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Abstract: Precise prediction of photovoltaic (PV) energy generation is essential for op-
timal, profitable and ecological management of electric energy resources all over the 
world. As a result, attempts are being made to develop more accurate prediction algo-
rithms. This paper compares the application of Long Short-Term Memory (LSTM, a sub-
type of Recurrent Neural Networks), PatchTST (a type of Transformer Neural Network - 
TNN) and ensemble models (making use of these two approaches) for estimating PV en-
ergy production 24 hours ahead. The results indicate that both analysed single methods 
have comparable prediction accuracy, though the hybrid approach outperforms them. The 
experiments were conducted on data from PV sites deployed across campuses at Austral-
ian La Trobe University. However, future studies could verify this approach using differ-
ent datasets. Algorithms and results presented in this study may especially contribute to 
the development of Recurrent and Transformer Neural Networks as prediction methods 
of PV energy production. 
Key words: LSTM, PatchTST, photovoltaic (PV) energy, prediction, Recurrent Neural 
Networks, Transformer Neural Networks (TNN) 

 
 
 

1. Introduction 
 
The demand for electric energy continues to rise globally, driven by industrialization, 

urbanization, and an increasing population. Simultaneously, traditional energy production 
methods face significant challenges, including the depletion of fossil fuel reserves and the 
adverse environmental effects of carbon emissions. These challenges have necessitated a 
transition to renewable energy sources, among which solar photovoltaic (PV) technology has 
emerged as a leading contender due to its renewability and abundance [1]. 

However, the effectiveness of PV energy systems is intrinsically linked to environmental 
conditions such as sunlight availability, weather patterns, and geographic factors [2]. These 
dependencies introduce variability and uncertainty in energy production, which can impede 
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effective energy management and grid stability. To address these challenges, accurate 
prediction of PV energy generation has become a critical area of research, enabling optimized 
resource allocation, improved grid integration, and better planning for renewable energy 
adoption [3]. 

Machine learning techniques have revolutionized PV forecasting by providing robust 
models capable of capturing complex temporal patterns in energy production. These 
techniques range from classical regression methods to advanced neural network architectures 
like Long Short-Term Memory (LSTM) networks and Transformer-based models. Despite the 
advancements, challenges remain, such as improving prediction accuracy across diverse 
conditions and integrating hybrid approaches for enhanced performance.  

While LSTM is indeed a more established technique, it remains a widely recognized and 
validated approach in time series forecasting. Its ability to effectively capture long-term 
dependencies in sequential data has ensured its continued relevance across various domains, 
including energy forecasting. Notably, recent studies still leverage LSTM, either 
independently or in hybrid configurations, to address complex prediction tasks, as it provides a 
reliable baseline for comparison and practical applications. Its inclusion in this study not only 
aligns with ongoing research trends but also highlights its complementary strengths when 
combined with more modern Transformer-based models. 

Transformer Neural Networks (TNNs), while relatively newer, have rapidly gained 
prominence due to their ability to capture complex temporal dependencies and model long-
range interactions in time series data. Their flexibility and effectiveness have led to numerous 
advancements in fields such as energy forecasting, where hybrid models and Transformer 
variants are increasingly applied to improve prediction accuracy. The growing amount of 
research on TNN-based solutions underscores their potential to complement traditional 
approaches like LSTM, particularly in scenarios with dynamic and highly variable datasets. 

This paper aims to contribute to this ongoing effort by comparing LSTM and PatchTST (a 
Transformer-based model) and exploring their ensemble configurations for 24-hour-ahead PV 
energy predictions. 

 
 

2. Literature review 
 
Photovoltaic energy has plenty of advantages such as affluence and renewability [1]. 

Unfortunately, the main drawback of photovoltaics is its dependence on the insolation level 
and consequently on the time of day and the weather conditions [2]. Thus, precise prediction 
of photovoltaic (PV) energy generation is crucial for optimal, profitable and ecological 
management of electric energy resources all over the world. In order to satisfy these 
requirements, it is necessary to develop the software which can accurately estimate the energy 
production of photovoltaic cells in different circumstances [3]. 

