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Random time-series model identification
from binary-valued observations and

quantized measurements

Jarosław FIGWERo

In the paper, two algorithms that allow identification of a parametric models of random
time-series from binary-valued observations of their realizations, as well as from quantized
measurements of their values, are proposed. The proposed algorithms are based on the idea
of time-series decomposition either on a direct power spectral density or autocorrelation func-
tion approximation. They use the concepts of randomized search algorithms to recover the
corresponding parametric models from calculated estimates of power spectral density or auto-
correlation function. The considerations presented in the paper are illustrated with simulated
identification examples in which linear and nonlinear block-oriented dynamic models of time-
series are identified from the binary-valued observations and quantized measurements.
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1. Introduction

Spectral analysis is a well-known tool used by engineers and researchers
mainly to analyze the spectral contents of observed time-series. In the real world,
this analysis is based on power spectral densities identified using time-series
observations acquired from their finite-length realizations or the corresponding
quantized measurements. Nowadays, due to the fast development of computa-
tional hardware, the functionality of spectral analysis was supplemented with
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a new function used to recover linear and nonlinear block-oriented dynamic
parametric models of time-series from the identified power spectral densities or
autocorrelation functions [17]. From an algorithm implementation point of view,
such a function is only a piece of software running on specialized hardware. The
paper describes how this piece of software may be applied to the identification
of linear and nonlinear block-oriented dynamic parametric models of time-series
from the corresponding binary-valued observations or quantized measurements.

The binary-valued observations are common in modern digital world.
Large datasets often contain pieces of information that can be interpreted
as binary-valued observations of the corresponding time-series realizations.
These observations can be used for identification of dynamic parametric time-
series models. Extensive literature research has resulted in a few publications
[1–3, 5, 6, 21–23, 25, 33] discussing this identification problem. These publica-
tions are devoted solely to the case of AR time-series parametric model identifi-
cation from binary-valued observations without considering the nonlinearity of
the data acquisition system implied by processing time-series realization values
to binary-valued observations.

The existence of nonlinearity of data acquisition systems should also be
taken into account when time-series are represented by measurements of their
real-world values. Quantizers present in data acquisition systems process time-
series values into measurement results in a nonlinear manner. In well-known
and highly cited bibliography devoted to the identification of time-series models
(see e.g. [4, 9, 20, 24, 26, 28, 30, 32]), existence of this nonlinearity is omitted.
An extensive literature search concerning the identification of time-series models
based on quantized measurements resulted in only three items of literature [1, 2,
14] discussing the identification of only AR time-series models.

In the case where the above-mentioned nonlinearities of data acquisition sys-
tem are taken into account dynamic models of time-series may be obtained using
two mathematical tools. The first tool is an algorithm of random time-series de-
composition into uncorrelated components [16, 17]. This algorithm is intended
only for the identification of linear dynamic parametric models of time-series.
The second tool allows for the recovery of both linear and nonlinear dynamic
parametric models of time-series directly from estimates of power spectral densi-
ties or autocorrelation functions [17]. Both tools use optimization algorithms that
utilize ideas of randomized search [8,10,19,27,31] to estimate parameters of the
considered time-series models. They allow for the identification of more general
classes of dynamic parametric models of time-series than those considered in the
above-mentioned literature.

The paper is organized as follows: (1) the problem of identifying linear and
nonlinear dynamic parametric models of time-series from binary-valued obser-
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vations or quantized measurements is stated; (2) two algorithms used for this
identification are described; (3) the properties of the described algorithms are
illustrated with simulated identification examples in which dynamic parametric
linear and nonlinear block-oriented time-series models are recovered from the
calculated periodograms or autocorrelation function estimates.

2. Problem statement

Let 𝑦𝐵 (𝑖) be a binary-valued observation at the discrete-time instant 𝑖 of
a realization of a weak ergodic zero-mean real-valued random time-series
𝑦𝑝 (𝑖) with the power spectral density 𝑆𝑦𝑝𝑦𝑝 (𝜔𝑇) satisfying the condition
0 ¬ 𝑆𝑦𝑝𝑦𝑝 (𝜔𝑇) < ∞ for relative frequencies 𝜔𝑇 in the range [0, 2𝜋). For the
set {𝑦𝐵 (0), 𝑦𝐵 (1), . . . , 𝑦𝐵 (𝑁−1)} of the binary-valued observations acquired, the
corresponding estimate of the power spectral density is calculated, resulting in a
set of values 𝑆𝑦𝐵𝑦𝐵 (𝜔𝑇) given for 𝑁 relative frequencies 𝜔𝑇 = Ω𝑛, where and

𝑛 = 0, 1, . . . , 𝑁−1 and Ω =
2𝜋
𝑁

. Subsequently, this set of values is used to recover
a dynamic parametric model of the time-series 𝑦𝑝 (𝑖) assuming that:

a) realizations of the time-series 𝑦𝑝 (𝑖) may be obtained as a filtration of a ran-
dom process 𝑒𝑝 (𝑖), which cannot be measured, through an asymptotically
stable linear or nonlinear block-oriented dynamic model;

b) for the random process 𝑒𝑝 (𝑖), its power spectral density or autocorrelation
function is known and can be used to generate its realizations;

c) the mentioned linear or nonlinear block-oriented dynamic model is pa-
rameterized by a vector Θ𝑝 of unknown parameters whose values will be
recovered from 𝑆𝑦𝐵𝑦𝐵 (𝜔𝑇);

d) having the values of vector Θ𝑝, the corresponding output values 𝑦𝑚 (Θ𝑝, 𝑖)
of the linear and nonlinear dynamic time-series model can be calculated for
the simulated realizations of 𝑒𝑝 (𝑖), and then these values can be transformed
into the corresponding binary-valued observations.

