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Estimation of grasp type and determining grasping
points for Adaptive Grasping Device

Michał CZUBENKOo , Piotr ŁYCZKO and Rafał OKUŃSKI

The article describes the grasping point algorithm (GPA), aimed to determine points for
picking up objects by a manipulator equipped with a proprietary gripper enabling three picking
modes (suction cup, two fingers, three fingers). The paper outlines the topic of unknown object
picking using various types of grippers, both from a stack of objects and stand-alone items. It
describes details of four methods available in the literature. Presented GPA algorithm consists of
four separate functions dedicated to appropriate grasping methods chosen based on a decision-
making process. The dedicated functions has been described in detail and tested. Used methods
have been tested manually on 15 different objects. GPA algorithm has been evaluated in real-
world tests as well. The presented tests showed efficiency of approximately 92% in the case of
moving previously unknown objects from the stack to the target cuvette.
Key words: pick-and-place operation; Industry 5.0; adaptive gripper; grip points estimation;
grasping robot.
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1. Introduction
In 2022, the number of annual robot installations reached 553,000 units [45].

The leading countries include China, Japan, the United States, the Republic of
Korea, and Germany. These countries are responsible for approximately 80% of
the installations. The observed growth is related to ongoing technological de-
velopment, in particular, both the implementation of cobot (cooperative robot)
technology and aspects of Industry 4.0 (basically, digitalization and network inte-
gration) [17,42]. Note that, in the future, we may expect robotic implementations
of AI systems (like in the Robotics Foundation Model by Covariant) and (far in
the future) robots equipped with cognitive aspects [18,27,33,34]. In general, the
main reason for such rapid robotization is to increase productivity while saving
costs [29], mainly through faster and more precise manipulation of objects.

Note that, the industrial definition of a robot, specified by ISO 8373:2012
norm, shows that a robot is ‘a multifunctional, reprogrammable, automatically
controlled manipulator, programmable (. . . ) for use in industrial automation
applications’. From the above definition, it follows that a robot is mainly designed
to manipulate objects. However, the stand-alone robot itself is nothing without a
specified tool attached to its flange.

The tools of the production robots play a crucial role in enabling their inter-
action with the environment and performing various tasks. Most robots may be
adapted to a certain task by changing a tool and reprogramming their trajectories.
Among the most common tools, we can distinguish grippers (the most numerous
group), welding, painting, and other special-purpose tools. Since the main pur-
pose of the industrial robot is the manipulation of objects, the grippers constitute
a fundamental element. Thus, in parallel with the robotization of enterprises,
methods of grasping objects have also been developed.

In general, grippers, based on the type of origin, can be distinguished as an-
thropomimetic, biomimetic, and other (not biomimetic nor anthropomimetic) [6].
On the other hand, they can also be categorized by the gripping method: mechan-
ical, magnetic, vacuum, with elastic chambers, air jet; or by drive type: electric,
hydraulic, pneumatic, magnetic, drive-less [25]. The grippers may also be diver-
sified by the finger types as soft or hard. However, the most commonly known
classification is based on the gripper configuration, it includes [51]:

• one finger (a vacuum-based sucker),
• two fingers (most common one),
• three fingers (with different configurations),
• soft, flexible fingers,
• adaptive multi-fingers,
• grain-filled ball grippers.
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Among many grippers manufacturers, the key players should be distinguished:
SCHUNK, Thinkbot Solutions, KCC, OnRobot, SMC, DH-Robotics, and Festo
Corporation [24]. The source shows that the 2-finger grippers are the most used
on the market (about 43%), followed by 3-fingers (35%), and 4-fingers (22%).
However, it does not include single or multiple vacuum grippers. The robotic
grippers market can be estimated at 1.7 billion USD in 2023, and it should reach
4.3 billion by 2033 [30].

A statistical review ‘of pneumatic, parallel, two-finger, industrial grippers’
can be found in [4]. The paper shows that most of the 2-fingers grippers on the
market have a similar characteristic – limited force and small stroke. Another
broad review of the state of the art of robotic grippers and their applications can
be found in [54]. From an agricultural point of view, a review of gripers and
methods of object grasping is presented in [61]. On the other hand, there are
plenty of scientific works about soft grippers. Their review can be found in [23].
Note that the soft grippers are quite adaptive, and they can be used in grasping
different-shaped objects.

Despite the broad range of gripper types, there is no universal one [3]. De-
signing a universal grasping system capable of adapting to different objects poses
a challenge from both a technical and algorithmic perspective [22].

From a mechanical point of view, several attempts have been made.
Namely, [31] designed a two-finger gripper equipped with a sliding suction
mechanism. Another approach, presented in [37], is based on three reconfigurable
fingers that can be clasped in two different methods. A similar approach can be
found in [32]. There also exists a four-finger gripper with reconfigurable fin-
gers [40]. The authors show that their gripper can perform five types of grasping,
namely: caging, parallel pinch, thumb-three finger, clasped, and t-shape grasping.
Another modern approach to the design of grippers is presented in [38], where
the authors show the concept of anthropomimetic fingers. Another gripper with
adaptive fingers can be found in [15], where the authors show different types of
two-fingers grasping, and compare them to available grippers.