Having analysed the review of PV generation forecasting methods in [4], one can notice 
that in recent years scientists have developed or examined a variety of such algorithms based 
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on a wide range of machine learning techniques. In paper [5] authors describe different PV 
prediction models which use Lasso Regression, K–Nearest Neighbours Regression, Support 
Vector Regression (SVR), AdaBoosted Regression Tree, Gradient Boosted Regression Tree, 
Random Forest Regression and Artificial Neural Network. Research [6] presents the use of 
Kalman Filter to estimate PV generation. In article [7] there is a study on forecasting solar 
energy generation under soiling conditions using Linear Regression and Neural Networks. 
There are also many papers that analyse hybrid PV prediction models such as: [8] combining 
adaptive k-means and GRU to generate short-term estimations supported by weather data; [9] 
introducing a parallel architecture method based on the Seasonal Auto-Regressive Integrated 
Moving Average (SARIMA) model and an Artificial Neural Network (ANN) model with 
weighing factors computed periodically as a least squares problem, or [10] describing a day-
ahead prediction method using a hybrid-classification-regression forecasting engine and a 
feature selection/clustering based on criteria of relevancy and redundancy. 

Despite the fact that LSTM [11] is almost 30-year-old approach, there are still many 
research works which incorporate it in solar energy generation forecasting models either as 
single model or as a component of an ensemble model [12], for instance [13] comparing 
Multi-layer Perceptron (MLP) and simplified Long Short-Term Memory (LSTM) for short-
term estimations; [14] proposing a hybrid deep learning framework based on Convolutional 
Neural Network (CNN) and LSTM; [15] comparing different PV prediction algorithms, 
including the one combining LSTM, SVR and Bayesian optimization; [16] analyzing the 
prediction accuracy of five layer CNN-LSTM model in comparison with Lasso and Ridge 
regression, LSTM and less complex CNN-LSTM or [17] proposing four LSTM based models 
for multivariate prediction of PV energy generation.  

The increasing adoption of Transformer-based architectures [18] has allowed for 
substantial improvements in forecasting accuracy. For instance, the Transformer variant 
proposed in [19] integrates numerical weather prediction data with site-specific physical 
parameters to improve day-ahead forecasting accuracy. Their model, PTFNet, effectively 
extracts both temporal dependencies and inter-feature relationships, outperforming other state-
of-the-art techniques in terms of error metrics such as RMSE and MAPE. Similarly, [20] 
introduced the Graph Patch Informer (GPI) model, a Transformer-based approach that 
leverages segment-wise self-attention and graph attention networks to enhance the extraction 
of temporal dependencies. 

Hybrid Transformer models that incorporate recurrent neural networks (RNN) have also 
been explored to further optimize forecasting performance. Kim et al. proposed the 
PVTransNet model, which combines Long Short-Term Memory (LSTM) with Transformer 
encoders to address day-ahead forecasting challenges. By integrating historical PV generation 
data with weather forecasts and solar geometry information, PVTransNet achieved notable 
improvements in prediction accuracy, surpassing standalone LSTM and Transformer 
architectures [21]. Another study [22] compared vanilla Transformer, Informer, and 
Autoformer models for short-term PV power forecasting in a centralized solar plant. The 
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vanilla Transformer demonstrated superior predictive performance, particularly under 
scenarios requiring longer forecasting horizons, such as 24-hour predictions. 

