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Abstract. Deep learning methods are gaining momentum in radiology. In this work, we investigate the usefulness of vision-language models
(VLMs) and large language models for binary few-shot classification of medical images. We utilize the GPT-4 model to generate text descriptors
that encapsulate the shape and texture characteristics of objects in medical images. Subsequently, these GPT-4 generated descriptors, alongside
VLMs pre-trained on natural images, are employed to classify chest X-rays and breast ultrasound images. Our results indicate that few-shot
classification of medical images using VLMs and GPT-4 generated descriptors is a viable approach. However, accurate classification requires
the exclusion of certain descriptors from the calculations of the classification scores. Moreover, we assess the ability of VLMs to evaluate shape
features in breast mass ultrasound images. This is performed by comparing VLM-based results generated for shape-related text descriptors with
the actual values of the shape features calculated using segmentation masks. We further investigate the degree of variability among the sets of
text descriptors produced by GPT-4. Our work provides several important insights about the application of VLMs for medical image analysis.

Keywords: medical image classification; vision-language models; large language models; few-shot learning.

1. INTRODUCTION
Vision-language models (VLM) and large language models
are gaining momentum in machine learning. VLMs trained on
paired image-text data have been successfully used for zero-
shot classification, image-to-text matching and object detection,
among many other tasks [1]. VLMs can be used to jointly process
images and text pairs, and relate their visual and textual contents.
Large language models, such as GPT-4, trained on large corpus
of text, can be prompted to provide useful information on any
task [2, 3]. In medical image analysis, VLMs have been mainly
applied for chest X-ray images analysis due to the public avail-
ability of large datasets of radiology reports paired with imaging
data, such as the MIMIC-CXR [4]. For example, Keicher et al.
utilized VLMs pre-trained on MIMIC-CXR to automate the re-
porting and assessment of pathologies in chest X-ray images.
Boecking et al. developed BioVil, a large VLM pre-trained on
chest X-rays and radiology reports [5]. Authors presented that
the developed model can be used for various downstream tasks,
including zero-shot classification and image-text retrieval. In the
standard setting, the zero-shot image classification with VLMs,
such as the CLIP model, is performed by calculating similarity
scores between the input image and text descriptors designed for
different classification categories, such as “a photo of a cat” [6].
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Recently, Menon and Vondrick presented that zero-shot classifi-
cation can be performed based on text descriptors characterizing
image features associated with the class categories [7]. Authors
used GPT-3 to automatically generate the descriptors. For ex-
ample, classification of an airliner in images can be performed
with VLMs using text descriptors related to the properties of
the airliner, such as “large, metal aircraft”. This approach is
explainable by design, as the classification decision can be jus-
tified by the presence of particular image features. Building
upon this approach and the BioVil VLM, Pellegrini et al. pro-
posed Xplainer, an explainable zero-shot classification method
for chest X-rays [8]. Authors prompted ChatGPT to provide ra-
diology report like text descriptors for the assessment of various
chest pathologies. Similarly, Qin et al. utilized GLIP model for
object detection based on automatically generated prompts [9].

In radiology, pathology classification is sometimes conducted
based on the presence of simple image features. For example, to
differentiate malignant and benign breast masses in ultrasound
(US), radiologists assess the texture and shape characteristics
of the lesions [10]. Standard reporting includes the evaluation
of the roundness, mass contour variability and mass echogenic-
ity [11]. Our work presents several contributions. Building upon
the study of Menon and Vondrick, we investigate if VLMs and
large language models can be used for the binary few-shot clas-
sification of medical images. In the few-shot setting, only a
few training samples are available to supervise and train the
model. In order to address the particular task of few-shot med-
ical image classification, we prompt GPT-4 to generate simple
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plain text descriptors related to the shape and texture of ob-
jects in chest X-rays and breast US images. These descriptors,
in conjunction with VLMs pre-trained on natural images, are
then utilized for image classification. For example, to differen-
tiate between malignant and benign breast masses, we employ
descriptors such as “round shape” or “variable texture”. In com-
parison, the fully supervised methods based on convolutional
networks usually require large training sets of US images to
provide good performance [12–14]. Our results demonstrate the
feasibility of few-shot classification of medical images using
VLMs and GPT-4-generated descriptors. This approach distin-
guishes itself from previous works on zero-shot medical im-
age classification by eliminating the need for training the VLM
on specific datasets of paired clinical reports and medical im-
ages [15]. In addition, we investigate the ability of the VLMs
to accurately assess shape features in breast mass images. This
is performed by comparing VLM based results generated for
shape-related text descriptors with the actual values of the shape
features calculated using segmentation masks [16]. Moreover,
we evaluate the variability in the sets of text descriptors gener-
ated by GPT-4.