Currently, there are also a few adaptive, reconfigurable grippers on the global
market. These are mainly based on similar concepts (three fingers, their rotation,
and two types of grasping). Among them, we can list products of the Robotiq,
OnRobot, Barret, and Neobotix companies, and the open project of the T42
gripper.

Based on the websites, articles, and additional materials such as videos, both
groups of adaptive grippers perform quite well when grasping a single object. A
key issue for robust grasping is therefore an algorithm capable of analyzing the
physical properties of an object to effectively determine the appropriate grasping
technique.

https://robotiq.com/products/3-finger-adaptive-robot-gripper
https://onrobot.com/en/products/3fg15-three-finger-gripper
https://advanced.barrett.com/barretthand
https://www.neobotix-robots.com/products/robot-gripper-1/three-finger-gripper
https://www.eng.yale.edu/grablab/openhand/model_t42.html
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1.1. Motivation and background

The primary objective of our study is to create a flexible stand that integrates an
articulated robot capable of autonomously picking various unknown objects from
a stack and performing automatic sorting based on their visual features. In recent
research, we have designed a robotic stand based on an articulated manipulator,
which provides 6 Degrees of Freedom (DoF) and collision detection [10]. For
our current research, we used a Delta DRV90L manipulator. The manipulator has
been equipped with a specific four-finger gripper (Fig. 1) with 3 different working
modes, enabling it to pick objects from a stack located within the working area
of the ZIVID-2 camera. We used a fine-tuned neural network inspired by the
SF-Mask RCNN (Synthetic Fusion Mask Region-based Convolutional Neural
Network) architecture to analyze the objects on a stack [2]. Such a neural network
can perform RGBD (Red Green Blue Depth) image segmentation [11], allowing
us to identify and isolate the topmost object in the stack. Subsequently, we
calculate the gripping points for the selected object and choose the grasping type.
This part is further described in the current paper. Once the object is grasped,
it is transferred to the vision station. This station is equipped with three RGB
cameras, which are accompanied by appropriate lighting conditions to facilitate
accurate object perception. By incorporating these components and techniques,
our robotic stand demonstrates the ability to effectively handle objects from a
stack.

Figure 1: Our four-finger gripper with 3 different working modes: single
sliding finger with a suction cup, two standard parallel fingers, or three
for grasping rounded objects

1.2. Motivation and structure

This research paper involves comparing different types of grasping algorithms
presented in the literature and evaluating their performance. Our main goal is to
create a grasping system that is not only efficient and precise but also flexible and

https://www.deltaww.com/en-US/products/Articulated-Robot/3816


ESTIMATION OF GRASP TYPE AND DETERMINING GRASPING POINTS
FOR ADAPTIVE GRASPING DEVICE 93

capable of handling diverse grasping scenarios, applicable across a wide spectrum
of robot-assisted applications. Since ‘It’s really hard to decide the grasp when we
do not have the full object geometry’ [13], we propose a new algorithm based on
the analytics of object geometry seen from an RGBD camera. The algorithm is
partially based on machine learning and image processing techniques. It enables
the robot gripper to adapt to diverse grasping scenarios.

The paper is organized as follows. The next section describes the state of
the art in systems for computing grasp points, while its subsections present a
few examples of such systems in detail. The proposed algorithm is introduced in
Section 3. Further on (Subsection 4.1), we will find the outcomes of comparative
manual tests along with an analysis of the results. The real-world test can be
found in Subsection 4.3. The article is finally concluded in the last section.

2. Related work

Since the Industrial Revolution, there has been an ongoing drive to enhance
the autonomy and multifunctionality of industrial robots. Many solutions have
arisen to facilitate the advancement and bolstering of these aspirations. Effectively
manipulating and transferring objects requires the implementation of several
algorithms: object detection, its position estimation, and designation of grasping
points.

The article [13] thoroughly describes this process, providing an overview of
methods for each of these elements. The authors, present the methods employed
in achieving each stage, through an extensive literature review. They conclude
that there are still significant challenges in each of these stages. In general, the
influence of occlusions and missing geometry of the objects in the data acquisition
phase is still too high on grasping algorithm decisions. ‘It’s really hard to decide
the grasp when we do not have the full object geometry’ [13]. Another very
important aspect is the lack of datasets concerning object position and grasp
estimation for the machine learning methods. Moreover, some machine learning
algorithms show poor generalization and struggle with new objects. The last
remark shows that transparent objects are very difficult to analyze by vision
algorithms.

According to [59], methods for grasp point estimation may be categorized
according to the availability of knowledge – full and limited. Complete knowl-
edge means that the grasping system has a full 3D model of the objects available,
thus, it knows all of the surfaces and geometries of the objects. Such an approach
is used, for example, in [19, 55, 66]. On the other hand, there is a real-world
approach, where data is typically derived from depth-sensing cameras. As a con-
sequence, the grasping system does not know the shape of an object. Occlusions
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and obstructions of objects may affect the grasping. Examples of methods based
on incomplete knowledge can be found in [21, 35, 41, 57, 64].

A broad review of different grasping methods through the years can be found
in [62]. The researchers conclude that analytical methods require complete knowl-
edge of the model and certain simplifications but are more stable than data-driven
methods.