The transformation of time-series values 𝑦𝑝 (𝑖) or 𝑦𝑚 (Θ, 𝑖) into the corre-
sponding binary-valued observations is a nonlinear transformation defined as:

𝑦𝐵 (𝑖) = F (𝑦𝑝 (𝑖)) =
{
𝑢𝑝; 𝑦𝑝 (𝑖) ­ 0,
𝑙𝑜; 𝑦𝑝 (𝑖) < 0,

(1)

where 𝑢𝑝 and 𝑙𝑜 are real-valued numbers satisfying the relation 𝑢𝑝 > 𝑙𝑜. This
transformation implies that the acquired set of binary-valued observations of time-
series represents infinitely many different linear and nonlinear block-oriented
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dynamic time-series models differing only in their steady-state gains the out-
put [18]. The acquired binary-valued observations of the time-series 𝑦𝑝 (𝑖) are
the original time-series values distorted by the transformation F (·). The time-
series 𝑦𝐵 (𝑖) after this transformation may be represented as a sum of the two
components: one having values proportional to the values of time-series under
transformation, and the other being a random time-series that is uncorrelated
with the time-series under transformation [11–13, 16, 17]. This implies that the
above-formulated identification problem is a time-series identification problem in
which the corresponding acquired binary-valued observations are interpreted as
disturbed measurements of a time-series having values proportional to the values
of the original time-series. The level of these disturbances depends on the choice
of 𝑢𝑝 and 𝑙𝑜 values. It can be expressed as a signal–to–noise ratio defined as the
ratio of the variance of the time-series under transformation to the corresponding
variance of disturbances. Thus, models of time-series are identified in the case of
a very low signal–to–noise ratio [18].

Quantized measurements 𝑦𝑄 (𝑖), at the discrete-time instant 𝑖, of a realization
of the weak ergodic zero-mean real-valued random time-series 𝑦𝑝 (𝑖) or 𝑦𝑚 (Θ, 𝑖)
are acquired using a data acquisition system equipped with a quantizer having
saturation with limits: lower 𝑄min and upper 𝑄max, i.e.:

• values of the time-series 𝑦𝑝 (𝑖) or 𝑦𝑚 (Θ, 𝑖) from the range [𝑄min, 𝑄max]
after being processed by the quantizer result in values from a set having a
finite number of elements;

• values of the time-series 𝑦𝑝 (𝑖) or 𝑦𝑚 (Θ, 𝑖) less than 𝑄min or greater than
𝑄max are replaced by 𝑄min or 𝑄max, respectively.

The above remarks imply that the transformation Q(·) of time-series values
𝑦𝑝 (𝑖) or 𝑦𝑚 (Θ, 𝑖) into the corresponding quantized measurements is a nonlinear
transformation having similar properties to the transformation F (·). Nonlinear
distortions implied by the transformation Q(·) may be modelled by a random
time-series that is uncorrelated with the time-series under transformation, with
properties depending on the power of time-series processed by the quantizer. The
following three cases of the power of time-series under considerations are taken
into account [14, 16, 17]:

• ultra low-power case – values 𝑦𝑝 (𝑖) or 𝑦𝑚 (Θ, 𝑖) are such that they are less
than or only occasionally reach the plus or minus value of the data acqui-
sition system quant. In this case, data acquisition is added by randomized
quantization [7] – prior to the quantization, independent realizations of a
random variable uniformly distributed in a range covering the data acquisi-
tion system quant are added to processed values 𝑦𝑝 (𝑖) or 𝑦𝑚 (Θ, 𝑖);
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• normal-power case – values of 𝑦𝑝 (𝑖) or 𝑦𝑚 (Θ, 𝑖) are in the range
[𝑄min, 𝑄max]. In this case, the influence of the nonlinearity of the data
acquisition system on processed values 𝑦𝑝 (𝑖) or 𝑦𝑚 (Θ, 𝑖) decreases with
the increase in the power of the processed time-series;

• ultra high-power case – values 𝑦𝑝 (𝑖) or 𝑦𝑚 (Θ, 𝑖) are less than𝑄min or greater
than 𝑄max for long time slots. Rarely are they in the range [𝑄min, 𝑄max].

The nonlinear distortions implied by the data acquisition system in the above-
enumerated cases may be modelled as a white (the ultra low- and normal-power
case) or colored random process (the ultra high-power case).

The two algorithms described in the sequel for recovering a parametric lin-
ear or nonlinear block-oriented dynamic model of the time-series 𝑦𝑝 (𝑖) from
an estimate of the power spectral density of the corresponding binary-valued
observations or quantized measurements are based on the following property:
the binary-valued observations 𝑦𝐵 (𝑖) or quantized measurements 𝑦𝑄 (𝑖) are a
nonlinear dynamic transformation of 𝑒𝑝 (𝑖) that may be decomposed into two un-
correlated components – the first component having values proportional to these
resulting from a linear or nonlinear filtration of 𝑒𝑝 (𝑖), and the second compo-
nent representing the nonlinear transformation defining the acquisition of binary-
valued observations or quantized measurements [11–13, 16, 17]. It follows from
this property that the power spectral density estimate 𝑆𝑦𝐵𝑦𝐵 (𝜔𝑇) or 𝑆𝑦𝑄𝑦𝑄 (𝜔𝑇)
contains a component implied by the linear or nonlinear block-oriented dynamic
model of the observed or measured time-series and may be used to recover
the values of the vector Θ𝑝. It is worth emphasizing that for this purpose, the
corresponding estimate of autocorrelation function may also be applied.

