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 This paper presents a theoretical analysis of a gain and loss saturation effect in planar 

multilayer anti-parity-time (APT) symmetric structures for the first time. This analysis 

makes it possible to examine the behaviour of nonlinear APT structures when excited by 

incident light of known intensity and compare their properties with corresponding parity-

time (PT) symmetric structures. Two types of APT structures are studied: one with both 

layers of the primitive cell being gain layers and the other with both layers being loss layers. 

The refractive indices of the individual layers satisfy the condition n(z) = ‒n*(‒z). Nonlinear 

analysis is performed using a modified transfer matrix method, which allows for the 

determination of output intensity characteristics as a function of input intensity for different 

levels of gain or loss saturation intensities. These characteristics demonstrate a bistable 

behaviour and a strong nonreciprocal response of the investigated APT structures. The 

results obtained for both types of APT structures are compared with corresponding PT 

structures, showing that APT structures reveal identical linear and nonlinear responses as 

corresponding PT structures. 
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1. Introduction 

Structures exhibiting anti-parity-time (APT) symmetry 

have been studied since the second decade of the 21st 

century [1] and their predecessors, i.e., parity-time (PT) 

symmetric structures since the end of the 20th century [2]. 

The principle of creating PT structures in photonics is 

related to the refractive index [3] of two layers creating 

a periodic lattice. These layers are characterized by complex 

refractive indices n = nRe + inIm that satisfy the following 

condition n(z) = n*(‒z), where the asterisk denotes a com-

plex conjugate. This condition can be rewritten separately 

for the real and imaginary parts of the refractive index of 

two layers, i.e., nRe(z) = nRe(‒z) (the real parts are equal) 

and nIm(z) = ‒nIm(‒z) (the imaginary parts are the additive 

inverse of each other). The condition for the imaginary part 

is implemented by using two optically active materials: 

amplifying (nIm < 0) and absorbing (nIm > 0). 

In APT symmetric structures, the complex refractive 

index is consistent with the relationship of n(z) = ‒n*(‒z), 

i.e., its real and imaginary parts fulfil the conditions of 

nRe(z) = ‒nRe(‒z) and nIm(z) = nIm(‒z) [1], which means that 

the primitive cell of the APT structure may consist of two 

gain layers or two loss layers. These structures demonstrate 

unique properties in the absence of any gain medium, such 

as: spontaneous phase transition of the S matrix [1], 

continuous lasing spectrum [1], total flat transmission band 

[1], unidirectional invisibility [4], and reflection anisotropy 

for light waves incident from two opposite directions [5]. 

Designing the APT structure requires the usage of a 

negative index material (NIM). This can be achieved by 

using a new class of metamaterials in the optical field [6], 

such as special photonic crystals like nano-fishnets with 

voids of various shapes. The optical loss of the APT 

structure (corresponding to the positive imaginary part of 

the refractive index) can be regulated by ion doping [7]. 

The optical gain (the negative imaginary part of the 

refractive index) can be achieved by using quantum wells 

[8] or nonlinear two-wave mixing [9]. 

APT symmetric structures are theoretically investigated 

in various arrangements such as: dissipatively coupled 

optical structures, where a flat broadband light transport *Corresponding author at: agnieszka.wyszynska@pw.edu.pl  
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and dispersion-induced dissipation are observed [10], 

single-particle sensor based on the APT symmetric indirectly 

coupled whispering gallery mode (WGM) cavities [11], 

optical gyroscope using APT symmetry, characterized by 

greater sensitivity than classic systems [12], APT high‐

sensitivity sensor [13], and single damping linear resonator 

with APT symmetry [14]. 

The first works with physical implementations of the 

APT structures have already appeared. One is an on-chip 

realization of the APT symmetry structure using a fully 

passive, nanophotonic platform consisting of three 

evanescently coupled waveguides [15]. The next one 

demonstrates the APT symmetry in a spectral dimension 

induced by a nonlinear Brillouin scattering in a single 

optical microcavity [16]. The newest one shows an on-chip 

chiral polarizer by constructing a polarization-coupled 

APT symmetric system [17]. 

The analyses of the APT structures published so far 

[1, 4, 5] presented their transmission properties without 

considering saturation effects. Therefore, in this work, a 

nonlinear response of the multilayer APT symmetric 

structure is investigated, taking into account the gain and 

loss saturation effects. The proposed simple model shows 

the output intensity as a function of the input intensity of 

the plane wave illuminating the studied structure for 

different levels of gain and loss saturation intensities. This 

model enables the examination of the finite APT structure 

composed of any optical material. Moreover, it considers 

the refractive index of the medium surrounding the 

structure. This is important in the applications of the 

analysed structures, where they can be an element of an 

integrated system or a stand-alone device (e.g., a mirror or 

a filter) in optical hybrid systems. Furthermore, the 

investigation is carried out for the APT structures, without 

loss of generality, working at a wavelength equal to 

1.55 m, which is typical for telecommunication systems. 

The study of the APT symmetric structure is performed 

using a modified transfer matrix method [18] which was 

adapted to take into account for the gain and loss saturation 

effects and the incident wave intensity [19]. The proposed 

model allows easy examination of gain and loss saturation 

levels influence on output intensities. 

Firstly, the method of determining the refractive indices 

of the APT structure is presented. Next, the structure is 

analysed regardless of gain and loss saturations to obtain its 

geometrical parameters. This linear analysis identifies 

optimal points where the reflection and transmission 

coefficients are at their maximum (their values are much 

higher than unity). The results of this analysis are compared 

with the results of the analysis of corresponding PT 

structures. Further, the study is conducted to analyse 

different levels of the gain and loss saturation intensity 

parameters for multilayer APT and corresponding PT struc-

tures. The obtained characteristics of the output intensities 

demonstrate a bistable behaviour. The following section 

presents a theory describing the APT structure. In section 3, 

the charts illustrate the longitudinal distribution of the field 

and the characteristics showing the output intensity as 

a function of the input intensity for different levels of gain 

and loss saturation intensities. Section 4 presents the 

conclusions. Appendices contain a more detailed description 

of the numerical analysis, as well as the field distribution 

of the compared APT and corresponding PT structures. 