Methods for grasp point estimation can also be distinguished according to the
type of algorithm into analytical, supervised learning and reinforcement learning
(both supervised and reinforcement are types of machine learning). Usually, ana-
lytical algorithms go hand in hand with complete data. On the other hand, artificial
intelligence methods, namely, artificial neural networks, require large datasets,
extensive data annotations, but are able to deal with uncertainty in effectively
detecting grasps for new objects. Methods employing neural networks for grasp
computation can be found in [7–9, 35, 55, 56, 64]. Methods based on geometric
analysis can be found in [19, 21, 57]. Additionally, distinct algorithms utilizing
reinforcement learning can be identified [44, 46, 60]. However, this necessitates
the creation of complex environments, and training is time-consuming. They lack
good generalization, but are potentially useful where complete knowledge of the
robot’s working environment is available.

Conversely, in the work by [59], the authors tackle the time-consuming anno-
tation problem by transferring knowledge from one annotated object to similar
ones via learning templates and variations from the template, then creating a
model to transfer and refine grasps for objects.

Our work focuses on utilizing point clouds to compute grasp points, similar
to the studies [21, 55, 57, 64], yet the final algorithm for grasp determination
does not rely on neural network models and does not leverage knowledge of
object models but rather estimates complete object models and determines grasps
through geometric analysis.

Based on the literature review and similarities in the problem, four algorithms,
described in [1, 35, 53, 57], were selected for further tests. These algorithms
involve computing grasp points for a robot with a two-fingered gripper using an
RGB/RGBD camera. The availability of source code to reproduce the research
results was another crucial element in the selection. Note that the code was
unavailable for one of the selected works, [57], so it was implemented manually.

2.1. Deep CNN-based architecture (DNN)

The method described in [1] is based on a neural network architecture. The
deep neural network architecture operates on standard color – RGB (Red Green
Blue) – images only. The main backbone of this architecture is based on a slightly
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modified ResNet-101 (Residual Network) [20] with a Feature Pyramid Network
(FPN) [39] and Inplace Activated Batch Normalization [49]. The backbone ex-
tracts feature maps from the input color image. These maps serve as inputs for
grasp detection and image segmentation. Further, grasp detection is based on a
Faster R-CNN [48]. It uses a Region Proposal Network (RPN) to estimate re-
gion rectangles (only axis aligned), and a grasp detection head with two outputs
– grasp orientation and fixed bounding box predictions. In parallel, the seg-
mentation branch uses Mini-DeepLab. Finally, the grasping candidates from the
grasping head are refined by fusing the segment information and processing them
by MLP (Multi-Layer Perceptron) with five outputs for each grasp candidate.

The authors tested their approach on the three datasets:
• Cornell Grasp Dataset – 885 RGB-D images with a resolution 640× 480 of

240 graspable objects [28, 36].
• Jacquard Dataset – 54 k synthetic RGB-D images of 11 k graspable ob-

jects [12].
• OCID (Object Clutter Indoor Dataset) – which includes more than 1.7 k

images with 11.4 k segmented objects and 75 k possible grasps [52].
In the first dataset, the authors achieved 98.2% accuracy using 5-fold cross-
validation. On the second dataset, the discussed approach achieved 92.95%,
while on the OCID dataset, the accuracy was 89.02%.

The accuracy was measured according to the correct grasp, defined as:
• the difference between the predicted grasp angle and the ground truth grasp

angle is less than 30◦,
• the IoU (Intersection over Union) calculated between the ground truth and

prediction bounding rectangle is more than 25%.
Note that such a metric is highly uncertain for the real grasping purpose, espe-
cially in case of very complex objects. Moreover, the grasp accuracy measured
according to the manually selected ground truth is not always translated into ac-
tual grip, in general. The most valued tests are based on the efficiency of grasping
by real manipulators.

2.2. GraspNet

In the article [53], the authors propose a model for six Degree-of-Freedom
(DoF) grasping of an unknown object in a cluttered space based on partial
observation of a point cloud scene. They used a modified PointNet++ network [47]
to build ‘an asymmetric U-shaped network’. The network has input of 20 k 3D
points and can predict the grasp representations (in the form of 6-DoF). It was
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trained on 17.7 million synthetic grasp scenes, where the objects were based on
the ACRONYM dataset (8.8k different object meshes) [16].

After training the network, the authors achieved 90% effectiveness in picking
real objects based on RGB-D images from an Intel RealSense L515 LiDAR
camera and a 7-DoF Franka Panda robot with a parallel-jaw gripper.

2.3. Generative Residual Convolutional Neural Network (GRCNN)

The method described in [35] relies on the Generative Residual Convolutional
Neural Network, which processes 𝑛 channel input. The pre-processing stage
makes sure that the input is at an appropriate resolution and fixes the number
of channels, thus the network can use RGB and/or Depth channels. Further, the
network generates three images that correspond to the grasp angle, width and
quality. The post-processing stage of the algorithm is responsible for the final
grasp pose calculation.

The authors evaluated grasps on two of the standard datasets mentioned earlier:
the Cornell and Jacquard datasets. They achieved, respectively, accuracies of
97.7% and 94.6%. The method was also evaluated in a real application using a 7-
DoF Baxter Robot by Rethink Robotics and an Intel RealSense D435 camera. The
real-world testing showed accuracies of 95.4% and 93%. The positive prediction
was defined as well as in Section 2.1.