To address the issue of weather uncertainty, models such as CT-NET [23] employ a hybrid 
architecture that combines convolutional neural networks (CNN) with multi-head attention 
mechanisms. This architecture enables the model to extract both local and global features, 
mitigating the impact of fluctuating weather conditions on PV power generation forecasts. The 
CT-NET model achieved lower error rates and reduced computational complexity, making it 
suitable for real-time applications in smart grids. Similarly, paper [24] utilized the Temporal 
Fusion Transformer (TFT) for day-ahead PV forecasting. The TFT model integrates 
interpretable attention-based mechanisms, outperforming traditional methods such as ARIMA, 
LSTM, and XGBoost in terms of accuracy while offering insights into the temporal dynamics 
of PV generation. 

Despite the improvements brought by Transformer-based models, challenges remain, 
particularly regarding data availability and computational efficiency. Transfer learning 
techniques have been proposed as a solution to overcome data scarcity. Paper [25] 
demonstrated how pre-trained Transformer models could be fine-tuned using limited data 
from individual households to improve short-term energy demand and PV production 
forecasts. Their approach resulted in a significant reduction in prediction errors, highlighting 
the effectiveness of transfer learning for localized forecasting tasks. 

Paper [26] describes a CNN-CosAttention-Transformer (CA-Transformer) model based on 
the Copula function as a method for short-term photovoltaic power generation estimation. In 
[27] one can find a comparison of models based on several Recurrent Neural Networks (in 
particular LSTM and GRU) with Transformer models in terms of solar power generation 
forecasting precision in two types of solar systems (non-transparent and transparent panels). 
Article [28] proposes the transformer model for predicting ultra-short-term photovoltaic power 
generation and compares its results with GRU and DNN. However, there are also articles that 
propose an ensemble of LSTM an Transformer model, such as [29] describing an LSTM-
attention-embedding method based on Bayesian optimization for PV power prediction. 

As the abovementioned examples show, many algorithms estimating the solar electric 
energy production have already been implemented. Nevertheless, they can be further adjusted 
and the new ones can be developed in order to generate even more precise predictions. 
Therefore, the aim of this paper is to compare Recurrent Neural Networks (RNNs) [30], 
Transformer Neural Networks [18] and hybrid models (making use of these approaches)in 
terms of PV energy generation prediction for 24 hours ahead on the basis of the results 
obtained respectively for Long Short-Term Memory (LSTM) [11, 31], PatchTST [32] and 
ensemble models created based on the averaging technique [33]. 

 
 

3. Methodology 
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3.1. LSTM (Long Short-Term Memory) 
LSTM (described in [11]) is a type of RNN [3] that can handle long-term dependencies 

and sequential data. Unlike conventional RNNs, which suffer from the vanishing or exploding 
gradient problem, LSTM networks have a structure that allows them to store and manipulate 
information over long time intervals [11]. 

LSTM networks consist of cells that have three gates [31].The input gate decides which 
new information to add to the cell state, the output gate determines which part of the cell state 
to output, and the forget gate decides which part of the cell state to discard [11, 34]. Thanks to 
them it is possible to regulate the information flow through the network. When using LSTM, it 
is advisable to normalize the data first [35]. 

As recent research shows [35, 36], LSTM networks can be applied to various tasks, 
including PV time series prediction. 

 
3.2. PatchTST 

PatchTST (proposed in [32]) belongs to modern Transformer Neural Networks (TNN) and 
can be applied for both single- and multi- time series modelling tasks. The architecture of 
PatchTST is shown in Fig. 1. 
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Fig. 1. PatchTST architecture [32] 

 
In this method, the input time series is first split into separate channels (Fig. 1(a)). After 

that, the time series in each channel is independently divided into patches inside Transformer 
Backbone (Fig. 1(b), Fig. 1(c)). That enables PatchTST to place each sample in the context 
and understand dependencies between samples in different time steps. The aforementioned 
patches are then used as input tokens in Transformer Encoder. Finally, each series is processed 
either in a supervised or self-supervised way in order to generate the results. In the former 
approach the patched set of vectors is used to output the full prediction length, while in the 
latter randomly selected patches are firstly set to zero and then reconstructed to enable masked 
time series pre-training. 