2. Theory 

The APT symmetric periodic structure under investigation, 

shown in Fig. 1, comprises alternating layers characterized 

by complex refractive indices. One layer has a refractive 

index of n1; the other one has n2. The refractive index of 

a surrounding medium is n0. Figure 1 presents two setups: 

setup 1 when the wave illuminates the layer with the 

refractive index n1 [Fig. 1(a)], setup 2 when the wave 

illuminates the layer with the refractive index n2 [Fig. 1(b)]. 

For the PT structure, refractive indices have to satisfy 

the following condition n(z) = n*(‒z) which implies the 

form of these coefficients: 

 1 2Re Im Re Imn n in , n n in ,= − = +PT:  () 

where nRe and nIm are the real and imaginary parts, 

respectively. Whereas, for the APT structure, refractive 

indices have to satisfy the APT condition n(z) = ‒n*(‒z). 

This condition allows for the selection of the refractive 

indices of the APT structure in relation to the PT structure. 

In the first case, if the layer with the index n1 is gain (as in 

the PT structure), the refractive index of the second APT 

layer n2 is chosen according to the above condition. Then, 

both layers of the APT structure have a negative imaginary 

part of the refractive index nIm and will be referred to as 

APTgain. In the second case, if the layer with the index n2 is 

loss (as in the PT structure), the refractive index of the 

second APT layer n1 is selected according to the same 

condition. Then, both layers of the APT structure have a 

positive refractive index nIm and will be referred to as 

APTloss. It is worth noting that for both cases, the real parts 

of the refractive indices have opposite signs, respectively 

in APTgain and in APTloss, as shown below: 

1 2

2 1

Re Im Re Im

Re Im Re Im

n n in n n in ,

n n in n n in .

= −  = − −

= +  = − +

gain

loss

APT :

APT :
 () 

 

Fig. 1. The analysed APT or PT symmetric structures with the 

appropriate junction J and the propagation P matrices 

indicated. (a) setup 1 – wave illuminates layer n1; (b) 

setup 2 – wave illuminates layer n2. 
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The analysed APT (or PT) structure comprises 

primitive cells with two layers characterized by equal 

widths wa = wb. The size of the primitive cell is denoted by 

 = wa + wb. The length of the entire structure depends on 

the number of primitive cells N and their size , i.e., 

L = N. 

The electric field distribution within the first layer 

E1n(x) and the second layer E2n(x) can be written as a sum 

of two plane waves travelling in the positive and negative 

direction of the X axis, respectively (see Fig. 1). According 

to [20], the complex amplitudes of each wave in the n-th 

cell are the following: 
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where an and bn are the electric field complex amplitudes 

of counter running waves in the first layer, cn and dn in the 

second one, and k0 is the wave number in the free space. 

2.1. Linear case 

In this section, the linear analysis of the APT or PT 

symmetric structures is presented using the modified 

transfer matrix method [18, 20], neglecting gain and loss 

saturation effects. In this work, the plane wave is normally 

incident on the APT (or PT) symmetric structure only on 

one side, i.e., on the layer with the refractive index n1 or n2. 

Therefore, depending on which layer the wave is incident 

upon, its intensity equals Iin
(1) = |c0|2 for setup 1 [Fig. 1(a)] 

or Iin
(2) = |a0|2 for setup 2 [Fig. 1(b)]. Simultaneously, the 

analysed wave is reflected with an intensity equal to 

Ir
(1) = |d0|2 or Ir

(2) = |b0|2 and the output wave is equal to 

Iout
(1) = |aN+1|2 or Iout

(2) = |cN+1|2, respectively.  

The transfer matrices M(1,lin) and M(2,lin) are comprised 

of the junction J and the propagation P matrices (see 

Fig. 1). For waves illuminating the first or second layer of 

the APT (or PT) structure, respectively, they are defined for 

one (N = 1) or more primitive cells (N > 1) as follows: 

where matrices J and P are described in Appendix A. 

The reflectances Rlin
(1), Rlin

(2) and transmittances Tlin
(1), 

Tlin
(2) of the APT (or PT) structures are expressed in terms 

of the transfer matrix elements: 
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where rlin
(1), rlin

(2) and tlin
(1), tlin

(2) are the amplitude reflection 

and transmission coefficients of the APT (or PT) structures, 

respectively. 

2.2. Nonlinear case 

Taking into account the gain and loss saturation effect 

requires introducing saturation intensity in both layers of 

the APT or PT cell. In this case, the imaginary parts of the 

refractive indices depend on the longitudinal distribution of 

the field and the saturation intensity. Therefore, the 

continuous change of the refractive indices is approximated 

by discretizing them, which means that a step function 

replaces the monotonic distribution of the imaginary parts. 

Consequently, each layer of the APT (or PT) cells is 

divided into narrow stripes [19] (see Fig. 2) where the 

subscript n describes the number of a primitive cell and the 

superscript (i) describes the number of a stripe. 

In each stripe, the imaginary parts of the refractive 

indices are defined as follows: 
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where Is1 and Is2 are the saturation intensities of the APT 

(or PT) layers with index n1 and n2, respectively; an
(i), bn

(i), 

cn
(i), and dn

(i) are the field complex amplitudes for the i-th 

stripe for each n-th cell. The mentioned amplitudes are 

normalized so that the expressions (|an
(i)|2 + |bn

(i)|2) and 

(|cn
(i)|2 + |dn

(i)|2) describe the power density in the related 

stripe. The number Q of stripes in each APT (or PT) cell 

layer determines the accuracy of the calculations. This 

value should be large enough to meet two assumptions: the 

imaginary parts n1Im
(i) and n2Im

(i) are almost constant within 

the analysed stripes, the change in the refractive index 

between the stripes is much smaller than the change in the 

 

Fig. 2. The n-th APT or PT cell divided into Q stripes. 
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refractive indices between the layers of the APT (or PT) 

cell. The number Q is determined in the test calculations so 

that its further increase does not change the results. 

The transfer matrix method [19] is used to analyse the 

influence of gain and loss saturation on the wave output 

intensity of the APT (or PT) structures. However, the 

change in the longitudinal distribution of the field, resulting 

from changes in the imaginary parts of the refractive 

indices, causes the matrices M for both setups and one 

(N = 1) or more primitive cells (N > 1) to be rewritten: 

where the junction J and the propagation P matrices are 

shown in details in Appendix B. 