2.4. Grasp Pose Estimation (GPE)

Another method can be found in [57], which employs a four-stage grasp
detection procedure based on a point cloud collected from a Kinect camera.
Initially, using a point cloud, object boundary points are detected and mapped onto
the image plane. Subsequently, the object’s centroid and skeleton are determined.
Further, multiple grip locations are identified along the object’s skeleton. Finally,
the best grasp is selected from the grip locations represented by drawn rectangles.
The approach has been tested with the UR10 robot. The report shows results from
a real test as a grasping accuracy of 88.16% and 77.03%, respectively, for distinct
and cluttered objects. Part of this method was adapted in our approach for the
suction cup grasping.

3. Grasping point algorithm (GPA)

The whole bin-picking process starts with image acquisition from the ZIVID-2
camera pointed at the stack of objects. The image is processed by camera software
to obtain a point cloud and normal array. Further, the data are transformed into
a robot coordinate system using a hand-eye calibration algorithm. The process
of the Grasping Point Algorithm (GPA, presented in Fig. 2) starts after the stack



ESTIMATION OF GRASP TYPE AND DETERMINING GRASPING POINTS
FOR ADAPTIVE GRASPING DEVICE 97

image segmentation using the SF-mask RCNN described in [2, 11]. The result
of the SF-mask may be depicted as 𝑚 different image segments {𝑃1, 𝑃2, ..., 𝑃𝑚},
which should usually correspond to different objects in the stack. Since the RGB
image is linked to a point cloud, the segments can be also represented in 3D space.
The index of objects is assigned by the SF-mask neural network and further used
to estimate the grasping order by the queue method described in Section 3.1. The
grasping order should reduce the possibility of collisions during object picking.
Note that the first object processed by the GPA should be the highest and most
coherent on the stack. The queue method also takes this into account.

SF-mask
segmentation

camera RGB-D
(image, pointcloud, normal array)

object
shape estimation

suction cup fast 3-finger

cluster bounding box

oval
sphere

irregularity
estimation

queue algorithm

failure

picking

Figure 2: Block diagram of the decision-making process

Subsequently, for the best-selected object 𝑏, normal array 𝑁𝑏 is used to calcu-
late its sphericity and ovalness; a more detailed description is given in Section 3.2.
If the object exhibits the above-mentioned characteristics, the grasping points are
calculated using the Fast Three Fingers (FTF) algorithm described in Section 3.4.
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Otherwise, grasping points for the Suction Cup (SC) are computed (Section 3.3),
as this type of grasping is the most stable and takes less computation time for
the majority of objects. If the algorithms fail to find grasping points or their
quality is not good enough for the grip, another attempt is calculated, based on a
two-fingered grip.

Firstly the irregularity parameter of the considered object is calculated based
on its flat surfaces. If the object consists of large (in terms of object dimensions)
flat surfaces, the Cluster (Section 3.5) algorithm for two-fingers is computed, as
it performs well with large clusters. For irregular objects with many side walls
and irregular upper surfaces, the Bounding Box (BBox) algorithm (Section 3.6)
is applied.

After each method, the quality of all proposed grasping points is calculated
(selectively for the type of grasping). The best points are also validated by simple
collision detection with other objects. The colliding grasping points are simply
removed from the list. Finally, if at least one valid point is identified, it is converted
to robot tool coordinates, and the object is picked.

3.1. Establishing the order of objects for grasping

Our algorithm uses the point clouds 𝑃 of all segmented objects to determine
the grasping sequence. The proposed method examines points belonging to object
𝑖 (𝑃𝑖), and computes several parameters, namely: mean height ℎ𝑖, continuity 𝑐𝑖,
and surface 𝑣𝑖. The aspect of the proximity of other objects or the environment is
also taken into consideration as 𝑒𝑖.

The height of object 𝑖 is calculated based on the average of 90% of the lowest
points, using their 𝑧 coordinate values (distance from the robot base). The highest
points are not considered to mitigate the impact of noise that may arise due to
camera inaccuracy. The calculated height is normalized. This metric favors the
highest objects as they have the smallest chance of collision with other items.
Such objects should also have a more accurate point cloud as the other items
should not obscure them.

The volume parameter 𝑣𝑖 is estimated based on the number of points from
the segment. Bigger items give more opportunities to be grasped than very small
objects. They are also less likely to be obscured by other objects.

Continuity 𝑐𝑖 is calculated with the DBSCAN algorithm [58]. The continuity
value is high when an object is divided by the algorithm into one big cluster, and
it is low when a few small clusters are found. This parameter highly penalizes
objects lying under other items as they are less likely to be successfully picked up.

The surroundings of the object 𝑖 are examined by determining an oriented
bounding box parallel to the global 𝑋 , 𝑌 , 𝑍 axes. The environmental parameter –
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𝑒𝑖 – is calculated as the proportion of points inside the bounding box belonging
to the object 𝑖, and the other points. If the value for the environment parameter is
low, the probability of potential collision increases.