2. METHODS

2.1. Datasets

In this work, we used two datasets corresponding to different
medical imaging modalities for the experiments. First, we uti-
lized a public chest X-ray dataset, consisting of 5856 cases [17].
4273 images corresponded to the pneumonia and 1583 to nor-
mal X-rays. For the calculations, we used the training/test split
provided by the authors, with the test set including 390 pneu-
monia images and 234 normal chest X-rays. Second, we used
the UDIAT dataset, consisting of 159 US images (4 duplicated

US images were removed) corresponding to 107 benign and 52
malignant breast masses [18]. Each US image had a breast mass
area segmentation mask outlined by an expert. The dataset was
divided into training/test sets with a 104/55 split, with the ratio
of the malignant and benign masses maintained for both sets.
In addition, the US images were cropped based on the segmen-
tation masks with a margin of 20 pixels [15]. Cropping was
performed to remove the background tissues and ensure that
the breast mass occupies the center of the image, easing the
assessment of the breast mass area with the VLM models.

2.2. Generating text descriptors

Figure 1 presents our approach to the few-shot classification of
medical images. In VLMs, an image is processed by an im-
age decoded to determine the image feature vector. Similarly,
the text decoder is used to determine the text feature. Next, the
feature vectors are utilized to calculate the similarity score via
the dot product. Image/text pairs that present correspondence
should produce large similarity scores. In this work, we used
GPT-4 (ChatGPT 4, chat.openai.com) large language model to
automatically generate suitable simple text descriptors related to
shape and texture of chest X-rays and breast US images. These
descriptors should enable a VLM, pre-trained on natural images,
to effectively handle medical images. GPT-4 was prompted 50
times to assess the variability in the generated descriptors, the
number of the listed descriptors, their uniqueness and the clas-
sification performance. A separate set of text descriptors was
generated for each class. Next, we also prompted the language
model to provide exactly 20 text descriptors for each class (e.g.,
20 for benign and 20 for malignant masses), which corresponded
to a large set suitable for the selection of the better performing
descriptors. Exemplary GPT-4 prompts and the generated 20
text descriptors can be found in the appendix.

Fig. 1. Scheme presenting the proposed approach to few-shot medical image classification with vision-language models. GPT-4 was used to
generate simple text descriptors related to the shape and texture of medical images
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2.3. Classification

The generated text descriptors and the images were inputted
to the VLM to determine the text-image similarity. zero-shot
classification was performed based on the class score function,
which has the following form [7]:

𝑠(𝑥, 𝑐) = 1
|𝐷 (𝑐) |

∑︁
𝑑∈𝐷 (𝑐)

𝜙(𝑑,𝑥), (1)

where 𝐷 (𝑐) is the set of descriptors corresponding to class 𝑐 and
𝜙(𝑑,𝑥) stands for the VLM output (dot product based similarity
score) determined for the text descriptor 𝑑 and image 𝑥. The class
score function should be high for the descriptors that accurately
pertain to the input image. In our study, to perform the binary
classification, we calculated the following classification score
function:

𝑝(𝑥) = 𝑠(𝑥, 𝑐 = 1) − 𝑠(𝑥, 𝑐 = −1), (2)

following the convention that labels for the positive and negative
classes are coded with 1 and −1, respectively. Input image is
categorized as belonging to the positive class when 𝑝(𝑥) exceeds
a specific threshold 𝑏, 𝑝(𝑥) > 𝑏. This classification cut-off can
be set based on training data to provide required sensitivity and
specificity. For the zero-shot classification, we simply set the
cut-off 𝑏 to 0 [7].