This approach can significantly enhance the forecasting accuracy for time series problems 
in comparison with other Transformer Neural Networks [32]. 

 
3.3. Ensemble models 

Although single models can be accurate predictors, usually it is necessary to increase the 
precision of generated results and a very common solution to that are ensemble models. 

Ensemble model combines the predictions generated by multiple single models trained 
using the same dataset (or a part of it) in order to calculate the final estimated value [37]. 
There are many methods that make use of the aforementioned idea. One such technique is 
averaging in which the predicted value is calculated as a mean of the results generated by each 
of single predictors the ensemble model comprises of [33]. 

One of way to average the results is to calculate the value of arithmetic mean of the 
predictions (1). This type of averaging can improve the estimation results provided that all 
single predictors the ensemble model uses have a similar accuracy. 

 𝑥ො(𝑡) =
ଵ

ெ
∑ 𝑥௜(𝑡)ெ

௜ୀଵ , (1) 

where: 𝑥ො(𝑡) is the predicted value generated by the ensemble model for the timestep t, 𝑀 is a 

number of single predictors and 𝑥௜(𝑡) is the predicted value generated by the i-th 

(i = 1, 2, …, M) single predictor for the timestep t. 
The aforementioned limitation can be though overcome by using weighted averaging, 

which is defined as (2). In this method the weight of an ensemble model (commitment of each 
single model to prediction results) is calculated using (3) based on its prediction accuracy 
obtained for the training dataset [33]. 

 𝑥ො(𝑡) = ∑ 𝑤௜𝑥௜(𝑡)ெ
௜ୀଵ , (2) 

where: 𝑤௜  is the weight of the prediction generated by the i-th (i = 1, 2, …, M) single predictor 

and can be calculated using (3) 

 𝑤௜ =
ఎ೔

೘

∑ ఎ೙
೘ಾ

೙సభ
, (3) 
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where: 𝜂௜
௠ is the accuracy of the i-th model on the training data and 𝑚 is a coefficient that 

enables to increase the influence of the best single predictors on the results of the ensemble 

model and to decrease the impact of the less accurate ones. 
However, there are also more sophisticated approaches to create predictors based on a 

group of models such as [37]:  
– bagging, which every single predictor in the hybrid of models is based on the same 

machine learning algorithm, but trained using different randomly selected subsets of 
the training dataset, 

– stacking, which introduces an additional model (known as blending predictor) to 
aggregate the predictions generated by single models, 

– boosting, which is based on the technique of sequential usage of different models so 
that the output of the previous model is the input for the subsequent. 

Advanced aggregation methods require additional training (e.g., blending layers in 
stacking) or iterative optimization (e.g., boosting), significantly increasing computational 
costs. Averaging and weighted averaging are fast and efficient, even with large sets of 
predictors. Advanced methods provide marginal benefits at the cost of increased complexity in 
our case. 

 
3.4. Dataset 

All the experiments were conducted using the UNISOLAR dataset [38]. It comprises solar 
energy generation, weather and location site data from 42 PV sites at five campuses at 
Australian La Trobe University from approximately two years. The data comes from five 
separate photovoltaic farm installations, and there is indeed not much variability between 
stations. Spring and autumn are quite cloudy, while summer is sunny and hot. However, this 
dataset is well-suited for initial investigations as it includes multiple PV sites and weather data 
over a substantial period. 

The PV data are recorded at 15-minute time intervals and measured using kWh. Prior to 
using the data in the research, they were preprocessed, statistically analysed and then 
normalized using min-max normalization, defined as (4) 

 𝑥௞
௡ =

௫ೖି୫୧୬(𝑿)

୫ୟ୶(𝑿)ି୫୧୬(𝑿)
, (4) 

where: 𝑥௞
௡ is the value of a normalized sample, 𝑿 are numerical data from learning and testing 

sets, and 𝑥௞ is the value of a k-th sample of the set X. The minimum and maximum values are 

calculated only for the learning data and are saved to calculate the actual values for the testing 

data, which are unknown at the training stage. The data were split into training, validation, and 

testing in a ratio of 70/15/15 percent of the entire available database. 
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3.5. Research details 
The research included implementation of LSTM and PatchTST algorithms and testing 

them on their estimation capabilities. The latter included assessing the estimation accuracy 
using both different network input data configurations and different complexity level of 
network architectures. The best single models were then used to create ensemble models 
(based on averaging using the arithmetic and weighted mean) and verify whether such hybrid 
models can improve the precision of PV generation prediction. 