The final object parameter is calculated according to the formula:

𝑔𝑖 = (ℎ𝑖 + 1) · 𝑐𝑖 · 𝑒𝑖 · 𝑣𝑖 , (1)

where:
𝑔𝑖 – parameter of the order for an object 𝑖
ℎ𝑖 – normalized height of the object 𝑖
𝑐𝑖 – continuity value of the object 𝑖
𝑒𝑖 – surroundings of the object 𝑖
𝑣𝑖 – volume parameter of the object 𝑖.
The results are sorted in descending order by the 𝑔 parameter. The object with
the highest 𝑔 value is considered the best candidate for picking.

3.2. Sphericity and roundness of an object

The three-finger gripper option works best when handling spherical, cylindri-
cal, or in general, rounded-shaped objects. Based on the paper [5], the sphericity
parameter – 𝜌 – can be calculated from the distribution of normal vectors for 3D
points of the selected object.

The normalize normal vector for each point along each axis is assigned to
corresponding intervals 𝑛axis within the range ⟨−1, 1⟩. The number of intervals
𝑛axis has been set to 200. The frequency of intervals is normalized by dividing
them by the total number of points. Based on the data, three histograms – 𝐻𝑥 , 𝐻𝑦,
𝐻𝑧 – (one for each axis) are created. The function parameter 𝜌 can be described as:

𝜌𝑖 =

∫ 1
−1(𝐻𝑥 + 𝐻𝑦 + 𝐻𝑧)

3
. (2)

The roundness of the object, 𝜙, is computed using the direct point cloud of
the object. All points are projected onto a two-dimensional plane. Further, the
convex hull is computed by the standard Jarvis algorithm [26]. The convex hull
points are used to obtain the perimeter (𝑟ℎ𝑢𝑙𝑙𝑖) and convex area (𝐴ℎ𝑢𝑙𝑙𝑖) by the
shoelace algorithm. The circularity value of the object 𝑖 is calculated as:

𝜙𝑖 =
4 · 𝜋 · 𝐴ℎ𝑢𝑙𝑙𝑖

𝑟ℎ𝑢𝑙𝑙2
𝑖

. (3)

For a perfect circle, this value is equal to 1.
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3.3. Suction cup algorithm (SC)

The algorithm for determining the grip for the suction cup (one gripping point)
was based on [57], as described in Section 2.4. The main differences include data
source (using only point cloud data) and gripping method (only a suction cup).
The scheme of the algorithm is presented in Fig. 3a.

doubled DBSCAN

plane equation (RANSAC)
and trasformation (2d)

contour finding skeletonization

filtering and verification

flat surfaces
(3d)

surfaces
masks (2d)

image processing
(mask, opening)

images (2d)

centroid grasping points

(a) Suction cup algorithm
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(b) Three finger algorithm
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(c) Cluster algorithm
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image processing
(mask, morphology)
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2d bounding box
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crating abstract walls
(fixed width)

(d) Bounding box algorithm

Figure 3: Details of used algorithms
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Firstly, on a segment of the 𝑖-th object, we are searching for flat surfaces
without any holes or cavities. To identify these surfaces, the parallel implemen-
tation of the DBSCAN algorithm is applied [58]. The initial point cloud for the
DBSCAN algorithm is pre-processed by adding an additional channel to each
point – its normal vector multiplied by a large scalar. This operation helps us to
divide the point cloud of an object into similar surfaces.

The resulting clusters are once again passed through the DBSCAN algorithm,
this time in original form (without additional normal coefficients). Similar sur-
faces are divided if there is a space between them (Fig. 4c). Further, we use the
RANSAC algorithm [65] to calculate the equations of the surfaces found in the
previous step.

Potential grip points are determined separately for every flat face. Firstly, the
points are projected onto the XY plane. Further, a two-dimensional grid mask is
created, where each point from the transformed surface is assigned to a single
pixel as its approximation (Fig. 4d). The resolution of the grid is chosen arbitrarily
(1 mm per pixel). The obtained mask image is transformed with a morphological
operator – opening (erosion followed by dilation) using a structuring rectangle
with kernel shape 3 × 3. The centroid of the mask is calculated, as an obvious
grasping candidate. Further, the mask is skeletonized by the algorithm in [63]
(Fig. 4e). The skeleton of the surface is used exactly as in [57].

(a) RGB image (b) Point cloud (c) Detected surface

(d) 2D grid mask (e) Object skeleton (f) Filtered grasping points

Figure 4: Suction cup grasping computation steps
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The suction cup is represented as a binary circle with a radius corresponding to
the suction cup installed on the robot and the chosen resolution of a surface grid.
For each potential grip point, the logical and operation is performed between the
obtained mask and the binary representation of the suction cup. Such filtering is
intended to eliminate any openings (within each grip point that would cause air
to escape) and points lying too close to the edges of the surface (Fig. 4f). Further
filtering also includes the distribution of the transformed 𝑧 coordinates in the
vicinity of the gripping point, which determines the irregularity of the surface.
The obtained results are transformed back to the original robot coordinates. Based
on the plane equation, we calculate the gripping angle for the suction cup.

Finally, the potential grasping points are validated. For the suction cup, the
most critical quality parameter is the Euclidean distance from the object’s centroid
(CoG) – 𝑑𝐶𝑜𝐺 . In general, a suction cup should aim to catch the object at its center
of gravity. The further away from the center, the less stable the grasp may be, and
more force is needed to lift the object.