2.4. n-shot descriptor selection

GPT-4 may generate descriptors that are not suitable for medi-
cal image analysis. Moreover, specific text descriptors may not
work well with the VLMs pre-trained on natural images. To
address this problem, we utilized an 𝑛-shot descriptor selection
method. Given only several pairs (𝑛 > 0) of images correspond-
ing to positive and negative classes, our goal was to exclude
the worse performing descriptors from the calculations of the
sum in equation (1). To achieve this, we utilized the following
descriptor score function:

𝑟 (𝑑𝑐) =
1
|𝑋 |

|𝑋 |∑︁
𝑖=1

𝑐𝑖𝜙(𝑑𝑐, 𝑥𝑖), (3)

where 𝑐 ∈ {−1,1}, and 𝑋 is the training set of image pairs. The
subscript 𝑐 in 𝑑𝑐 indicates that descriptor 𝑑𝑐 was generated for
class 𝑐. In the ideal case, the output values of the VLM should
be larger for the images corresponding to the target class than for
the other classes. Hence for well designed descriptors, we expect
that the scoring function 𝑟 (𝑑𝑐) is positive. Given a small training
set 𝑋 , we exclude from the sum, equation (1), the descriptors
for which the scoring function 𝑟 (𝑑𝑐) is negative. Next, using the
selected descriptors, we modify equation (1) and formulate the
weighted category score as follows:

𝑠′ (𝑐, 𝑥) = 1∑
𝑑∈𝐷′ (𝑐) 𝑟 (𝑑)

∑︁
𝑑∈𝐷′ (𝑐)

𝑟 (𝑑)𝜙(𝑑,𝑥), (4)

which corresponds to the arithmetic mean weighted with the
scoring function 𝑟 (𝑑). 𝐷′ (𝑐) is the pruned set of descriptors
after the removal of the descriptors with 𝑟 (𝑑) < 0. Moreover,
the weighted category score is then used to calculate the classi-
fication score in equation (2).

2.5. Breast mass shape assessment

We examined how accurately the VLM can assess the shape of
the breast masses. For this task, we used the manual segmen-
tation masks to calculate the roundness and rectangular shape
features. Next, the computed shape features were compared with
the outputs of the VLM obtained for the text descriptors “round
shape” and “rectangular shape”, respectively. The roundness
feature was computed with the following formula:

Roundness =
4𝜋𝐴
𝑃2 , (5)

where 𝐴 and 𝑃 indicate the area and the perimeter of the segmen-
tation mask, respectively. Rectangularity feature was computed
with the following equation:

Rectangularity =
𝐴

𝐴𝑏𝑏

, (6)

where 𝐴 stands for the mask area and 𝐴𝑏𝑏 is the area of the
bounding box rectangle including the mass.

Additionally, we investigated how the phrasing of the round-
ness related text descriptor affects the relationship between the
VLM output and the roundness feature calculated using seg-
mentation mask. For this experiment, we assessed the following
six text descriptors: “round”, “round object”, “round shape”, “an
object, which has round shape”, “a photo of a round object” and
“a circle” [7].

2.6. Evaluation and implementation

Classification performance was assessed using accuracy and
the area under the receiver operating characteristic curve (AUC)
calculated using classification scores. Cut-off 𝑏 for the calcula-
tion of the accuracy in the few-shot setting, equation (2), was
selected based on the area under the receiver operating char-
acteristic curve to optimize the UL index [19]. The relation-
ship between the shape features calculated using segmentation
masks and the scores outputted by the VLM was assessed with
Spearman’s rank correlation coefficient (SCC). The variability
in the text descriptor generation process was determined using
interclass correlations (ICC) based on the classification score
functions calculated for each set of the generated descriptors.
Moreover, we used the t-SNE algorithm to assess the classifi-
cation performance associated with the VLM and the generated
text descriptors [20].

Calculations were performed in PyTorch [21,22]. For the ex-
periments, we utilized the CLIP ViT-bigG/14 VLM pre-trained
on the LAION-2B dataset from the OpenAI’s official OpenCLIP
library [6, 23]. Text descriptors and images were pre-processed
with the routines originally designed for the model.

3. RESULTS

3.1. Descriptor variability

For this experiment, classification performance was evaluated
based on the entire datasets. Each out of the 50 generated text
descriptor sets was used to separately develop a zero-shot classi-
fication model. In this case, the average AUC values, Table 1, for
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Table 1
Variability in zero-shot classification performance determined based