Originally the testing part was to include three main input data configurations for both 
LSTM and PatchTST: 

– only solar generation delayed by 24–72 hours (in steps of 24 hours), 
– solar generation and weather data (air temperature, apparent temperature, relative 

humidity, dew point temperature, wind speed, wind direction) delayed by 24–72 hours 
(in steps of 24 hours), 

– only solar generation delayed by 24–120 hours (in steps of 24 hours). 
Due to the fact that Transformer Neural Network requires a context window for all the 

data, PatchTST data preprocessing process automatically generates it using the step of a given 
dataset [32]. As a result, is was necessary to modify the aforementioned data configurations 
for PatchTST to the ones with the step equal to the original step of the dataset used in the 
experiments. 

Recurrent and Transformer Neural Networks make use of different approaches to learning 
and prediction process. Thus, their architectures cannot be directly compared. However, the 
comparison of architectures was made in this paper to examine how the complexity of both 
analysed networks impacts the PV generation prediction results. Architecture tests for LSTM 
included changes in the number of LSTM layers and the number of neurons in each layer, 
whereas for PatchTST the results for different number of attention heads were analysed (see 
section 3). The aforementioned additional configurations were introduced only for the models 
with solar generation data delayed by 24–72 hours. 

The LSTM models presented in this paper were built using Keras package from 
TensorFlow library (version 2.15.0) [39]. Their architecture did not change during the research 
(excluding the architecture tests) and was as follows: 

– model: sequential, 
– LSTM layers: two, with 8 and 4 neurons and hyperbolic tangent as an activation 

function, 
– loss calculation: Mean Absolute Error (MAE), 
– optimizer: Adam. 
MAE is commonly used alongside MSE to evaluate model performance and as the loss 

function. In our analysis, we included both metrics during evaluation but opted for MAE as 
the primary loss function due to its alignment with the goals of this study. Thanks to this, the 
model learns primarily to fit most of the data, which can be especially useful in the case of a 
rather dynamic and variable phenomenon of photovoltaic energy generation, for which it is 
difficult to determine which sample is an outlier and which is not. 
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The PatchTST models presented in this paper were created using Transformers library, 
version 4.39.0 [40]. The values of their parameters (apart from the number of attention heads 
during architecture complexity tests) were as recommended by authors of this method [32]. 

Prediction results for each created single model were compared and assessed using Root 
Mean Square Error (RMSE) and Mean Absolute Error (MAE). Unlike MSE, which amplifies 
the impact of large errors due to its quadratic nature, MAE treats all errors linearly. This 
characteristic aligns well with our dataset, which occasionally exhibits extreme variations in 
PV energy generation due to sudden changes in weather conditions. MAE provides a 
straightforward interpretation of the average prediction error in the same units as the target 
variable (e.g., kWh in our case). This makes it easier to contextualize the errors for 
practitioners and stakeholders, especially in energy applications.  

In the second part of the research, some of single models were used to create a few hybrid 
predictors. This included both ensemble models based on calculating the arithmetic mean of 
predictions and the ones making use of the weighted averaging method (weights were 
calculated using (3) for m = 1 and the values of MAE foreach training dataset as the accuracy 
of models). The abovementioned hybrid models were tested on their prediction precision on 
the basis of RMSE and MAE (the same criteria as for the single models). 