3. Model recovery using a random time-series decomposition

The first algorithm described in the paper is devoted to the identification of
only linear dynamic models (AR, MA or ARMA) of time-series. Additionally, it
is assumed that nonlinear distortions implied by the transformation F (·) or Q(·)
are sufficiently precisely modelled by a linear dynamic model of a time-series.
This implies that the time-series 𝑦𝐵 (𝑖) or 𝑦𝑄 (𝑖) may be regarded as a mixture of
two components being ARMA time-series 𝑦1(𝑖) and 𝑦2(𝑖), i.e.:

𝑦𝐵 (𝑖) = 𝑦1(𝑖) + 𝑦2(𝑖) (2)

or
𝑦𝑄 (𝑖) = 𝑦1(𝑖) + 𝑦2(𝑖), (3)

where 𝑦1(𝑖) is a time-series having values proportional to those of 𝑦𝑝 (𝑖) and
𝑦2(𝑖) represents the aforementioned nonlinear distortions. The 𝑟-th (𝑟 = 1, 2)
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component 𝑦𝑟 (𝑖) of the mixture 𝑦𝐵 (𝑖) or 𝑦𝑄 (𝑖) is defined in the time-domain as:

𝑦𝑟 (𝑖) =

𝑑𝐵𝑟∑︁
𝑛=0

𝑏𝑟,𝑛𝑧
−𝑛

𝑑𝐴𝑟∑︁
𝑛=0

𝑎𝑟,𝑛𝑧
−𝑛

𝑒𝑟 (𝑖), (4)

where 𝑧−1 is the one-step backward shift operator, 𝑒𝑟 (𝑖) is a white noise
random process with zero mean and unit variance, 𝑑𝐴𝑟 and 𝑑𝐵𝑟 are the
𝑟-th ARMA component structural numbers being non-negative integers and
Θ𝑟 = [𝑎𝑟,0, 𝑎𝑟,1, . . . , 𝑎𝑟,𝑑𝐴, 𝑏𝑟,0, 𝑏𝑟,1, . . . , 𝑏𝑟,𝑑𝐵] is a vector of the correspond-
ing ARMA time-series parameters. It is assumed that white noises 𝑒1(𝑖) and
𝑒2(𝑖) are uncorrelated and for 𝑟 = 1, 2:

• the parameter 𝑎𝑟,0 is greater than 0;
• the structural numbers 𝑑𝐴𝑟 and 𝑑𝐵𝑟 are known;
• the polynomials

𝑧𝑑𝐴𝑟

𝑑𝐴𝑟∑︁
𝑛=0

𝑎𝑟,𝑛𝑧
−𝑛 (5)

and

𝑧𝑑𝐵𝑟

𝑑𝐵𝑟∑︁
𝑛=0

𝑏𝑟,𝑛𝑧
−𝑛 (6)

have all roots inside the unit circle.

The decomposition of the mixture 𝑦𝐵 (𝑖) or 𝑦𝑄 (𝑖) involves finding the values
of the parameter vector 𝚯 = [Θ1, Θ2] by minimizing the following objective
function:

S1(Θ) =
𝑁−1∑︁
𝑛=0

(
𝑆1(Ω𝑛) − 𝑆1(Θ,Ω𝑛)

)2
(7)

with constraints on the placement the roots of all polynomials (5) and (6) inside
the unit circle. In the above objective function 𝑆1(Ω𝑛) is equal to 𝑆𝑦𝐵𝑦𝐵 (𝜔𝑇)
or 𝑆𝑦𝑄𝑦𝑄 (𝜔𝑇) and the values 𝑆1(Θ,Ω𝑛) (𝑛 = 0, 1, . . . , 𝑁 − 1) denote estimates
of the power spectral density of the mixture 𝑦𝐵 (𝑖) or 𝑦𝑄 (𝑖) calculated using the
corresponding model presented in equation (4). These estimates are calculated
using the definition of the power spectral density of ARMA time-series and FFT
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algorithm, i.e.:

𝑆1(Θ,Ω𝑛) =
2∑︁

𝑟=1

�����������
𝑑𝐵𝑟∑︁
𝑛=0

𝑏̂𝑟,𝑛𝑒
− 𝑗Ω𝑛

𝑑𝐴𝑟∑︁
𝑛=0

𝑎̂𝑟,𝑛𝑒
− 𝑗Ω𝑛

�����������

2

, (8)

where 𝑎̂𝑟,0, 𝑎̂𝑟,1, . . . , 𝑎̂𝑟,𝑑𝐴, 𝑏̂𝑟,0, 𝑏̂𝑟,1, . . . , 𝑏̂𝑟,𝑑𝐵 for 𝑟 = 1, 2 denote estimates of the
corresponding parameters of ARMA time-series models. To find the global mini-
mum of S1(Θ), it is advisable to use randomized search optimization algorithms.

4. Model recovery based on a direct power spectral density approximation

In the second proposed algorithm, the nonlinear distortions implied by the
transformation F (·) or Q(·) are incorporated into the time-series model iden-
tification at the stage of the corresponding simulation of realizations using a
time-series model.