The reflectances Rnon
(1), Rnon

(2) and transmittances 

Tnon
(1), Tnon

(2) of the nonlinear APT (or PT) structures are 

written in terms of the field amplitudes: 

 

( ) ( )
( )

( )

( ) ( )
( )

( )

( ) ( )
( )

( )

( ) ( )
( )

( )

21
2

1 1 0

1

0

21
2

1 1 1

1

0

22
2

2 2 0

2

0

22
2

2 2 1

2

0

r

non non

in

out N

non non

in

r

non non

in

out N

non non

in

dI
R r ,

cI

I a
T t ,

cI

bI
R r ,

aI

I c
T t ,

aI

+

+

= = =

= = =

= = =

= = =

 () 

where rnon
(1), rnon

(2), and tnon
(1), tnon

(2) are the amplitude 

reflection and transmission coefficients of the APT (or PT) 

structures, respectively. The procedure of numerical 

calculation of the output wave intensity Iout
(1) and Iout

(2) for 

the APTgain, APTloss, and corresponding PT structures is 

shown in Appendix B. It is important to note that this 

procedure requires a self-consistent method to solve 

transcendental equations describing the J matrices which 

are a function of the refractive indices dependent on the 

gain and loss saturation effect [see (6)]. 

The following section shows the results of the numerical 

analysis of the APTgain, APTloss, and corresponding PT 

structures and presents the charts of the longitudinal 

distribution of the field and the characteristics illustrating 

the influence of the gain and loss saturation effects on the 

output wave intensities Iout
(1) and Iout

(2). 

3. Results and discussion 

Numerical analysis of the output wave intensity of the 

APTgain, APTloss, and corresponding PT structures requires 

the selection of refractive indices. For the classical PT 

structures, a constant real part of the refractive index is 

nRe = 3.165 (semiconductor material InP [21]) and the 

refractive index imaginary part is nIm = 0.1 [22–24]. The 

refractive indices for the APTgain and APTloss structures are 

selected according to (2), where negative real parts of the 

refractive indices require metamaterials or photonic 

crystals to be used [25] (see Table 1). It is worth noting that 

the APTgain structure and the corresponding PT structure 

have the same refractive index of the gain layer n1 (marked 

in red in Table 1). In contrast, the APTloss structure and the 

corresponding PT structure have the same refractive index 

of the loss layer n2 (marked in blue in Table 1). The 

investigated structures are surrounded by air, i.e., the 

refractive index is n0 = 1. The operating wavelength is 

 = 1.55 m (the third telecommunication window). 

Table 1.  

Values of the refractive indices n1 and n2 for APTgain, APTloss, 

and corresponding PT structures in a linear case. 

Structure type Refractive index n1 Refractive index n2 

PT 1 3 165 0 1n . . i= −  2 3 165 0 1n . . i= +  

APTgain 1 3 165 0 1n . . i= −  2 3 165 0 1n . . i= − −  

APTloss 1 3 165 0 1n . . i= − +  2 3 165 0 1n . . i= +  

3.1. Linear case 

Investigation of the APTgain, APTloss, and corresponding PT 

structures begins by selecting their number N of primitive 

cells and the ratio of the grating period of the structures to 

the operating wavelength , which provide the highest 

reflectance values. To determine these parameters, it is 

necessary to investigate the reflectance and transmittance 

of the linear structures while neglecting the saturation 

effects. The reflectance and transmittance are calculated 

using (5). It has been determined that for the linear case, 

the reflectance and transmittance characteristics are the 

same for all structures: APTgain, APTloss, and PT.  
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Figure 3 shows the reflectances Rlin
(1) [Fig. 3(a)], Rlin

(2) 

[Fig. 3(c)], and transmittances Tlin
(1) [Fig. 3(b)], Tlin

(2) 

[Fig. 3(d)] as functions of the number N and the ratio  

for both analysed setups. In particular, Figures 3(a) and 

3(b) present characteristics when the plane wave is incident 

on the layer with the coefficient n1 (setup 1), while 

Figures 3(c) and 3(d) for the incident wave on the layer 

with the coefficient n2 (setup 2). It is worth noting that the 

transmittances Tlin
(1) and Tlin

(2) are equal to each other. 

Table 2.  

Maxima of the reflectances and transmittances for the linear 

APTgain, APTloss and corresponding PT structures. 

N  Rlin
(1) Rlin

(2) Tlin
(1) = Tlin

(2) 

25 0.15785 7742.040 6892.060 7305.690 

24 0.47354 1693.910 1207.340 1431.080 

24 0.78923 2253.030 1257.120 1683.950 

23 1.10488 1361.280 613.507 914.869 

21 1.42048 19 249.700 7205.170 11 778.000 

20 1.73607 1498.730 441.983 814.888 

74 0.15784 1333.530 1208.620 1270.530 

73 0.47353 5646.920 4096.730 4810.770 

71 0.78922 27 081.700 15 373.800 20 405.600 

68 1.10490 2243.760 978.123 1482.440 

63 1.42045 4071.800 1597.530 2551.460 

59 1.73608 4027.260 1170.160 2171.830 

 

The obtained characteristics of the reflectances and 

transmittances show two rows of maxima in the presented 

range of parameters N and . The precisely calculated 

values are presented in detail in Table 2. For each 

maximum, the following values are listed: the number N of 

primitive cells, the ratio of the grating period of the 

structures to the operating wavelength , reflectances 

Rlin
(1) and Rlin

(2) and transmittances Tlin
(1) and Tlin

(2). 

Additionally, the parameters providing maximal 

reflectances and transmittances are highlighted. In the first 

row (smallest values of N), the highest peak is for N = 21 

and  = 1.42048, in the second one for N = 71 and 

 = 0.78922. It is worth noting that all maxima of the 

reflectances for setup 1 are higher than for setup 2, 

respectively.  

Distribution of these maxima along the  axis results 

from Bragg resonances [24]; therefore, peaks in both rows 

occur for almost the same  values. Whereas the 

distribution of these maxima along the N axis arises from a 

longitudinal distribution of the field inside the investigated 

APTgain, APTloss, and corresponding PT structures. To 

illustrate this effect, amplitudes |an|, |bn|, |cn|, |dn|, as 

a function of position in the structure x/ (normalized to 

the size of the primitive cell), are plotted for the examined 

structures in Fig. 4. These field amplitudes are calculated 

using (B6)–(B9), assuming that there is no gain and loss 

saturation effect in the structures (i.e., the imaginary parts 

of the refractive indices are independent of the field 

complex amplitudes, thus dividing the layers into stripes is 

unnecessary). Figure 4 shows the field amplitudes of 

counter running waves, assuming that the output intensity 

equals Iout
({1,2}) = 1 W/cm2. Figure 4 was plotted for the 

structural parameters corresponding to the largest trans-

mission peak from the first row of maxima, i.e., N = 21 and 

 = 1.42048, and only for four initial primitive cells. 