 
 

4. Results and discussion 
 

4.1. Single models 
In the first step of this part of the research the impact of different data configurations on 

the precision of the PV generation prediction using LSTM and PatchTST was analysed. The 
obtained numerical accuracy results and short description of each model are presented in 
Table 1, while sample plots of PV generation predictions and prediction errors for LSTM and 
PatchTST are shown respectively in Fig. 2 and Fig. 3 (for clarity purposes plots show only 
randomly selected 10-days periods from one PV site). 

 
Table 1.  Prediction accuracy of LSTM and PatchTST models for different input data configurations 

Data configurationin 
model 

RMSE [kWh] MAE [kWh] 

LSTM PatchTST LSTM PatchTST 

only solar 
generation delayed 

by 24–72 hours 
1.9671 1.8248 0.8621 0.9726 

solar generation and 
weather delayed by 

24–72 hours 
1.9020 1.8338 0.8599 1.0247 

only solar 
generation delayed 
by 24–120 hours 

1.9175 1.7847 0.8533 0.8552 
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Fig. 2. Sample PV generation predictions (upper) and prediction errors (lower) for different data 
configurations using LSTM 

 
Having analysed the data from Table 1, one can notice that the value of RMSE is lower for 

PatchTST than for LSTM in all the analysed cases. However, the obtained MAE values reveal 
the opposite tendency. Hence, based on the MAE and RMSE metrics it is impossible to decide 
which method predicts PV energy generation more precisely. Nonetheless, the presented 
results indicate a similar and high accuracy of both methods. 

Furthermore, the data from Table 1 show that the best results for LSTM were obtained for 
models with the following inputs: 

– solar generation and weather data delayed by 24–72 hours, 
– only solar generation data delayed by 24–120 hours. 
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Fig. 3. Sample PV generation predictions (upper) and prediction errors (lower) for different data 
configurations using PatchTST 

 
However, for the PatchTST the lowest prediction error was achieved while using the solar 

generation data delayed by 24–120 hours as a network input. 
Observations described in the previous section can also be confirmed by analysis of 

Figs. 2 and 3. In addition, these plots present more detailed information on daily PV energy 
generation estimation than error values from Table 1, allowing assessment of the prediction 
quality in different conditions. Based on that, one can for instance notice the dominance of 
LSTM over PatchTST in periods with slightly changing generation trend, while the latter 
surpasses the former in estimating unexpected changes in PV generation. In addition, 
PatchTST model with solar generation and weather data delayed by 24–72 hours seems to be 
better than other analysed PatchTSTs in predicting higher amounts of PV energy, but suffers 
from prediction fluctuations for smaller energy portions. Thus, it is advisable to test hybrid 
models, for instance different PatchTST configurations or PatchTST together with LSTM. 
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The second step of this part of the research was analysis of LSTM and PatchTST 
architectures complexity in terms of prediction accuracy. The results for both tested methods 
are shown in Table 2 and Table 3 respectively. 

 
Table 2.  Prediction accuracy of LSTM models for different number of LSTM layers and their number of 

neurons 

LSTM layers configuration RMSE [kWh] MAE [kWh] 

2 LSTM layers, 8 and 4 neurons 1.9671 0.8621 

2 LSTM layers, 32 and 16 neurons 1.9801 0.8656 

2 LSTM layers, 64 and 32 neurons 1.9852 0.8667 

1 LSTM layer, 100 neurons 1.9878 0.8675 

 
Table 3.  Prediction accuracy of PatchTST models for different number of attention heads 

Number attention heads RMSE [kWh] MAE [kWh] 

4 1.8397 0.9860 

8 1.8070 0.8672 

16 1.8248 0.9726 

32 1.8225 0.9525 

 
Prediction accuracy summary for LSTM in Table 2 shows that models with two LSTM 

layers having less neurons are a little more precise in PV generation prediction than the one 
having a single LSTM layer with a greater number of neurons. Furthermore, a decrease in the 
number of neurons in LSTM layers for models with two such layers usually improves both the 
generalization ability and PV generation prediction results, and reduces the computational 
complexity of the model. 