The vectorΘ1 of unknown parameters of a linear and nonlinear block-oriented
dynamic time-series model may be recovered from a calculated power spectral
density estimate by minimizing the following objective function:

S2(Θ1) =
𝑁−1∑︁
𝑛=0

(
𝑆1(Ω𝑛) − 𝑆1𝑚 (Θ1,Ω𝑛)

)2
, (9)

with constraints on the stability of linear or nonlinear block-oriented dynamic
time-series models taken into account. In the above objective function 𝑆1(Ω𝑛) is
equal to 𝑆𝑦𝐵𝑦𝐵 (𝜔𝑇) or 𝑆𝑦𝑄𝑦𝑄 (𝜔𝑇) and the values 𝑆1𝑚 (Θ,Ω𝑛) (𝑛 = 0, 1, . . . , 𝑁−1)
denote values of the power spectral density estimate calculated for the chosen Θ1
based on a set of binary-valued observations or quantized measurements of a sim-
ulated output 𝑦𝑚 (Θ1, 𝑖) of the corresponding linear or nonlinear block-oriented
dynamic time-series model. This simulated output is obtained by exciting the
linear or nonlinear block-oriented dynamic time-series model with a simulated
realization of 𝑒1(𝑖). It is obvious that the objective function S2(Θ1) may have
many local minima. It follows from the author’s experience that to obtain the
global minimum of S2(Θ1), it is worth using optimization algorithms from a
family of randomized search algorithms. It should also be mentioned here that in
the same way, values of the vector Θ1 elements may be obtained when, in equa-
tion (9) instead of the power spectral density estimates 𝑆1(Ω𝑛) and 𝑆1𝑚 (Θ1,Ω𝑛),
the corresponding estimates 𝑅̂1(𝜏) and 𝑅1𝑚 (Θ1, 𝜏) (𝜏 = 0, 1, . . . , 𝑁 − 1) of au-
tocorrelation functions are used. This defines a model recovery algorithm based
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on a direct autocorrelation function approximation. The above-described two
algorithms of model recovery based on direct power spectral density or auto-
correlation function approximation are a spectral factorization in the case of
nonlinear dynamic time-series models [17].

5. Simulated identification examples

In the simulated identification examples presented below, ARMA models as
well as Wiener and Wiener–Hammerstein block-oriented dynamic systems were
chosen as dynamic time-series models. Minimizations of the objective function
S1(Θ) were done using an optimization algorithm [15] based on random search
aided by a local optimization made using MATLAB lsqcurvefit algorithm [29].
Minimizations of the objective function S2(Θ1) were performed using a ran-
domized optimization algorithm based on a random search for the minimum
in a hypercube surrounding the origin of the coordinate system. The length of
the hypercube edge was chosen randomly. This search was aided by additional
local optimizations, which were also random searches but done in shrinking hy-
percubes surrounding potential solutions of the optimization problem. Objective
functions S1(Θ) and S2(Θ1) have infinitely many minima in each hypercube sur-
rounding the origin of the coordinate system when all coefficients of polynomials
being numerators and denominators of transfer functions defining linear dynamic
models of time-series or linear components of nonlinear block-oriented dynamic
models of time-series are recovered. Such parameterization of the mentioned
transfer functions accelerates the minimization of the objective functions S1(Θ)
and S2(Θ1) and was used in the simulated identification examples described
below. Additionally, it was assumed that structures of time-series models recov-
ered in the simulated identification experiments are the same as the structures of
simulated time-series.

Power spectral density estimates 𝑆1(Ω𝑛), 𝑆1(Θ,Ω𝑛) and 𝑆1𝑚 (Θ,Ω𝑛) were
calculated using 𝑀𝑁 values of the corresponding time-series realizations. As an
estimator of the power spectral density an averaged periodogram (see e.g. [20])
was used, i.e. 𝑀𝑁-sample data segment was divided into 𝑀 non-overlapping
𝑁-sample data segments, and for the each 𝑁-sample data segment, the pe-
riodogram was calculated. Finally, the obtained periodograms were averaged
for the relative frequencies Ω𝑛 (𝑛 = 0, 1, . . . , 𝑁 − 1), resulting in 𝑆1(Ω𝑛),
𝑆1(Θ,Ω𝑛) and 𝑆1𝑚 (Θ,Ω𝑛). Patterns of power spectral densities for linear dy-
namic time-series models were calculated using the component number 1 from
equation (4). As a pattern of the power spectral density of time-series generated
using nonlinear block-oriented dynamic model averaged periodograms of 𝑦𝑚 (𝑖)
calculated for 2000𝑀 non-overlapping 𝑁-sample data segments were used. Cal-
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culation of all above-mentioned periodograms was done assuming a sampling
interval value equal to 1.0000 [s]. During model identification using random
time-series decomposition, uncorrelated white noises with variances equal to
1.0000 were applied as the random processes 𝑒1(𝑖) and 𝑒2(𝑖). Realizations of
𝑒1(𝑖) being Gaussian white noise with a variance equal to 1.0000, used in the
direct power spectral density or autocorrelation function approximation, were
generated using a random number generator implemented in the MATLAB envi-
ronment.