on 50 sets of text descriptors generated using GPT-4

Dataset AUC ↑ (mean, min, max, ensemble) ICC ↑

Chest X-rays (0.76, 0.50, 0.94, 0.81) 0.68

Breast ultrasound (0.72, 0.56, 0.84, 0.81) 0.55

the breast US data and chest X-rays were equal to around 0.72
and 0.76, respectively. An ensemble (average of the classifica-
tion scores, equation (2)) over 50 descriptor sets resulted in AUC
values of around 0.81 for both datasets. The maximum/mini-
mum AUC values were equal to 0.94/0.50 and 0.84/0.56 for
the chest X-rays and breast US images, illustrating large vari-
ability in the usefulness of the descriptors for the classification.
The agreement with respect to the classification scores, equa-
tion (2), determined for the 50 descriptor sets was moderate,
with the ICC values equal to 0.55 and 0.68 for the breast and
chest dataset, respectively. The average number of the descrip-
tors outputted by GPT-4 was equal to 9.8, 9.6, 11, 10.9 for
the malignant masses, benign lesions, pneumonia and normal
chest X-rays, respectively. The most frequently outputted five
text descriptor for each class are listed in Table 2. We found that
in some cases GPT-4 generated text descriptors related to the
same image feature, such as “irregular shape” and “irregularly
shaped object”. Moreover, for the differentiation between the
two classes, GPT-4 provided pairs of opposing descriptors, for
example “cloudy texture” for pneumonia and “clear texture” for
the normal chest X-rays.

Table 2
The most frequently outputted text descriptors by GPT-4

Class Descriptor Occurrence
(max = 50)

Pneumonia X-rays

1. “cloudy texture” 21
2. “dense spots” 9
3. “diffuse shadows” 8
4. “uneven brightness” 8
5. “blurred boundaries” 8

Normal X-rays

1. “clear texture” 15
2. “uniform brightness 12
3. “uniform texture” 10
4. “clear image” 9
5. “regular shapes” 9

Malignant masses

1. “irregular shape” 16
2. “irregularly shaped object” 16
3. “heterogeneous texture” 8
4. “uneven edges” 7
5. “heterogeneous appearance” 7

Benign masses

1. “round shape” 12
2. “smooth texture” 9
3. “uniform texture” 8
4. “well-defined edges” 7
5. “homogeneous appearance” 6

3.2. Descriptor selection and classification
In this section, the experiments were performed based on the set
of 40 text descriptors (20 for each class) generated using GPT-4.
First, we assessed the differentiation capabilities of the descrip-
tors. For each dataset, we joined the VLM similarity scores
calculated for the medical images and the 20 text descriptors
determined for each class. The resulting 40 feature vector was
used to visualize the classification capabilities of the descriptors
using t-SNE algorithm. Figure 2 presents the results obtained
for the breast US images and chest X-rays, which confirm that
the scores determined using VLM have the potential to classify
breast masses and chest X-rays.

Fig. 2. t-SNE 2D embedding graphs presenting the separability of the
classes in breast ultrasound images and chest X-rays. Each embedding
was computed based on outputs of the vision-language model using

GPT-4 generated text descriptors

In the next step, we used the training and test sets to assess the
proposed descriptor selection method in few-shot binary classifi-
cation. Table 3 presents the classification performance obtained
for the test set. Using GPT-4 generated descriptors and the VLM,
we obtained good zero-shot classification performance for the
chest X-rays, with accuracy and AUC of 0.79 and 0.88, respec-
tively. For the breast masses the accuracy was low and equal to
0.33 while the AUC value was high and equal to 0.89, which
suggests that the default zero-shot classification cut-off of 0
was not suitable for the recognition of malignant breast masses.
Utilization of the proposed descriptor selection method and cut-
off adjustments addressed this problem and resulted in better
performance. Figure 3 presents the 𝑛-shot classification perfor-

Table 3
Classification performance obtained for the chest X-rays and breast

ultrasound images

Dataset 𝑛-shot Accuracy ↑ AUC ↑

Chest X-rays

0 0.79 0.88
1 0.78 0.85

10 0.80 0.88
20 0.81 0.89

Breast US

0 0.33 0.89
1 0.72 0.80

10 0.82 0.90
20 0.83 0.91
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mance obtained for different values of 𝑛 (𝑛 > 0). Each point of
the curve corresponds to the average value of the performance
score calculated over 100 runs based on random sampling from
the training set. For the chest X-rays, we randomly sampled
image pairs without replacement. However, for the breast US
data we sampled with replacement due to the small volume of
the training set. Figure 3 also illustrates the average number of
the selected descriptors with the proposed 𝑛-shot method. For
example, the optimal text descriptor set corresponding to the
pneumonia class included around 6 descriptors. Compared to
the zero-shot classification, we obtained slightly lower perfor-
mance for the 1-shot selection method with respect to the AUC
value. Presumably, the descriptor selection based on a single
image pair was too random, resulting in accidental removal of
the better performing descriptors. However, even with a single
image pair it was feasible to fix the cut-off issue for the breast
mass classification and increase the accuracy to around 0.72. In
general, classification performance increased with the number
of cases used for the 𝑛-shot descriptor selection. For the 20-shot
classification, the accuracy metrics increased to around 0.81 and
0.83 for the breast US images and chest X-rays, respectively.