The presented characteristics were made for the two 

analysed setups and three structures. Curves on the left side 

of Fig. 4 are drawn for setup 1 and on the right ‒ for 

setup 2, while Figures 4(a) and 4(b) are for the APTgain 

 

Fig. 4. Longitudinal distribution of counter running waves |an|, 

|bn|, |cn|, |dn| vs. position in the structure x/ inside linear 

structures consist of N = 21 primitive cells for 

Iout
({1,2}) = 1 W/cm2 and  = 1.42048 for four initial 

cells. APTgain: (a) setup 1, (b) setup 2; APTloss: (c) 

setup 1, (d) setup 2; and corresponding PT: (e) setup 1,  

(f) setup 2. 

 

Fig. 3. Reflectances and transmittances of the analysed APTgain, 

APTloss, and corresponding PT structures as a function  

of the number N and the ratio : (a) reflectance Rlin
(1)  

for setup 1; (b) transmittance Tlin
(1) for setup 1; 

(c) reflectance Rlin
(2) for setup 2; (d) transmittance Tlin

(2) 

for setup 2. 
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structure; Figures 4(c) and 4(d) are for the APTloss, and 

Figures 4(e) and 4(f) are for the PT. For the layers with the 

refractive index n1, the wave amplitude |an| (travelling to 

the right) is coloured red and the wave amplitude |bn| 

(travelling to the left) is coloured magenta. For the layers 

with the index n2, the wave amplitude |cn| (travelling to the 

right) is marked in blue and the wave amplitude |dn| 

(travelling to the left) ‒ in green. 

Distributions of the field amplitudes shown in Fig. 4 are 

different for all the investigated setups and structures. 

These field distributions in all studied structures depend on 

which layer, with index n1 or n2, is excited by incident light. 

It is worth emphasizing that the distribution of the field 

amplitudes in the examined structures is strictly related to 

the values of the refraction indices. In particular, in the 

APTgain structure, the distribution of the field amplitudes 

|an| and |bn| is the same as in the corresponding PT structure, 

while the distribution of the |cn| and |dn| is reversed in 

relation to those amplitudes in the PT structure. The 

opposite situation occurs in the APTloss structure: the 

distribution of the field amplitudes |cn| and |dn| is the same 

as in the corresponding PT structure, while it is reversed for 

the amplitudes |an| and |bn|. Such a reversal of the field 

distributions is caused by the negative real part of the 

refractive index, which can be understood as a reversal of 

the wave propagation direction. 

In general, the wave amplitudes travelling in the 

structures evolve. A step change is observed at the 

boundaries, while a monotonic change occurs inside the 

layers. That step change is larger in both APT structures 

than in the corresponding PT. This effect is caused by the 

difference in the refractive indices of both layers forming 

the ATP structure, wherein one layer, the real part is 

positive and in the other – negative (see Table 1). However, 

in the corresponding PT structure, the real parts of the 

refractive index are the same and the imaginary parts differ 

in sign. 

The waves travelling inside all layers creating the 

APTgain structure are amplified in the direction of their 

propagation, in particular, the amplitudes |an| and |cn| 

increase with an increase of the current cell number and the 

amplitudes |bn| and |dn| with a decrease of that number [see 

Figs. 4(a) and 4(b)]. The opposite situation takes place in 

the APTloss structure where the waves are suppressed [see 

Figs. 4(c) and 4(d)]. Whereas in the corresponding PT 

structure [see Figs. 4(e) and 4(f)], the travelling waves are 

alternately amplified (in n1 layer) and attenuated (in n2 

layer) as they pass through subsequent layers. 

Differences in refractive indices characterizing the 

studied APTgain, APTloss, and corresponding PT structures, 

presented in Table 1, are reflected in different field 

amplitude distributions. Despite these differences, the 

reflectance and transmittance of all structures are the same 

(see Fig. 3). This means that the transfer matrix of the entire 

structure remains unchanged in relation to the pairs of 

refractive indices n1 and n2. 

The presented analysis enables the selection of 

structural parameters that result in very high transmittance 

and reflectance values with a small number of primitive 

cells (as a less complicated case of potential production). 

Therefore, only structures with a smaller number N of 

primitive cells, i.e., N = 21, will be included in further 

analysis. 

3.2. Nonlinear case 

The nonlinear analysis, including the gain and loss 

saturation effects, is conducted for both the investigated 

setups and for the APTgain, APTloss, and corresponding PT 

structures using formulas (6)–(8) from section 2.2 and the 

procedure presented in Appendix B. In this analysis, 

meeting two conditions ensuring sufficient accuracy of the 

calculations required dividing the structure layers into 

Q = 10 stripes. 

Characteristics illustrating the output intensity, 

transmittance, and reflectance as a function of the input 

wave intensity were obtained for the setups and structures 

mentioned above. The parameters correspond to the largest 

transmission peak from the first row of transmittance 

maxima (see Table 2). These parameters are: the number of 

the primitive cells N = 21 and the ratio of the grating period 

to the operating wavelength  = 1.42048. The saturation 

intensity values selected for the presented analysis are close 

to realistic values for InP structures [26]. 

To compare the characteristics of the output intensity, 

transmittance and reflectance between the APT and the 

corresponding PT structures, the first step determines the 

values of the saturation intensity in the gain and loss layers 

(Is1 and Is2, respectively) of the PT structure. Then, in the 

case of the APTgain structure, the saturation intensity Is1 in 

the layer with the index n1 is set to the same value as in the 

PT structure for the gain layer. The saturation intensity Is2 

in the layer with the index n2 is set to the same value as in 

the PT structure for the loss layer. The same procedure is 

followed for selecting the saturation intensity in the APTloss 

structure, where the saturation intensity Is2 in the layer with 

index n2 is set to the same value as in the PT structure for 

the loss layer. Finally, the saturation intensity Is1 in the 

layer with the index n1 is set to the same value as in the PT 

structure in the gain layer. 