5.1. ARMA model identification using random time-series decomposition –
binary-valued observations

The first simulated identification example was devoted to the model identifi-
cation of an ARMA time-series defined by the following relation:

𝑦𝑝 (𝑖) =
1.0000 − 0.8000𝑧−1

1.0000 − 1.5000𝑧−1 + 0.7000𝑧−2 𝑒𝑝 (𝑖), (10)

where 𝑒𝑝 (𝑖) was Gaussian white noise with a variance 𝜎2
𝑒𝑝𝑒𝑝

equal to 36.0000.
Using this relation, 100 realizations of 𝑦𝑝 (𝑖) were generated assuming 𝑀 = 2000
and 𝑁 = 512. The values of 𝑦𝑝 (𝑖) were transformed to the corresponding binary-
valued observations 𝑦𝐵 (𝑖) by the transformation F (·) with 𝑢𝑝 = 5.0000 and
𝑙𝑜 = −5.0000. For each acquired realization 𝑦𝐵 (𝑖) (𝑖 = 1, 2, . . . , 𝑀𝑁 − 1), the
model identification was performed using the random time-series decomposition,
assuming that the nonlinear distortions implied by the transformation F (·) are
modelled by an ARMA time-series 𝑦2(𝑖) with structural numbers 𝑑𝐴2 = 𝑑𝐵2 = 1.
As a search space during ARMA model recovery, a hypercube of dimension 9
surrounding the origin of the coordinate system was chosen. This means that
for each 𝑀𝑁-sample realization of 𝑦𝐵 (𝑖), estimates of 9 parameters of the two
ARMA models 𝑦1(𝑖) and 𝑦2(𝑖) were calculated. The obtained mean value of the
minimum of the objective function S1(Θ) was equal to 275.6. Using 100 esti-
mates of parameters of the ARMA time-series 𝑦1(𝑖), the corresponding estimates
of the power spectral density were calculated and compared with the pattern in
Fig. 1. This pattern was calculated using the model presented in equation (10).
In Fig. 2 the corresponding normalized, by maximum values, power spectral
density of the pattern and of the mean value of calculated power spectral density
estimates are presented. In Figs. 3 and 4, normalized in the same way, calcu-
lated power spectral density estimates, power spectral density of the pattern, and
the mean value of calculated normalized power spectral density estimates are
presented.
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Figure 1: Power spectral densities calculated from 100 identified models of ARMA
time-series represented by binary-valued observations (blue lines) and the pattern (red
line) – random time-series decomposition, 𝑀 = 2000 and 𝑁 = 512
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Figure 2: Normalized mean value of 100 power spectral densities calculated from
identified models of ARMA time-series represented by binary-valued observations
(blue line) and the normalized pattern (red line) – random time-series decomposition,
𝑀 = 2000 and 𝑁 = 512
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Figure 3: Normalized power spectral densities calculated from 100 identified models
of ARMA time-series represented by binary-valued observations (blue lines) and the
normalized pattern (red line) – random time-series decomposition, 𝑀 = 2000 and
𝑁 = 512
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Figure 4: Mean value of 100 normalized power spectral densities calculated from
identified models of ARMA time-series represented by binary-valued observations
(blue line) and the normalized pattern (red line) – random time-series decomposition,
𝑀 = 2000 and 𝑁 = 512
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5.2. ARMA model identification using direct power spectral density approximation –
binary-valued observations

In the second simulated identification example, the above-described exper-
iment was repeated with some changes. Now the variance 𝜎2

𝑒𝑝𝑒𝑝
was equal to

1.0000, 𝑢𝑝 was equal to 1.0000, 𝑙𝑜 was equal to −1.0000, and 𝑁 was equal
to 128. Using the direct power spectral density approximation, 100 estimates of
parameters of ARMA time-series 𝑦1(𝑖) were recovered and used to calculate the
corresponding normalized estimates of the power spectral density. In Fig. 5, the
results of these calculations are compared with the normalized pattern. In Fig. 6,
the normalized power spectral density of the pattern and the mean value of the
calculated normalized power spectral density estimates are presented. As a search
space during ARMA model recovery, a hypercube of dimension 5 surrounding
the origin of the coordinate system was chosen – for each 𝑀𝑁-sample realization
of time-series 𝑦𝐵 (𝑖), estimates of 5 coefficients of of ARMA model 𝑦1(𝑖) were
calculated. The obtained mean value of the minimum of the objective function
S2(Θ1) was equal to 0.16.
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Figure 5: Normalized power spectral densities calculated from 100 identified models
of ARMA time-series represented by binary-valued observations (blue lines) and the
normalized pattern (red line) – direct power spectral density approximation, 𝑀 = 2000
and 𝑁 = 128
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Figure 6: Mean value of 100 normalized power spectral densities calculated from
identified models of ARMA time-series represented by binary-valued observations
(blue line) and the normalized pattern (red line) – direct power spectral density ap-
proximation, 𝑀 = 2000 and 𝑁 = 128

5.3. ARMA model identification using direct autocorrelation function approximation –
binary-valued observations

In the third simulated identification example, the above-described experiment,
in which ARMA models were identified using direct power spectral density ap-
proximation, was repeated, but now ARMA models were identified using direct
autocorrelation function approximation. Estimates of autocorrelation functions
necessary to perform calculations were obtained using the biased autocorrelation
estimator. These estimates were calculated for lags 0, 1, , . . . , 𝑁 − 1. The corre-
sponding recovered 100 estimates of parameters of ARMA time-series 𝑦1(𝑖) were
used to calculate the corresponding estimates of the normalized power spectral
density. In Fig. 7, the results of these calculations are compared with the nor-
malized pattern. In Fig. 8, the normalized power spectral density of the pattern
and the mean value of calculated normalized power spectral density estimates are
presented. As the search space during ARMA model recovery, a hypercube of
dimension 5 surrounding the origin of the coordinate system was chosen – once
more for each 𝑀𝑁-sample realization of the time-series 𝑦𝑝 (𝑖) estimates of 5
coefficients of the ARMA model 𝑦1(𝑖) were calculated. The obtained mean value
of the minimum of the objective function S2(Θ1), calculated for the estimates
𝑅̂1(𝜏) and 𝑅1𝑚 (Θ1, 𝜏) (𝜏 = 0, 1, . . . , 𝑁 − 1), was equal to 4.7 · 10−4.
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Figure 7: Normalized power spectral densities calculated from 100 identified models of
ARMA time-series represented by binary-valued observations (blue lines) and the normalized
pattern (red line) – direct autocorrelation function approximation, 𝑀 = 2000 and 𝑁 = 128
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Figure 8: Normalized mean value of 100 power spectral densities calculated from identified
models of ARMA time-series represented by binary-valued observations (blue line) and the
normalized pattern (red line) – direct autocorrelation function approximation, 𝑀 = 2000
and 𝑁 = 128