Fig. 3. Classification performance obtained with the proposed 𝑛-shot
(𝑛 > 0) descriptor selection method, with 𝑛 indicating the number of

the image pairs used for the selection

3.3. Shape assessment

Figure 4 presents the relationships between the VLM scores
determined for the text descriptors “round shape” and “rectan-
gular shape” and the corresponding features calculated using
segmentation masks. In this case, we obtained good correspon-

Fig. 4. The relationship between the shape features calculated using
breast mass segmentation masks and the outputs of the vision-language
model for the text descriptors related to each shape parameter. SCC

stands for the Spearman’s correlation coefficient

dence for the roundness parameter, with SCC value of 0.62.
However, the model did not provide good results with respect
to the rectangularity feature, SCC of −0.26. In addition, results
presented in Fig. 5 shows that the better correlation coefficients
were obtained for the most simple text descriptors, with the
“round” achieving the highest SCC of 0.63. The text descriptor
generation method investigated by Menon and Vondrick, which
utilized full text sentences, such as “a photo of a round object”,
resulted in lower correlation coefficients compared to the basic
plain descriptors [7]. These results suggest that the capabilities
of the VLMs to assess certain image features may be limited in
practice.

4. DISCUSSION

In this work, we investigated the usefulness of the VLMs for
few-shot classification of chest X-rays and breast mass US im-
ages. Our results confirm that simple shape and texture text
descriptors generated using GPT-4 can be utilized to charac-
terize and classify medical images. In our study, the few-shot
classification method based on simple text descriptors provided
good results for both the chest X-rays and breast mass US im-
ages. We were able to further improved the performance by
utilization of the proposed descriptor selection method. This
procedure resulted in removal of the worse-performing descrip-
tors from calculations of the classification scores, and improved
the overall accuracy of the models.

As far as we know, in this study we quantitatively assessed for
the first time whether the similarity scores calculated with the
VLMs for shape-related text descriptors actually correspond to
the shape features computed using segmentation masks. In this
case, we investigated established shape features, which have
clear mathematical definitions. Our finding suggest that the
shape assessment with VLMs may depend on the phrasing of
the particular text descriptor. Moreover, VLMs may not be suit-
able for the assessment of all shape and texture features, which
constitutes a challenge when designing text descriptors and ap-
plying VLMs. It remains to be investigated to what extent the
VLMs models can assess the shape and texture features in im-
ages. Our work provides an important first step for performing
this evaluation.

The proposed method has several advantages. First, compared
to standard supervised methods, it does not require collecting
large volumes of task-specific training data, which are often
challenging to gather and curate in large amounts. Our approach
is also flexible and can be adapted to various medical imag-
ing modalities, enabling broader use across clinical settings.
As demonstrated, foundation models can be adjusted in a few-
shot manner to perform image classification, allowing for quick
experimentation and prototyping and facilitating faster develop-
ment of medical image analysis methods. Second, the use of text
descriptors enables the incorporation of expert knowledge (e.g.,
the BIRADS lexicon) into the classification procedure in a well-
understood way. This provides a certain level of transparency
and interpretability, as the employed text descriptors are asso-
ciated with well-known image texture features, the presence or
absence of which can be clearly assessed by the diagnostician.
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Fig. 5. The relationships between the outputs of the VLM model for different roundness related text descriptors vs the roundness feature calculated
based on breast mass segmentation masks. SCC stands for the Spearman’s correlation coefficient

Our work has several limitations. First, we used a model devel-
oped using natural images, but a VLM fine-tuned with clinical
reports and medical images corresponding to different modali-
ties would probably better serve for the investigated classifica-
tion problems. Second, we used a generic approach to generate
text descriptors based on GPT-4. The descriptors were not cu-
rated by domain experts. However, our study provides some in-
sights on how to engineer text descriptors to obtain good results
with the VLMs. For our few-shot learning methods, we obtained
worse performance compared to previous studies utilizing net-
works trained in supervised manner, reporting, for example,
AUC values of 0.97 for the pneumonia classification and 0.9
for breast US images [17, 24]. It remains to investigate whether
additional text descriptors can be incorporated to further im-
prove the performance. Moreover, the method investigated in
this paper is general and can be applied for other medical image
analysis problems. For instance, in non-alcoholic fatty liver dis-
ease, various texture text descriptors have been associated with
the accumulation of the liver fat, such as blurred blood vessels
or elevated echogenicity [25]. Therefore, a similar approach to
the method proposed in this study could be developed for the
fatty liver disease diagnosis [26].