3.4. Three finger algorithm and its acceleration (FTF)

As was mentioned earlier, a three-fingered gripper can lift round objects (such
as a ball, an egg, or a cylinder), which is its advantage. Such a conclusion can
also be derived from the literature, e.g. [50], where the ‘basic mode’ works for
rounded objects.

With a circular object, just like with a suction cup, the robot approaches the
object at a right angle to the plane on which the grip points are located. The
algorithm is presented in Fig. 3b, where the ‘slow’ path is an original concept,
and the ‘fast’ path is further modified and currently working on a robot.

Our algorithm (TF – Three Finger) to calculate grasping points for rounded
objects (Fig. 5a and Fig. 5b) is based on the fact that such objects can be approxi-
mated to a certain ellipsoid. Initially, the point cloud is downsampled and filtered
(outliers are removed) (Fig. 5c). Subsequently, we use the DBSCAN algorithm to
select the largest points cluster. The algorithm searches for quasi-bounding circles
within a several fixed height range of the cluster points. The Cayley transform
ellipsoid fitting (CTEF) algorithm [43] estimates the ellipsoid function from the
calculated circles. Next, a mesh grid is created, and for each grid square center,
a grip point is estimated with the next two points at 120◦ and 240◦ apart.

Due to the high computational complexity and long time of these calculations,
the algorithm has been modified to improve its speed (FTF – Fast Three Finger).
Instead of estimating a paraboloid, we use the knowledge of the object’s vertex
(highest point – green dot in Fig. 5c), its edges, and centroid. Thus, the problem
of shape estimation can be reduced to a two-dimensional bounding ellipse cal-
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culation. The obtained ellipse provides the parameters of the bounding cylinder
(Fig. 5d). To get potential grasping points, several circles are placed every fixed
distance on the sidewall of the cylinder. Next, all circles are divided into slices of
a fixed angle. The grasping points are the intersection points of these operations.
As was mentioned above, grip points are connected in a set of three points every
120◦, as shown in Fig. 5e as triangles. Note that circular objects must be gripped
below its widest point.

(a) RGB image (b) Point cloud
(c) Filtered point cloud with
highlighted (green) top point

(d) Estimated cylinder walls (e) Potential grasps

Figure 5: Three fingers grasping computation steps

This algorithm, besides spherical objects, can determine grasping points for a
cylinder, skipping the height determination step. Instead of estimating the ellipse,
the lowest and highest points of the cylinder are determined.

For the three-fingered grip, the grasp quality parameter primarily revolves
around the depth of the grip – 𝑑grip. The object must be gripped as low as possible
to ensure it stays firmly in the gripper without slipping out during transportation.
The grasp depth is calculated as the Euclidean distance between the highest point
of the object and the mean value of the proposed grasping point.
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3.5. Cluster based algorithm (Cluster)

The scheme of a cluster-based algorithm for a two-fingered gripper is pre-
sented in Fig. 3c. This algorithm, similar to the suction cup method described
earlier, is based on surfaces found by DBSCAN (Fig. 6c). In this case, for a two-
fingered gripper, the flatness of surfaces is not strictly necessary for computation.
The surfaces found are projected onto a two-dimensional plane. For each surface,
its contour is calculated by applying the alpha shape algorithm [14] (Fig. 6d).
Close contours are joined together to simplify the computation, which also re-

(a) RGB image (b) Point cloud
(c) Detected faces and

geometric center of object

(d) Contours of detected
faces (e) Walls (f) Split walls

(g) Grasping points with
geometric center of object (h) Projection points (i) Estimated grasps

Figure 6: Cluster algorithm computation steps
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duces the number of potential bad gripping points and decreases the possibility
of collision between the object and the gripper’s fingers.

Next, abstract vertical walls are formed based on subsequent points belonging
to the contours of selected surfaces (Fig. 6e). Their height is predefined. To
increase the subsequent number of grip points, wide walls are divided to match
the average width of the wall (Fig. 6f). Further, the algorithm searches for pairs
of quasi-parallel walls by comparing the angle between their normal vectors.
Two walls are considered quasi-parallel if the value of the 𝜃 angle is within the
accepted range – ⟨0◦, 15◦⟩ and ⟨165◦, 180◦⟩. For each pair of parallel walls, an
additional check is carried out to determine if the walls intersect, using their
projection into a two-dimensional plane.

The geometric center of the analyzed point cloud is also determined. Further,
the algorithm analyses each pair of parallel walls. The centroid of the considered
object is projected onto the walls to create so-called projection points. If the
projection points lie inside both examined walls, they are considered as grasping
points (Fig. 6g). If one of the projection points is not within the wall area (Fig. 6h),
the top edges of the walls are rotated to make them parallel to the x-axis. Further,
the median of the 𝑥 coordinates is calculated along with the 𝑦 coordinate for the
‘upper’ edge of the wall for the selected 𝑥 value. Such a median is projected back
to real coordinates and added to the list of potential grip points. All estimated
grasping points are shown in Fig. 6i.

The quality of the grasping points is influenced by both the depth and the
distance to the object’s centroid. Thus, the quality parameter is calculated as an
average of the distance from the centroid and the grasp depth. This refers to
providing the biggest grasping area while minimizing the potential force required
to lift the object.