5.4. Blind Wiener model identification using direct power spectral density approximation
– binary-valued observations

In the next simulated identification example, parameters of a Wiener model
used to simulate realizations of time-series were recovered from estimates of
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the power spectral density of binary-valued observations. This model had the
following components:

• an input discrete-time linear dynamic subsystem described by the following
difference equation:

𝑦𝑊 (𝑖) = 1.0000
1.0000 − 1.5000𝑧−1 + 0.7000𝑧−2 𝑒𝑝 (𝑖); (11)

• the output nonlinearity:

𝑦𝑝 (𝑖) = 𝑦𝑊 (𝑖) + 0.2000 (𝑦𝑊 (𝑖))3 . (12)

The corresponding 10 realizations of time-series 𝑦𝐵 (𝑖) were simulated assuming
𝜎2
𝑒𝑝𝑒𝑝

= 1.000, 𝑢𝑝 = −𝑙𝑜 = 1.0000, 𝑀 = 2000 and 𝑁 = 512. In this case of
model recovery, the search space was of dimension 6, and parameters of Wiener
models were recovered using the direct power spectral density approximation.
In Fig. 9, results of the normalized power spectral density calculations using
the identified models are compared with the normalized pattern. In Fig. 10,
the normalized power spectral density of the pattern and the mean value of the
calculated normalized power spectral densities are presented. The obtained mean
value of the minimum of the objective function S2(Θ1) was equal to 0.80.
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Figure 9: Normalized power spectral densities calculated using 10 identified Wiener
models for the corresponding time-series represented by binary-valued observations
(blue lines) and the normalized pattern (red line) – direct power spectral density
approximation, 𝑀 = 2000 and 𝑁 = 512
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Figure 10: Normalized mean value of 10 power spectral densities calculated from
identified Wiener models for the corresponding simulated time-series represented by
binary-valued observations (blue line) and the normalized pattern (red line) – direct
power spectral density approximation, 𝑀 = 2000 and 𝑁 = 128

5.5. Blind Wiener–Hammerstein model identification using direct power spectral density
approximation – binary-valued observations

In the last simulated identification example devoted to model identification
using binary-valued observations, parameters of a Wiener–Hammerstein model
used to simulate realizations of time-series were recovered from estimates of the
corresponding power spectral densities. The Wiener–Hammerstein model had the
following components:

• an input discrete-time linear dynamic subsystem described by the following
difference equation:

𝑦𝑊𝐻 (𝑖) =
1.0000

1.0000 − 1.5000𝑧−1 + 0.7000𝑧−2 𝑒𝑝 (𝑖); (13)

• the internal nonlinearity:
𝑢𝑊𝐻 (𝑖) = 𝑦𝑊𝐻 (𝑖) + 0.2000 (𝑦𝑊𝐻 (𝑖))3 ; (14)

• an output discrete-time linear dynamic subsystem described by the follow-
ing difference equation:

𝑦𝑝 (𝑖) =
1.0000

1.0000 − 0.8000𝑧−1𝑢𝑊𝐻 (𝑖). (15)

A single realization of the corresponding time-series 𝑦𝐵 (𝑖) was simulated us-
ing the above model, assuming the same values of 𝜎2

𝑒𝑝𝑒𝑝
, 𝑢𝑝, 𝑙𝑜, 𝑀 and 𝑁

as in the simulated blind Wiener model identification example. In the case of
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Wiener–Hammerstein model recovery, the search space had dimension of 9, and
parameters of Wiener–Hammerstein model were recovered using the direct power
spectral density approximation. Model recovery gave the model consisting of:

• an input discrete-time linear dynamic subsystem described by the following
difference equation:

𝑦𝑊𝐻𝑚 (𝑖) =
−1.6814

1.1445 − 1.5052𝑧−1 + 0.6604𝑧−2 𝑒1(𝑖); (16)

• the internal nonlinearity:
𝑢𝑊𝐻𝑚 (𝑖) = −0.9521𝑦𝑊𝐻𝑚 (𝑖) − 0.6330 (𝑦𝑊𝐻 (𝑖))3 ; (17)

• an output discrete-time linear dynamic subsystem described by the follow-
ing difference equation:

𝑦𝑚 (𝑖) =
1.3756

−1.0410 − 0.7984𝑧−1𝑢𝑊𝐻𝑚 (𝑖). (18)

The corresponding value of the objective functionS2(Θ1) was equal to 3.2. In
Fig. 11, normalized averaged periodograms calculated using 10000 realizations of
binary-valued observations obtained using the simulated Wiener–Hammerstein
model are compared with the normalized averaged periodogram of a single re-
alization of binary-valued observations obtained using the recovered Wiener–
Hammerstein model.