5. CONCLUSIONS

Establishing the feasibility of using vision-language models for
few-shot classification of medical images is a critical step to-
ward broader application of foundation models in medical image

analysis. Our research unveiled the effectiveness of employing
GPT-4-generated descriptors, associated with features in chest
X-rays and breast mass ultrasound images, for this task.

The necessity of careful descriptor selection was underscored
by our findings, particularly as the exclusion of certain de-
scriptors was found to be vital for good classification perfor-
mance. Our evaluations demonstrated the potential of the vision-
language models, with the noteworthy accuracy of 0.81 and
0.83 for the X-rays and ultrasound images, respectively, provid-
ing encouraging evidence of the applicability of our approach.
Nonetheless, the variability observed in the descriptor genera-
tion process signifies room for improvement.

APPENDIX

The following prompts were inputted to GPT-4 (ChatGPT 4,
chat.openai.com) to obtain the text descriptors for the chest X-
rays and breast mass US images.

Prompt for chest X-rays: I am going to use the
CLIP vision-language model to detect pneumonia (vs
normal) in chest X-ray images. Please, generate 20 text
descriptors (text tokens) for pneumonia differentiation
with CLIP. Descriptors should correlate with visual
features present in pneumonia images. Next, generate 20
text descriptors for the normal images. The descriptors
for the pneumonia should differ from the descriptors for
normal X-rays. Each descriptor should consist of simple
plain words and refer to shape or texture of the X-ray
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image. Avoid using words such as “lung” as the CLIP
models were not trained with medical data.

GPT-4:

Pneumonia descriptors = “hazy shadowing”, “opaque
areas”, “increased whiteness”, “darker spots”, “blurred
contours”, “patchy white areas”, “irregular dense
patterns”, “unsmooth texture”, “diffuse bright spots”,
“random white patches”, “cloudy formations”, “incon-
sistent shadowing”, “whitened irregularities”, “rough
textured zones”, “dense irregular patches”, “large dark
spots”, “wide white areas”, “vague shadowy shapes”,
“dense white clusters”, “irregularly scattered whiteness”.

Normal descriptors = “clear spaces”, “consistent
gray tone”, “smooth textures”, “regular patterns”, “bal-
anced light and dark areas”, “uniform gray shading”,
“well-defined contours”, “few dark spots”, “regular
shadowing”, “lack of white patches”, “even grayscale
distribution”, “smooth gray surfaces”, “few bright
areas”, “symmetrical shading”, “uniform transparency”,
“absence of large dark spots”, “evenly distributed grays”,
“absence of dense white clusters”, “uninterrupted gray
patterns”, “lack of dense patches”.

Prompt for breast US images: I am going to use
the CLIP vision-language model to differentiate ma-
lignant and benign breast ultrasound images. Please,
generate 20 text descriptors for the malignant mass
differentiation with CLIP. Descriptors should correlate
with visual features present in breast ultrasound images.
Next, generate text descriptors for the benign masses.
The descriptors for the malignant mass images should
differ from the descriptors for the benign mass images.
The descriptors should not be correlated. Each descrip-
tor should consist of simple plain words and refer to
shape or texture of the masses in ultrasound images.
Avoid using words such as “mass” or “cancer” as the
CLIP models were not trained with medical data.

GPT-4:

Malignant descriptors = “irregular outline”, “un-
even texture”, “sharp edges”, “jagged boundary”,
“spiculated periphery”, “variegated appearance”,
“darker shadow”, “heterogeneous surface”, “oblong
form”, “dark areas within”, “angular shape”, “patchy
pattern”, “lobulated border”, “diffuse edges”, “taller than
wide”, “multiple dark spots”, “random bright echoes”,
“hazy border”, “mixed echoic pattern”, “thick outer line”.

Benign descriptors = “round shape”, “smooth tex-
ture”, “circular form”, “consistent pattern”, “soft edges”,
“uniform appearance”, “bright center”, “homogeneous
surface”, “symmetric shape”, “uniformly bright echoes”,
“oval structure”, “light shadow”, “regular boundary”,

“spherical configuration”, “wider than tall”, “single dark
spot”, “solid light pattern”, “clear border”, “few echoic
areas”, “thin outer line”.
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