Similar to the linear case, the output intensity, transmit-

tance, and reflectance characteristics for the selected 

saturation intensities are the same for all structures: 

APTgain, APTloss, and corresponding PT, despite their 

different refractive indices. The change in the saturation 

intensity values modifies the output intensity, transmit-

tance, and reflectance characteristics similarly for APTgain, 

APTloss, and corresponding PT structures. The following 

part of the paper will only show the mentioned 

characteristics with the saturation intensities selected 

according to the previously presented procedure. 

Figure 5 shows the dependence of the output intensity 

Iout
({1,2}) as a function of the input intensity for various 

saturation intensities Is1 and Is2 and both setups. The output 

intensity level Iout
({1,2} = 1 W/cm2 is marked with a black 

line. 

As anticipated, the output intensity increases in line 

with the intensity of the input. Moreover, all presented 

characteristics overlap for very small and very large values 

of the incident wave intensities, despite of the various 

saturation intensities Is1 and Is2. For the low incident wave 

intensity (Iin < 10−7 W/cm2), the observed behaviour is 

related to negligibly low saturation of the investigated 

structures. For high incident wave intensities 

(Iin > 106 W/cm2), it results from a strong saturation of the 

examined structures, which causes the vanishing of the 

imaginary part of the refractive indices. This vanishing of 
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the imaginary part causes the medium to become 

homogeneous. Then, the wave travelling through it does 

not encounter changes in the refractive index and is neither 

amplified nor attenuated. 

For medium values of the incident wave intensities, the 

output intensity Iout
({1,2}) changes its values depending on 

the saturation level Is1 and Is2, and setups. If the saturation 

intensity Is2 is higher than or equal to the saturation 

intensity Is1, the output intensity Iout
(2) (for setup 2 – 

the wave leaves the structure through the layer with 

the refractive index n1) is higher than Iout
(1) (for setup 1 – 

the wave leaves the structure through the layer with the 

refractive index n2). In the case where the saturation 

intensity Is2 is equal to the intensity Is1, the output intensity 

Iout
({1,2}) increases monotonically with the increase of the 

input wave intensity Iin. An interesting situation occurs 

when the saturation intensity Is2 is higher than the intensity 

Is1: the output intensity Iout
({1,2}) increases rapidly for the 

input wave intensity Iin close to ten times Is2: Iin  10 · Is2. 

However, when the saturation intensity Is2 is lower than the 

intensity Is1, two areas of the bistability effect appear on the 

output characteristics for small (Iin  10−8 · Is2) and large 

input wave intensity Iin values (Iin  10 · Is1). This is caused 

by the layer with the refractive index n2 saturating faster. It 

is worth noting that this is a loss layer in the APTloss and the 

corresponding PT structures, whereas in the APTgain 

structure the real part of its refractive index is negative. 

When the saturation intensity Is2 is increased while 

keeping Is1 constant, the following effects are observed: in 

Fig. 5(a), the output intensity Iout
({1,2}) decreases as the 

value of Is2 increases. This is because the layer with index 

n2 (loss layer in the corresponding PT structure) absorbs 

the incident wave more strongly while simultaneously, 

the layer with index n1 saturates faster. In Fig. 5(c), 

the intensity Iout
({1,2}) increases with the increase of Is2, since 

the layer with index n1 saturates slower (the intensity Is1 has 

the highest value). However, in Fig. 5(b), the increase of 

the saturation intensity Is2 causes different changes in the 

intensity Iout
({1,2}) depending on the relationship between 

intensities Is1 and Is2. 

Figure 6 presents the transmittance Tnon
({1,2}) as 

a function of the input intensity for various saturation 

intensities Is1 and Is2 and both setups. Additionally, the 

transmittance level Tnon
({1,2}) = 1 is marked with a black 

line. In general, the transmittance characteristics reflect 

the output curves of Iout
({1,2}) from Fig. 5 because the 

transmittance is the ratio of the output wave intensity to 

the incident wave intensity. 

It is observed that the transmittance Tnon
({1,2}) decreases 

as the intensity of the incident wave Iin increases. Similarly, 

as the output intensity Iout
({1,2}), the transmittance Tnon

({1,2}) 

overlaps for very small and very large values of the incident 

wave intensities despite the various saturation intensities Is1 

and Is2. The overlapping of Tnon
({1,2}) characteristics for 

 

Fig. 5. Output intensities Iout
(1) (setup 1) and Iout

(2) (setup 2) as a 

function of input intensity Iin plotted for saturation 

intensities Is1: (a) 10 W/cm2, (b) 100 W/cm2, (c) 

1000 W/cm2, and Is2 = 10, 100, 1000 W/cm2, for APTgain, 

APTloss, and corresponding PT structures. 

 

Fig. 6. Transmittances Tnon
(1) (setup 1) and Tnon

 (2) (setup 2) as a 

function of the input intensity Iin plotted for saturation 

intensities Is1: (a) 10 W/cm2, (b) 100 W/cm2, (c) 

1000 W/cm2, and Is2 = 10, 100, 1000 W/cm2, for APTgain, 

APTloss, and corresponding PT structures. 
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a very small input intensity Iin corresponds to the situation 

where the structure is linear and has the same transmittance 

for both investigated setups. However, in the case of high 

values of the incident wave intensity Iin, transmittance 

Tnon
({1,2}) tends to approach a value of Tnon

({1,2})  0.64. Once 

this occurs, the investigated structure becomes saturated 

and stops behaving like a periodic multi-layer medium. 

Instead, it starts behaving like a volume medium. As 

a result, the incident wave is reflected from its two 

boundaries with the surrounding medium (a medium with 

coefficient n0), and the transmittance is equal to 

Tnon
({1,2}) = 1 − Rnon

({1,2}).  

For medium values of the incident wave intensities, 

similarly to the output intensity Iout
({1,2}), the transmittance 

Tnon
(2) is higher than Tnon

(1) for the saturation intensity Is2 

higher than or equal to Is1. When the input intensity Iin is 

higher than 103 W/cm2, and the saturation intensities Is1 and 

Is2 are unequal, the transmittance Tnon
({1,2}) reaches a 

minimum and then increases rapidly. 