Having analysed the data presented in Table 3 one can notice that the most appropriate 
number of attention heads for precise predicting PV energy generation is 8. Moreover, the 
results show that PatchTST produces the least accurate predictions when the value of the 
aforementioned parameter is set to 4. 

Nonetheless, the described LSTM and PatchTST architecture tests were conducted only for 
one data configuration and their results should be verified for a wider number of cases. 

 
4.2. Ensemble models 

The aim of this this part of the study was the analysis of estimation accuracy of several 
hybrid predictors created using models from the first part of the research and averaging 
technique based on either arithmetic or weighted mean. Table 4 shows single models used in 

Earl
y A

cce
ss



 This paper has been accepted for publication in the AEE journal. This is the version which has not been 

fully edited and content may change prior to final publication.  
Citation information: DOI 10.24425/aee.2025.153900 

 

13 
 

all ensemble models analysed during this part of the research and Table 5 shows the details of 
the created ensemble models (using names of single models form Table 4). 

 
Table 4.  Single models used in ensemble models 

Model name Model description 

LSTM 1 
Two layers 8–4 neurons LSTM with only solar generation delayed by 24–72 hours 
(best from Table 2, from input data configurations tests) 

LSTM 2 
Two layers 8–4 neurons LSTM with solar generation and weather delayed by 24–
72 hours 

LSTM 3 
Two layers 8–4 neurons LSTM with only solar generation delayed by 24–120 
hours 

PatchTST 1 
PatchTST with only solar generation delayed by 24–120 hours (with number of 
attention heads = 16) 

PatchTST 2 
PatchTST with only solar generation delayed by 24–72 hours (best from Table 3, 
with number of attention heads = 8 (from architectures complexity tests)) 

PatchTST 3 
PatchTST with solar generation and weather delayed by24–72 hours (with number 
of attention heads = 16) 

 
Table 5.  Details of created ensemble models (names of single models based on data from Table 4) 

Ensemble model 
Single models used in a hybrid model 

Model 1 Model 2 Model 3 Model 4 

Hybrid of LSTM models LSTM 1 LSTM 2 LSTM 3 – 

Hybrid of PatchTST models PatchTST 1 PatchTST 2 PatchTST 3 – 

Hybrid of LSTM and PatchTST models 1 LSTM 2 LSTM 3 PatchTST 1 PatchTST 2 

Hybrid of LSTM and PatchTST models 2 LSTM 2 LSTM 3 PatchTST 1 PatchTST 3 

Hybrid of LSTM and PatchTST models 3 PatchTST 1 PatchTST 2 PatchTST 3 LSTM 2 

 
The obtained numerical accuracy results for each of the aforementioned hybrid models are 

presented in Table 6. 
Having analysed the data from Table 6, it can be noticed that ensemble models based on 

both presented averaging methods generate almost equally precise PV energy production 
predictions. Therefore, it might be advisable to use the technique of averaging the results of 
single predictors using their arithmetic mean, as it requires less computations. 

 
Table 6.  Prediction accuracy of LSTM and PatchTST ensemble models 

Ensemble model 

RMSE [kWh] MAE [kWh] 

Averaging 
(arithmetic 

mean) 

Weighted 
averaging 

Averaging 
(arithmetic 

mean) 

Weighted 
averaging 
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Hybrid of LSTM models 1.9250 1.9249 0.8566 0.8566 