3.6. Bounding Box (BBox) algorithm

The Bounding Box algorithm involves estimating a 3D bounding box around
an object. The algorithm is depicted in Fig. 3d. Similarly to the previous al-
gorithm, to determine the boundaries, the point cloud is initially downsampled
and filtered (Fig. 7a). Further, the points are projected onto a two-dimensional
plane. Similarly, as in the suction cup algorithm (Section 3.3), a 2D mask is
created based on a projection and the minimal quadrilateral area surrounding
the resulting figure is determined. The four corners of the envelope on the two-
dimensional plane are transformed back into their corresponding points in 3D
space. This process determines the four upper vertices of the bounding box.

The lower vertices have the same 𝑥 and 𝑦 coordinates as the upper ones, while
their 𝑧 coordinate is determined using the geometric center𝐶𝑜𝐺 and the maximal
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𝑧 vertices:

lower𝑧 ( 𝑗) = upper𝑧 ( 𝑗) − 1.8 · (max 𝑗 (upper𝑧) − 𝐶𝑜𝐺𝑧), (4)

where 𝑗 ∈< 1, 4 > is the index of the corner, and 𝑢𝑝𝑝𝑒𝑟 or 𝑙𝑜𝑤𝑒𝑟 are the
appropriate coordinates (Fig. 7d).

(a) Point cloud (b) 2D projection of object
points

(c) Calculated minimal
rectangle

(d) Estimated bounding box (e) Split bounding box (f) Estimated grasps

Figure 7: BBox grasping computation steps

For each of the four sides of the resulting object, 𝑛 finger-width walls are
determined (Fig. 7e). For each pair of walls, our algorithm checks their parallelism
(by comparing their normal vectors) similar to Section 3.5. Parallel walls are also
checked to determine whether they lie opposite each other. Further, the median of
the 𝑥 coordinates of the upper edges is used as a potential grip coordinate, while
its 𝑦 coordinate is determined by the 𝑦𝑚𝑖𝑛 and 𝑦max coordinates. The grip height
is simply the 𝐶𝑜𝐺𝑧.

The quality of the grasping points in the bounding box algorithm is the same
as in the previous method.
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4. Tests and their results

To properly assess the quality of the algorithms and the effectiveness of the
final version of the proposed GPA algorithm, a number of tests were carried
out. The component functions of the GPA algorithm (namely SC, FTF, Cluster,
and BBox) were compared with algorithms available in the literature and Git
repository. At the same time, an entire pick and place station was tested by moving
100 different stacks of 25 objects each. To thoroughly analyze the algorithm’s
inaccuracies, a single object transfer test was also performed.

4.1. Comparison of algorithms

To compare the described (Section 2) and implemented functions in our
algorithm (Section 3), each of them was tested on objects (Fig. 8) of different
shapes, using the generated grasping points. Note that the described algorithms
from the state-of-the-art section are designed only for a two-fingered gripper. Thus
in certain cases, e.g. a ball, they may not provide any results. As was described
earlier, the quality of the grasp can be evaluated as the distance from the center
of gravity and the depth of the grasp. The results of such a metric for each of the
fifteen described objects are detailed in Table 1 and Table 2. Figure 9 presents
examples of grasping points determined by the algorithms, indicating how the
gripper approaches to pick up the object.

Figure 8: Objects for test algorithms

According to Table 1, the GRCNN algorithm proposes grasping points far
away from the CoG of the object. The majority of such grasps are not valid
and are efficient. The GPE algorithm achieves quite good results. Its distances
are similar to Cluster and BBox algorithms, however, in certain cases, the GPE
algorithm did not generate any points, like with the toy soldier. Note that the toy
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(a) GRCNN (b) GPE

(c) DNN (d) GN

(e) SC (f) TFT

(g) Cluster (h) BBox

Figure 9: Results of the estimated points to grasp by each of algorithms
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soldier is the hardest example to process. The DNN algorithm did not perform
well. Our assumption in that case is that the neural network had been trained for
different cases. On the other hand, the GraspNet had been trained on a bigger/more
varied dataset since it worked better for 12 cases.

Table 1: Average distance in mm of grasps from CoG of the objects for different algorithms
(the lower the better). The number of positive estimations (any estimation near object) out of 5
attempts is given in brackets

Object no. GRCNN GPE DNN GN SC FTF Cluster BBox

1 (toy car) 47.62 (2) 4.51 (5) 16.94 (1) – (0) 15.33 (5) 1.61 (5) 4.91 (5) 7.94 (5)

2 (cube block) 50.41 (2) 5.61 (4) – (0) 11.72 (3) 0.81 (5) 0.74 (5) 4.81 (5) 3.25 (5)

3 (white corner) 21.12 (2) – (0) – (0) 8.88 (5) 13.18 (5) 3.23 (5) 6.27 (5) 8.64 (5)

4 (aluminium corner) 48.79 (1) 3.22 (3) – (0) 15.91 (2) 1.39 (5) 3.2 (5) 9.66 (5) 4.67 (5)

5 (beacon) 41.58 (2) 3.36 (5) – (0) 4.8 (1) 4.86 (5) 1.8 (5) 3.9 (5) 4.45 (5)

6 (cylinder block) 9.75 (1) 2.5 (4) – (0) 10.04 (5) 2.07 (5) 1.24 (5) 1.94 (5) 3.47 (5)