It is important to note that in the case of bistability, 

when the incident wave Iin is in the range from 10−7 to 

10−6 W/cm2, the transmittance Tnon
({1,2}) is an order of 

magnitude larger than the transmittance for a linear 

structure [see Figs. 6(b) and 6(c)]. On the other hand, for 

the incident wave Iin in the range from 103 to 104 W/cm2, 

which shows bistability in the output intensity Iout
({1,2}), the 

transmittance Tnon
({1,2}) reaches the value of two. 

Figure 7 demonstrates the reflectance Rnon
({1,2}) as 

a function of the input intensity for various saturation 

intensities Is1 and Is2 and both setups. Additionally, the 

reflectance level Rnon
({1,2}) = 1 is marked with a black line. 

In general, similar to the transmittances Tnon
({1,2}), the reflec-

tance Rnon
({1,2}) decreases as the input intensity Iin increases. 

For very small incident wave intensities, the reflectance 

Rnon
({1,2}) behaves as in the linear case and is independent of 

the saturation intensities Is1 and Is2. Moreover, they are 

different for both setups, with reflectance Rnon
(1) having 

a higher value (the incident wave is reflected from the layer 

with the refractive index n1) than reflectance Rnon
(2) 

indicating nonreciprocity of light propagation. For very 

large incident wave intensities, the reflectance Rnon
({1,2}) 

overlaps and tends to approach a value of Rnon
({1,2})  0.36 

for the same reasons as transmittance Tnon
({1,2}). 

For medium values of the incident wave intensities, the 

reflectances for setup 1 are higher than the reflectances for 

setup 2. The bistability effect occurs for the same saturation 

intensity pairs Is1 and Is2 as in the case of the transmittance. 

It is worth noting that for equal saturation intensities Is1 = Is2, 

the reflectance Rnon
(1) reaches its lowest value (global 

minimum), while the reflectance of Rnon
(2) is close to unity. 

This is the unidirectional invisibility effect. 

The distribution of the amplitudes |an|, |bn|, |cn|, |dn| for 

the nonlinear APTgain, APTloss, and the corresponding PT 

structures are shown in Appendix C. Similar to the linear 

case, these distributions have the same envelope but 

a different course for each of the examined structures. After 

considering the gain and loss saturation effect, it is essential 

to note that the nature of the field distributions in the 

individual analysed structures remains unchanged. In the 

APTgain structure, all amplitudes increase in the direction of 

the field propagation, in the APTloss – they decrease and in 

the corresponding PT structure they alternately increase 

and decrease. 

4. Conclusions 

This work shows the transmittance, reflectance, and output 

intensity of the multilayer APT symmetric structures as 

a function of: the input wave intensity for the selected 

structure period, the primitive cell number, and the 

saturation intensities. Two setups are investigated: setup 1 

– when the wave illuminates the layer with the refractive 

index n1 (a gain layer in the corresponding PT structure) 

and setup 2 – when the wave illuminates the layer with the 

refractive index n2 (a loss layer in the PT structure). 

The study begins by determining the refractive indices 

of two types of APT structures: APTgain with a negative 

imaginary part of the index and APTloss with a positive part. 

These indices are selected with respect to the PT structure. 

In the case of APTgain, index n1 is for the gain layer, similar 

to the PT structure, whereas index n2 is selected by the APT 

condition. In the case of APTloss, index n2 is for the loss 

layer, similar to the PT structure, while index n1 is selected 

in accordance with the APT condition. 

Next, the linear analysis is performed to determine the 

APT structures maximal transmittance and reflectance. The 

results of this analysis are compared with the results of the 

corresponding analysis of PT structures. Despite the 

differences between the electromagnetic field distribution 

of the APTgain, APTloss, and PT structures, the reflectance 

and transmittance characteristics overlap. 

 

Fig. 7. Reflectances Rnon
(1) (setup 1) and Rnon

 (2) (setup 2) as a 

function of the input intensity Iin plotted for saturation 

intensities Is1: (a) 10 W/cm2, (b) 100 W/cm2, (c) 

1000 W/cm2, and Is2 = 10, 100, 1000 W/cm2, for APTgain, 

APTloss, and corresponding PT structures. 
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The nonlinear analysis uses a modified transfer matrix 

method which considers the gain and loss saturation effect. 

This analysis requires a self-consistent method to solve 

transcendental equations, which allows the matrices 

describing the transfer of waves through the boundaries of 

the layers of a primitive cell to be derived. It is worth noting 

that the refractive indices of all layers depend on the gain 

and loss saturation effect and influence the wave 

transmission through the entire structure. 

The study examines different gain and loss saturation 

intensity parameters levels for multilayer APT and 

corresponding PT structures. The compared structures have 

the same saturation intensities, Is1 and Is2, in their 

corresponding layers, n1 and n2, respectively. Similar to the 

linear structures, the transmittance, reflectance, and output 

intensity characteristics are the same for all corresponding 

structures. Moreover, the obtained characteristics of the 

output intensities demonstrate a bistable behaviour and are 

different for both investigated setups. Additionally, the 

reflectance curves reveal the nonreciprocity of light 

propagation for small values of the incident wave 

intensities and the unidirectional invisibility effect for large 

values of the incident wave intensities. It is worth 

emphasizing that although APT structures, unlike PT 

structures, consist of two loss layers or two gain layers, the 

results obtained for the APT structures are the same as 

those obtained for classic PT structures. This opens up 

more possibilities for designing and applying APT 

structures instead of PT structures. The presented model 

can be a valuable tool for modelling APT structures and can 

be applied to various materials. 
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Appendix A 

The junction matrices J and the propagation matrices P for 

linear APT (or PT) structures have the following forms: 

• matrices J01
(lin) and J10

(lin) describe the behaviour of 

electromagnetic waves at the boundary between the 

surrounding medium with coefficient n0 and the layer 

with index n1 for the waves entering and leaving the 

analysed structure, respectively: 

 

( )

( )

0 1 0 1

0 0

01

0 1 0 1

0 0

1 0 1 0

1 1

10

1 0 1 0

1 1

2 2
,

2 2

2 2
;

2 2

lin

lin

n n n n

n n
J

n n n n

n n

n n n n

n n
J

n n n n

n n

+ − 
 
 =
 − +
 
 

+ − 
 
 =
 − +
 
 

 () 