Hybrid of PatchTST models 1.6672 1.6693 0.8536 0.8523 

Hybrid of LSTM and PatchTST models 1 1.7959 1.7914 0.8400 0.8400 

Hybrid of LSTM and PatchTST models 2 1.6985 1.6936 0.8360 0.8358 

Hybrid of LSTM and PatchTST models 3 1.6788 1.6789 0.8401 0.8402 

 
Moreover, the data from Table 6 indicate differences in prediction accuracy of ensemble 

models. Hybrid of only LSTM models usually generates more precise estimations than the 
majority of analysed single predictors using this type of neural network. However, it is the 
least accurate ensemble model. Unlike the previous hybrid predictor, the one based only on 
PatchTST method generates the most accurate results among all single models based on 
transformers. It is also the best PV generation prediction model examined (regarding the value 
of RMSE), but suffers from one of higher values of MAE (considering other hybrid 
approaches). The best prediction results are though generated by hybrids of both LSTM and 
PatchTST, especially by models 2 and 3 from Table 6. The RMSE and MAE values obtained 
for this two methods are the lowest considering all analysed PV energy production prediction 
methods. 

In order to compare the obtained prediction results to other simple and frequently used 
prediction methods, tests were conducted using a naive model and linear regression. The 
obtained results are presented in Table 7. 

 
Table 7.  Prediction accuracy of naive model and linear regression model 

Model RMSE [kWh] MAE [kWh] 

Naive model 2.1895 0.9256 

Linear regression 2.0710 0.9129 

 
Conclusions described in the previous paragraphs can be confirmed by the sample plots of 

PV generation predictions and prediction errors for analysed ensemble models presented in 
Figs. 4–7. 
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Fig. 4. Sample PV generation predictions (upper) and prediction errors (lower) using hybrid models 
based on either LSTM or PatchTST using averaging 

 
Based on the aforementioned plots, one can notice that making use of the ensemble models 

resulted in the reduction of the adverse effect of predicted value fluctuations observed for 
PatchTST models for smaller energy portions (Fig. 4 and Fig. 5). Furthermore, it was also 
possible to diminish the phenomenon of under- and overestimating the predicted value of PV 
energy production. Unfortunately, ensemble models did not manage to address the problem of 
less precise predictions for unexpected and rapid changes in PV generation. Therefore, it 
would be advisable to further test other hybrid approaches to PV energy production prediction, 
for instance the ones considering the season or/and the part of a day. 
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Fig. 5. Sample PV generation predictions (upper) and prediction errors (lower) using hybrid models 
based on either LSTM or PatchTST using weighted averaging 
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Fig. 6. Sample PV generation predictions (upper) and prediction errors (lower) using hybrid models 
based on LSTM and PatchTST using averaging 

 
The studied prediction methods calculate energy generation values for night hours, when it 

is known that PV installations are not working. The obtained forecast quality can be easily 
improved by not taking into account forecasts for hours after sunset and before sunrise. 
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Fig. 7. Sample PV generation predictions (upper) and prediction errors (lower) using hybrid models 
based on LSTM and PatchTST using weighted averaging 

 
 

5. Conclusions 
 
This paper compared different approaches to estimating future photovoltaic energy 

generation: LSTM (a subtype of Recurrent Neural Networks), PatchTST (a type of 
Transformer Neural Networks) and ensemble models based on the above-mentioned methods. 
The obtained results suggest that both analysed single approaches present a comparable and 
high overall accuracy of PV energy generation prediction, though their precision varies from 
each other depending on the amount of produced photovoltaic energy and changes in its 
generation trend. Thus, hybrids of the two above-mentioned techniques were also researched. 
The accuracy assessment tests have shown that the best ensemble models of LSTM and 
PatchTST outperform all analysed single PV energy generation predictors. However, such 
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approach is not able to address the problem of less precise predictions for unexpected and 
rapid changes in PV generation. 

Therefore, it would be advisable to evaluate the estimation precision of different ensemble 
models in such application. Furthermore, due to the fact that the described experiments were 
conducted using the data from one country, future studies could also verify the presented 
methodology using a larger number of datasets from many localizations with varied weather. 

Despite the aforementioned limitations, this study may contribute to the development of 
Recurrent and Transformer Neural Networks and their hybrid combination as a prediction 
methods of PV energy production. 
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