Figure 11: Normalized averaged periodograms calculated using 10000 realizations of
binary-valued observations obtained using the simulated Wiener–Hammerstein model
(red lines) and the normalized averaged periodogram of a single realization of binary-
valued observations obtained using the recovered Wiener–Hammerstein model (blue
line) – direct power spectral density approximation, 𝑀 = 2000 and 𝑁 = 512
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In the next step, 50 realizations of the time-series 𝑦𝐵 (𝑖) were simulated,
and the corresponding Wiener–Hammerstein model recovery was repeated using
the direct power spectral density approximation. In Fig. 12, the results of the
normalized power spectral density calculations using the identified models are
compared with the normalized pattern. In Fig. 13, the normalized power spectral
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Figure 12: Normalized power spectral densities calculated using 50 identified Wiener–
Hammerstein models for the corresponding time-series represented by binary-valued
observations (blue lines) and the normalized pattern (red line) – direct power spectral
density approximation, 𝑀 = 2000 and 𝑁 = 512
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Figure 13: Normalized mean value of 50 power spectral densities calculated from the
identified Wiener–Hammerstein models using the corresponding simulated time-series
represented by binary-valued observations (blue line) and the normalized pattern (red
line) – direct power spectral density approximation, 𝑀 = 2000 and 𝑁 = 512
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density of the pattern and the mean value of the calculated normalized power
spectral densities are presented. The obtained mean value of the minimum of the
objective function S2(Θ1) was equal to 3.29.

5.6. Ultra low-power ARMA model identification using random time-series
decomposition – quantized measurements

In the case of binary-valued observations, time-series are represented by val-
ues taken from a set containing two numbers. The next possible time-series repre-
sentation are quantized measurements. In the case of ultra low-power time-series,
the corresponding quantized measurements take values from a set containing
only a few (mainly 3) numbers. In the simulated identification example devoted
to such time-series, case a model of ARMA time-series defined by the following
relation:

𝑦𝑝 (𝑖) =
1.0000 − 0.4000𝑧−1

1.0000 − 1.3000𝑧−1 + 0.5000𝑧−2 𝑒𝑝 (𝑖), (19)

was identified, where 𝑒𝑝 (𝑖) was a Gaussian white noise having the variance 𝜎2
𝑒𝑝𝑒𝑝

equal to 4 · 10−6. Using the above model, 75 realizations of 𝑦𝑝 (𝑖) were generated
assuming 𝑀 = 1000 and 𝑁 = 256. Values 𝑦𝑝 (𝑖) were transformed to the corre-
sponding quantized measurements 𝑦𝑄 (𝑖) by the 8-bit midtread uniform quantizer
having saturation. Its range was limited by saturation levels equal to 5.0000 and
−5.0000, respectively. In Fig. 14, an exemplary 512-sample of 𝑦𝑄 (𝑖) is presented.
For each acquired realization 𝑦𝑄 (𝑖) (𝑖 = 1, 2, . . . , 𝑀𝑁 − 1), the model identifica-
tion was performed using the random time-series decomposition, assuming that
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Figure 14: Exemplary 512-sample of quantized measurements acquired from an ultra
low-power ARMA time-series realization
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nonlinear distortions implied by the transformation Q(·) are modelled by a white
noise 𝑦2(𝑖) (ARMA time-series having the structural numbers 𝑑𝐴2 = 𝑑𝐵2 = 0).
As a search space during ARMA model recovery, a hypercube of dimension 6
surrounding the origin of the coordinate system was chosen. For each 𝑀𝑁-sample
realization of 𝑦𝑄 (𝑖) estimates of 6 parameters of the two ARMA 𝑦1(𝑖) and 𝑦2(𝑖)
time-series models were calculated. The obtained mean value of the minimum of
the objective function S1(Θ) was equal to 0.16. Using 75 estimates of parameters
of ultra low-power ARMA time-series 𝑦1(𝑖), the corresponding estimates of the
power spectral density were calculated and compared with the pattern in Fig. 15.
In Fig. 16, the corresponding power spectral densities of the pattern and the mean
value of calculated power spectral density estimates are presented.
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Figure 15: Power spectral densities calculated using 75 identified models of ultra low-
power ARMA time-series represented by quantized measurements (blue lines) and the
pattern (red line) – random time-series decomposition, 𝑀 = 1000 and 𝑁 = 256

5.7. Normal-power blind Wiener model identification using direct power spectral density
approximation – quantized measurements

Next simulated identification example is devoted to normal-power time-series
model identification using quantized measurements. The simulated identification
experiment described in subsection V.D was repeated. Now, 20 realizations of
Wiener time-series 𝑦𝑝 (𝑖) defind by equations (11) and (12) were simulated as-
suming 𝜎2

𝑒𝑝𝑒𝑝
= 4 · 10−4, 𝑀 = 2000 and 𝑁 = 512. Realizations of 𝑦𝑝 (𝑖) were

transformed to the corresponding quantized measurements 𝑦𝑄 (𝑖) by the 8-bit
midtread uniform quantizer defined in the previous simulated identification ex-
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Figure 16: Mean value of 75 power spectral densities calculated from identified models
of ultra low-power ARMA time-series represented by quantized measurements (blue line)
and the pattern (red line) – random time-series decomposition, 𝑀 = 1000 and 𝑁 = 256

ample. In Fig. 17, an exemplary 512-sample of 𝑦𝑄 (𝑖) is presented. It can be
noticed that after quantization, the processed time-series takes the values of only
a few quantizer levels around the zero value. During model recovery, the search
space was dimension of 6 and parameters of Wiener models were recovered using
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Figure 17: Exemplary 512-sample of quantized measurements of a normal-power
Wiener time-series realization
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the direct power spectral density approximation. In Fig. 18, results of the power
spectral density calculations using the identified models are compared with the
pattern. In Fig. 19, the power spectral density of the pattern and the mean value
of calculated power spectral densities are presented. The obtained mean value of
the minimum of the objective function S2(Θ1) was equal to 1.99 · 10−5.
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Figure 18: Power spectral densities calculated using 20 identified models of a normal-power
Wiener time-series represented by quantized measurements (blue lines) and the pattern (red
line) – power spectral density approximation, 𝑀 = 2000 and 𝑁 = 512
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Figure 19: Mean value of 20 power spectral densities calculated from identified models of
a normal-power Wiener time-series represented by quantized measurements (blue line) and
the pattern (red line) – power spectral density approximation, 𝑀 = 2000 and 𝑁 = 512
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5.8. Ultra high-power ARMA model identification using random time-series
decomposition – quantized measurements