• matrices J02
(lin) and J20

(lin) represent the transfer of 

electromagnetic waves through the boundary between 

the surrounding medium with coefficient n0 and the 

layer with index n2, for the waves entering and leaving 

the analysed structure, respectively: 

 

( )

( )

0 2 0 2

0 0

02

0 2 0 2

0 0

2 0 2 0

2 2

20

2 0 2 0

2 2

2 2
,

2 2

2 2
;

2 2

lin

lin

n n n n

n n
J

n n n n

n n

n n n n

n n
J

n n n n

n n

+ − 
 
 =
 − +
 
 

+ − 
 
 =
 − +
 
 

 () 

• matrices J12
(lin) and J21

(lin) determine the transfer of 

electromagnetic waves through the boundaries between 

the layers of the primitive cell and the cell layers 

adjacent to it, respectively: 

 

( )

( )

1 2 1 2

1 1

12

1 2 1 2

1 1

2 1 2 1

2 2

21

2 1 2 1

2 2

2 2
,

2 2

2 2
;

2 2

lin

lin

n n n n

n n
J

n n n n

n n

n n n n

n n
J

n n n n

n n

+ − 
 
 =
 − +
 
 

+ − 
 
 =
 − +
 
 

 () 

• matrices P1
(lin) and P2

(lin) describe the propagation of the 

electromagnetic waves inside the two layers of the 

primitive cell and are consistent with the relationship: 

 

( )

( )

0 1

0 1

0 2

0 2

1

2

e 0
,

0 e

e 0
.

0 e

a

a

b

b

ik n w
lin

ik n w

ik n w
lin

ik n w

P

P

−

−

 
=  

 

 
=  

 

 () 

Appendix B 

For nonlinear APT (or PT) structures, the matrices P1
(i,non) 

and P2
(i,non) (describing the propagation of the 

electromagnetic wave inside the layers of the primitive 

cell) are different in each i-th stripe of all the layers of the 

cell and have the following forms: 

 

( )

( )

( )

( )

( )

( )

0 1

0 1

0 2

0 2

,

1

,

2

e 0
,

0 e

e 0
,

0 e

i
a

i
a

i
b

i
b

ik n w Q

i non

ik n w Q

ik n w Q

i non

ik n w Q

P

P

−

−

 
 =
 
 

 
 =
 
 

 () 

where the refractive indices n1
(i) and n2

(i) are different for 

the analysed structures APTgain, APTloss, and corresponding 

PT as follows: 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

1 1

2 2

PT:

i i i i i i

n n Re Im n n

i i i i i i

n n Re Im n n

n a ,b n in a ,b ,

n c ,d n in c ,d ,

= −

= +
 () 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

1 1

gain

2 2

APT :

i i i i i i

n n Re Im n n

i i i i i i

n n Re Im n n

n a ,b n in a ,b ,

n c ,d n in c ,d ,

= −

= − −
 () 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

1 1

loss

2 2

APT :

i i i i i i

n n Re Im n n

i i i i i i

n n Re Im n n

n a ,b n in a ,b ,

n c ,d n in c ,d .

= − +

= +
 () 

The matrices P1
(i,non) and P2

(i,non) in each i-th stripe are 

related to the complex field amplitudes in the neighbouring 

stripes: 

 

( )

( )

( )
( )

( )

( )

( )

( )
( )

( )

1

,
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1

,
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,

.
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i i

n n

a a
P

b b

c c
P

d d

−

−

−

−

   
=   

      

   
=   

      

 () 

Therefore, the matrices P1
(non) and P2

(non) are products of the 

elementary matrices of all the stripes: 
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( )
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( )
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( )
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,
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i
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i
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c c c
P P

d d d

=

=

     
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          

     
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 () 
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The redefinition of matrices J is caused by the change in 

the longitudinal field distribution due to the gain and loss 

saturation effect, combining the fields at the boundaries of 

the cell layers, as shown below [equations (B7(a))–(B9(b))]. 

When the wave propagates between layers inside a 

primitive cell, the subscripts in (B9) are defined as m = n. 

Conversely, when the wave transfers between layers of 

adjacent cells, the subscripts in (B9) are represented as 

m = n − 1. 

It is important to note that (B8) and (B9) are 

transcendental, meaning that the field amplitudes on the left 

side of these equations are simultaneously incorporated 

within the J matrices on the right side. An approximate 

solution can only be obtained numerically through the so-

called self-consistent method. These equations are solved 

iteratively, reintegrating the results into the J matrices until 

the field amplitudes stabilize. 

To determine the intensities of the output waves Iout
(1) 

and Iout
(2) for the APTgain, APTloss, and corresponding PT 

structures as functions of the incident plane waves 

intensities Iin
(1) and Iin

(2) (see Fig. 1), the following 

procedure is used. The relevant values for setup 1 are 

explicitly provided, while those for setup 2 are indicated in 

parentheses. 

Step 1. Select the parameters of the investigated structure, 

including the number of primitive cells N and the 

period of the structure normalized to the length of 

the analysed wave . The saturation intensity 

values Is1 and Is2 and the number Q of stripes are 

assumed for both layers. Assuming that the wave 
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is incident from one side of the structure, the 

complex amplitude of the output wave is defined 

as Iout
(1) = |aN+1|2 (Iout

(2) = |cN+1|2). 

Step 2. Use transcendental (B8) to calculate the 

amplitudes cN
(Q) and dN

(Q) (aN
(Q) and bN

(Q)) in the 

Q-th stripe of the last layer n2 (n1) of N-th cell at 

the boundary with the medium of refractive index 

n0. 

Step 3. Employ the amplitudes obtained in Step 2 to 

calculate cN
(0) and dN

(0) (aN
(0) and bN

(0)) using (B6). 

This step iteratively computes the distribution of 

wave amplitudes in the investigated layer with 

coefficient n2 (n1) in the second layer of the last 

cell. 

Step 4. Using transcendental (B9) and the amplitudes 

from Step 3, calculate the amplitudes an
(Q) and 

bn
(Q) (cn

(Q) and dn
(Q)) in the Q-th stripe of the layer 

n1 (n2) adjacent to the second layer of n-th cell, 

where n = N in the last cell. 

