes,
let us say, more unbalanced due to the misfire in cy-
linder 1.
Rather than stating that the crankshaft itself is

unbalanced, it is more accurate to say that, as a con-
sequence of the misfire, the shaft rotation speed fluctu-
ates, causing uneven running. This hypothesis is sup-
ported by Cavina et al. (2002), who claim that misfire
results in a sudden lack of torque on the crankshaft,
leading to damped torsional vibrations at representa-
tive frequencies of the engine.
The joint analysis of the acoustic signal made pos-

sible to determine the location of the malfunction, as
we were able identify frequencies that correspond to
the engine crankshaft 0.5th, 1st, 1.5th, 2.5th, and 3rd,
as well as other higher-orders. However, one can de-

Fig. 10. Microphone spectrogram (10 Hz–2000 Hz) in healthy (left) and faulty (right) conditions at 2000 rpm.

tect with a high degree of certainty that the failure
is coming from the motor by simply listening to the
sound of the car. Unfortunately, resonance appears in
the joint time-frequency analysis in a similar manner
to harmonic frequencies at constant speed. Due to this
fact, it is worth considering the spectrogram when the
rotation speed varies over time, e.g., in ramped speed
measurements.
One can see that there is a resonance at 50 Hz,

which increases the sound pressure level of the motor’s
first order, when it operates between 2400 rpm–
3100 rpm (Fig. 10). The order shapes demonstrate
how the motor speed changes over time: the motor
accelerates over 30 seconds, reaching a maximum
speed of 5000 rpm during the run-up, and then slows
down to 1500 rpm during the run-down phase. This
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Fig. 11. Microphone’s spectrum comparison at 3000 rpm (logarithmic abscissa).
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Fig. 12. Microphone’s modulation spectrum comparison at 3000 rpm.

method reveals the resonance frequencies without mis-
take based on excitation and helps to avoid misun-
derstandings during analysis. The time domain can be
transformed into the frequency domain with FFT. The
energy content of the microphone signal in terms of fre-
quencies is represented in the spectrum at 3000 rpm
motor speed, as shown in Fig. 11. This gives a slight
correlation with the fault, though the correlation is
even weaker at lower speeds below 3000 rpm. Based
on the spectrum, it is difficult to identify the problem.
There is a deviation in the frequency range of 1 kHz–
10 kHz, due to assumed amplitude modulations. While
the operation of the misfire is visible in the spectrum,
it is challenging to identify a specific frequency compo-
nent related to a particular part of the engine. Based
on the aforementioned analysis, we reasonably assume
that – based on the FFT vs. time analysis as well – that
there is amplitude modulation in the signal. Since the
FFT vs. time diagram shows that a wide frequency
range of the signal is affected, it makes sense to check
the modulation spectrum.
The modulation spectrum provides overview of the

modulation frequencies across the entire or a selected
frequency range. The modulation spectrum shown
in Fig. 12 includes the frequency range of 2.8 kHz–
5.6 kHz. The envelope low-pass frequency is 1000 Hz,
so the frequencies that modulate the signal appear up
to 1000 Hz. The analysis reveals that the half-order
motor frequency plays a significant role in the modu-
lation. Specifically, the modulation frequency is 25 Hz,
which is half of the crankshaft’s rotation frequency.

4. Discussion

In this paper, the misfire event in a motor vehi-
cle was studied with vibroacoustic methods. The mis-
fire caused an unbalanced, or more accurately, uneven
rotation of the crankshaft. By analyzing the micro-
phone’s time-domain signal, one can make a clear dis-
tinction between healthy and faulty conditions of the
engine. A short frequency calculation analysis showed
that the ignition plays a main role in the vibration be-
havior of both the car body and passenger area. The
FFT spectrum also indicates the presence of the fail-
ure, similarly to the time-domain signal, but tracking
the frequency components in the spectrum does not
allow for precise localization of the failure.
The most useful method was the FFT vs. time

analysis, where the topological integer and odd-order
engine showed increased energy in the faulty condi-
tion. The outcome of the modulation spectrum con-
firmed that there is subharmonic motor order modu-
lation in the spectra. This result allowed us to localize
the place of the noise problem inside the car. However,
even without advanced analysis, a trained ear could
identify that the issue likely originates from the engine.
In summary, with the help of vibroacoustic meth-

ods the noise problem could be spotted inside a ve-
hicle. However, with the current measurement points
and tools, it is possible to determine in which cylinder
the misfire occurs. This could be potentially achieved
by placing more acceleration sensors on the car body,
for example, on the left front side. Based on the re-



B.J. Kriston, K. Jálics – Failure Detection of Powertrain Components in Motor Vehicles. . . 45

sults, the possible location of the noise problem can be
narrowed down; however, the type of the malfunction
is not clearly identified.
The reason behind this is that we cannot be sure

that only a misfire failure causes the observed acoustic
patterns and changes in the spectrograms. It is not the
misfire itself, but rather its consequences or, more pre-
cisely, the complete absence of the stroke in cylinder 1
(resulting in uneven running of the crankshaft) that
determines the vibration behavior of the engine. The
shafts are statically and dynamically balanced dur-
ing manufacturing to account for the moving masses
in the crank mechanism, ensuring they do not gen-
erate significant radial vibrations. Due to the uneven
running of the shaft, torsional vibration occurs, but
these were not measured. However, vertical and hor-
izontal vibrations can originate from gas forces and
mass forces, although the cylinders were not modi-
fied. At this point, the unevenness of the gas forces
must be considered, because in the first cylinder only
the maximum pressure (2 MPa–3 MPa) ,correspond-
ing to the compression cycle, prevails at the end of
the combustion cycle. In contrast, in the other three
cylinders, a higher pressure (8 MPa–10 MPa) derived
from ignition, is present at the beginning of work cycle.
This difference in cylinder pressure causes ab-

normal torque behavior, which is why orders with
odd numbers and subharmonic orders are present in
the result. Practically, the tested engine operates as
a 3-cylinder engine where odd orders such as the 1.5th,
3rd, etc., and subharmonics appear. However, despite
of this, the four pistons are moving, so integer order
numbers (1st, 2nd, 4th, etc.) are also present in the
spectrograms. The acoustical pattern of this failure is
not unique; other malfunctions that affect crankshaft
rotation can trigger the same vibroacoustic behavior.
This means that joint analysis alone is not capable
to identify the misfire; other non-vibroacoustic mea-
surements are essential for exclusively detecting the
problem.

5. Further plans

The low-frequency motor modulation can be linked
to psychoacoustical parameters such as fluctuation
strength and roughness. These parameters could possi-
bly serve as good indicators of this type of failure, but
to justify the relevance of this idea further investiga-
tion is necessary. As a continuation of the research, it
would be worth to examine how the vibration behavior
of the vehicle changes when more than one cylinder is
misfiring. Furthermore, we are interested in examining

other malfunctions, e.g., valve clearance defect. The
ultimate goal is to pinpoint the misfiring cylinder and
distinguish this failure mode from other malfunctions
using only vibroacoustic tools.
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