In the last simulated identification example, ARMA time-series model (19)
was excited by 𝑒𝑝 (𝑖) which is a Gaussian white noise with a variance 𝜎2

𝑒𝑝𝑒𝑝
equal

to 36.0000. Using this relation, 100 realizations of 𝑦𝑝 (𝑖) were generated for 𝑀
equal to 10000 as well as 1000000. 𝑁 was equal to 1024. Values 𝑦𝑝 (𝑖) were
transformed to the corresponding quantized measurements 𝑦𝑄 (𝑖) in the same
way as in the previous simulated identification example. In Fig. 20, an exem-
plary 1024-sample of 𝑦𝑄 (𝑖) is presented. For each acquired realizations 𝑦𝑄 (𝑖)
(𝑖 = 1, 2, . . . , 𝑀𝑁 −1), the model identification was performed using the random
time-series decomposition, assuming that the nonlinear distortions implied by
the transformation Q(·) are modelled by an ARMA time-series 𝑦2(𝑖) having the
structural numbers 𝑑𝐴2 = 𝑑𝐵2 = 1. As a search space during ARMA model
recovery, a hypercube of dimension 9 surrounding the origin of the coordinate
system was chosen,. For each 𝑀𝑁-sample realization of 𝑦𝑄 (𝑖), estimates of 9 pa-
rameters of the two models of ARMA 𝑦1(𝑖) and 𝑦2(𝑖) time-series were calculated.
The obtained mean value of the minimum of the objective function S1(Θ) for
𝑀 = 10000 was equal to 36.6. Result of the mean value of S1(Θ) calculation for
𝑀 = 1000000 was equal to 0.52. Using 100 estimates of parameters of ARMA
time-series 𝑦1(𝑖), the corresponding estimates of the power spectral density were
calculated and, after normalization by maximum values, are compared in Figs. 21
and 22 with the normalized pattern. The power spectral density of the pattern
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Figure 20: Exemplary 1024-sample of quantized measurements of a high-power
ARMA time-series realization
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was calculated using the model presented in equation (19). In Fig. 23, this power
spectral density of the pattern and the mean value of calculated power spectral
densities for 𝑀 = 10000 are compared.
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Figure 21: Power spectral densities calculated using 100 identified models of a high-
power ARMA time-series represented by quantized measurements (blue lines) and the
pattern (red line) – random time-series decomposition, 𝑀 = 10000 and 𝑁 = 1024
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Figure 22: Power spectral densities calculated using 100 identified models of a high-
power ARMA time-series represented by quantized measurements (blue lines) and the
pattern (red line) – random time-series decomposition, 𝑀 = 1000000 and 𝑁 = 1024
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Figure 23: Mean value of 100 power spectral densities calculated from identified
models of a high-power ARMA time-series represented by quantized measurements
(blue line) and the pattern (red line) – random time-series decomposition, 𝑀 = 10000
and 𝑁 = 1024

6. Short summary

In the above-presented simulated identification examples, the results of iden-
tification are reported without discussion of their statistical properties. Now,
they are summarized by interpreting identification algorithms as estimators. The
identification algorithms discussed in the paper gave:

• mean values of normalized power spectral densities calculated from identi-
fied dynamic parametric models of time-series that are very close to the cor-
responding normalized patterns for models identified using binary-valued
observations acquired or models identified for high-power time-series based
on quantized measurements;

• mean values of power spectral densities calculated from identified dynamic
parametric models of time-series that are very close to the corresponding
patterns for models identified for ultra low- and normal-power time-series
based on quantized measurements.

Additionally, the variance of the obtained identification results declines with the
increase in the number of processed data (binary-valued observations or quantized
measurements). This was not shown in the paper in a systematic way (apart from
the last simulated identification example), but it follows from considerations
presented in the monograph [17]. It should be emphasized that this is true only
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when the ratio of the number of parameters identified to the number of processed
data declines to 0 with the increase in the number of processed data.

7. Conclusions

In the paper, an approach to the identification of linear and nonlinear dynamic
parametric models of time-series from the corresponding binary-valued obser-
vations of their realizations, as well as quantized measurements of their values,
is proposed. The approach proposed is based on randomized search optimiza-
tion algorithms used to recover the corresponding parametric models from the
calculated estimates of the power spectral density or autocorrelation function.
The discussion presented is illustrated with a set of simulated identification ex-
amples showing the effectiveness of the proposed approach. Although the ideas
introduced by the paper are illustrated with examples of linear and nonlinear
block-oriented dynamic models of time-series identification, it is worth empha-
sizing that other nonlinear dynamic parametric models of time-series, e.g. bilinear
or Volterra models, may be identified in the same way.

The ideas presented in the paper complement the considerations presented in
the monograph [17] and result directly from them.
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