Step 5. With the amplitudes obtained in Step 4, calculate 

an
(0) and bn

(0) (cn
(0) and dn

(0)) using (B6). This 

iterative calculation determines the distribution of 

wave amplitudes in the investigated layer with 

coefficient n1 (n2). 

Step 6. Using transcendental (B9) and the amplitudes 

from Step 5, calculate the amplitudes cn
(Q) and 

dn
(Q) (an

(Q) and bn
(Q)) in the Q-th stripe of the layer 

n2 (n1). 

Step 7. With the amplitudes obtained in Step 6, calculate 

the amplitudes cn
(0) and dn

(0) (an
(0) and bn

(0)) using 

(B6). This process iteratively determines the 

distribution of wave amplitudes in the investigated 

layer with coefficient n2 (n1). 

Step 8. Using transcendental (B9) and the amplitudes 

from Step 7, calculate the amplitudes an
(Q) and 

bn
(Q) (cn

(Q) and dn
(Q)) in the Q-th stripe of the layer 

n1 (n2) adjacent to the second layer of n-th cell, 

where n = 1 in the first cell. 

Step 9. Repeat the calculations from Steps 5 to 8 until the 

wave amplitudes are determined in all primitive 

cells of the investigated structure. 

Step 10. Using the amplitudes obtained in Step 9, calculate 

a1
(0) and b1

(0) (c1
(0) and d1

(0)) using (B6). This 

iterative process determines the distribution of 

wave amplitudes in the investigated layer with 

coefficient n1 (n2) in the first layer of the first cell. 

Step 11. Using transcendental (B7) and the amplitudes 

from Step 10, calculate the amplitudes c0 and d0 

(a0 and b0) in the medium with refractive index n0. 

The resulting field amplitudes allow to determine 

the incident wave intensity Iin
(1) (Iin

(2)) and the 

reflected wave intensity Ir
(1) (Ir

(2)). 

Appendix C 

The field amplitudes of counter running waves |an|, |bn|, |cn|, 

|dn|, within all primitive cells forming the nonlinear 

structures: APTgain, APTloss, and corresponding PT are 

shown in Figs. 8, 9, and 10, respectively. 

These charts are derived assuming that output intensity 

equals Iout
({1,2}) = 1 W/cm2, corresponding to one point on 

the output characteristics in Fig. 5. Characteristics shown 

in Figs. 8, 9, and 10 are plotted for setup 1 in the left 

columns and setup 2 in the right columns, with two pairs of 

saturation intensities: the top rows representing 

Is1 = 10 W/cm2 and Is2 = 1000 W/cm2, and the bottom rows 

representing Is1 = 1000 W/cm2 and Is2 = 10 W/cm2. These 

figures are presented for the structural parameters 

corresponding to the largest transmission peak from the 

first row of maxima in the linear case, i.e., N = 21 and 

 = 1.42048 (see Table 2). 

Similar to the linear case, the envelopes of the curves 

for each setup and pair of saturation intensities are 

consistent across all types of structures. For instance, the 

field amplitude envelopes shown in Fig. 8(a) can be 

compared with those in Fig. 9(a) and Fig. 10(a) and 

similarly for the other subfigures. However, the field 

distributions vary for each examined structure and are 

highly dependent on the level of saturation intensities. It is 

important to note that after accounting for the gain and loss 

  

Fig. 8. Longitudinal distribution of counter running waves |an|, 

|bn|, |cn|, |dn| vs. position in the structure x/, inside 

nonlinear APTgain structure plotted for 

Iout
({1,2}) = 1 W/cm2; (a) and (b) Is1 = 10 W/cm2 and 

Is2 = 1000 W/cm2; (c) and (d) Is1 = 1000 W/cm2 and 

Is2 = 10 W/cm2. Characteristics in left column – for 

setup 1, right column – for setup 2. 

  

Fig. 9. Longitudinal distribution of counter running waves |an|, 

|bn|, |cn|, |dn| vs. position in the structure x/, inside 

nonlinear APTloss structure plotted for Iout
({1,2}) = 1 W/cm2; 

(a) and (b) Is1 = 10 W/cm2 and Is2 = 1000 W/cm2; (c) and 

(d) Is1 = 1000 W/cm2 and Is2 = 10 W/cm2. Characteristics 

in left column – for setup 1, right column – for setup 2. 
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saturation effect, the nature of the field distributions in the 

individual structures remains unchanged. In the APTgain 

structure, all amplitudes increase along the direction of the 

field propagation; in the APTloss structure, they decrease; 

and in the corresponding PT structure, they alternate 

between increasing and decreasing. 

Moreover, accounting for the gain and loss saturation 

effect changes the field amplitude values. The biggest 

differences are observed between setup 1 and setup 2 for 

the first pair of saturation intensities (Is1 = 10 W/cm2 and 

Is2 = 1000 W/cm2). To achieve the output intensity 

Iout
({1,2}) = 1 W/cm2, waves Iin with a different intensity must 

be applied to the structures. In the examined case, the wave 

entering setup 1 is an order of magnitude larger than the 

wave Iin for setup 2 [see Fig. 5(a)]. This effect is due to the 

differing electromagnetic wave distributions within the 

investigated structures, as seen by comparing subfigure (a) 

with subfigure (b) in Figs. 8, 9, and 10 for the APTgain, 

APTloss, and PT structures, respectively. 

A different situation is observed for the second pair of 

saturation intensities, Is1 = 1000 W/cm2 and Is2 = 10 W/cm2. 

Comparing subfigure (c) with subfigure (d) in Figs. 8, 9, 

and 10 for the APTgain, APTloss, and corresponding PT 

structures, respectively, reveals that for these saturation 

intensities, achieving an output wave intensity 

Iout
({1,2}) = 1 W/cm2 requires excitation with a wave of a 

similar value for both setups [see Fig. 5(c)]. This outcome 

corresponds to the longitudinal field distribution within all 

the examined structures. 

 

  

Fig. 10. Longitudinal distribution of counter running waves 

|an|, |bn|, |cn|, |dn| vs. position in the structure x/, inside 

a nonlinear corresponding PT structure plotted for 

Iout
({1,2}) = 1 W/cm2; (a) and (b) Is1  = 10 W/cm2 and 

Is2 = 1000 W/cm2; (c) and (d) Is1 = 1000 W/cm2 and 

Is2 = 10 W/cm2. Characteristics in left column – for 

setup 1, right column – for setup 2. 
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