7 (handle) 47.4 (1) 16.02 (4) – (0) 41.57 (1) 29.77 (2) 11.94 (5) 21.7 (5) 40.9 (5)

8 (PG29 gland) 16.58 (2) 15.5 (2) 2.55 (4) 3.57 (5) 10.66 (1) 2.58 (5) 2.24 (3) 1.9 (5)

9 (ball) 52.74 (1) 20.73 (2) – (0) 5.08 (5) – (–) 4.27 (5) 6.49 (5) 21.71 (5)

10 (aluminium frame) 56.91 (1) 2.65 (3) – (0) 10.98 (3) 11.29 (4) 1.69 (5) 3.88 (5) 3.11 (5)

11 (bridge block) 32.35 (3) 8.57 (3) – (0) 26.55 (5) 12.9 (5) 3.06 (5) 5.73 (5) 5.7 (5)

12 (toy soldier) 60.42 (1) – (0) – (0) – (0) – (–) 2.33 (5) 4.13 (5) 4.69 (5)

13 (half of cylinder) 46.12 (1) 3.37 (4) – (0) 14.21 (4) 1.82 (5) 2.73 (5) 2.81 (5) 1.93 (5)

14 (plastic detail) - (0) 7.1 (1) 21.15 (2) – (0) 3.98 (5) 0.75 (5) 1.64 (5) 9.2 (5)

15 (M20×1.5 gland) 50.92 (1) 7.45 (1) 3.69 (2) 6.44 (5) – (–) 1.04 (5) 1.3 (5) 1.3 (5)

For the Suction Cup algorithm, the distance from the CoG is crucial, however,
the most important parameter is that the grasping point should lie on a flat,
nonperforated surface. In some cases, the metric is similar to the FTF algorithm.
The FTF algorithm achieves the minimal distance from the CoG, which is natural
for the case of three fingers. The Cluster and BBox algorithms stay in the middle,
showing (for most cases) quite a good distance from the CoG.

The grasp depth shown in Table 2 is quite an important parameter. In theory,
the best grasping points are the deepest ones. In our cases, the grasping points
should lie on the bottom half of the objects. The gasping points near the top sur-
faces are most vulnerable to accidentally slipping out of the grip. Note that since
the Suction Cup works only for top surfaces, its grasping depth as a parameter is
useless.
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Table 2: Average grasp depth in mm of grasps for different algorithms. The depth of each object
is presented in column ‘h’. Note that the grasp depth is measured before the system checks the
environmental conditions, such as obstacles

Object no. h GRCNN GPE DNN GN FTF Cluster BBox

1 (toy car) 18.2 8.58 6.75 14.26 – 22.49 10.89 6.56
2 (cube block) 28.6 2.16 7.54 – 12.96 36.77 7.33 4.3

3 (white corner) 38.6 8.77 – – 27.79 35.96 23.71 15.22
4 (aluminium corner) 24.4 12.54 5.68 – 21.04 27.91 6.43 4.78

5 (beacon) 22.8 5.77 6.53 – 34.8 32.16 7.26 5.1
6 (cylinder block) 59.2 29.79 5.42 – 20.09 38.72 6.81 7.45

7 (handle) 22.7 0.01 6.72 – 21.26 31.53 6.56 4.55
8 (PG29 gland) 47.2 2.85 9.64 3.16 25.17 33.03 18.11 18.45

9 (ball) 65.0 49.7 4.35 – 34.78 33.2 22.27 5.11
10 (aluminium frame) 29.2 15.17 13.09 – 19.79 34.05 8.27 5.94

11 (bridge block) 29.9 14.96 6.07 – 16.83 34.11 6.43 5.34
12 (toy soldier) 17.8 11.34 – – – 20.39 11.2 11.02

13 (half of cylinder) 29.5 15.07 6.09 – 18.41 32.8 7.68 5.77
14 (plastic detail) 9.2 – 9.72 7.66 – 13.81 7.33 3.35

15 (M20 × 1.5 gland) 35.9 38.43 44.34 38.71 14.9 19.74 11.99 11.99

For objects 4, 6, and 9–13, the GRCNN shows the depth of the grasping points
in the middle of the objects, which is very good behavior. However, for the other
objects, the grasp is too shallow. The GPE grasping points in general are also too
shallow. On the other hand, the depths of GraspNet’s points is quite good. The
grasping points do not extend the depth of the objects and they are more than
10 mm, thus the probability of slipping out decreases.

The FTF algorithm shows the grasping points at a depth bigger than the
object’s height. This phenomenon is caused by the fact that the gripper should
catch objects in the middle of its fingers. However, the grasp depth is measured
before the system checks the environmental conditions, such as obstacles. Thus,
the next step of the GPA algorithm is to check the obstacles and fix the depth of
the grasping points so that they do not exceed the depth of the object. The Cluster
and BBox algorithms show the depth at quite a nice level, sometimes too shallow
(like in the case of the aluminum corner).

In Table 3, the quality of the grasping point was evaluated manually on a
scale of:

0) the algorithm did not generate any grasping point,
1) the gripper will not catch the item (impossible grasp),



ESTIMATION OF GRASP TYPE AND DETERMINING GRASPING POINTS
FOR ADAPTIVE GRASPING DEVICE 111

2) there is a big chance that the gripped object will slide out,
3) the object will probably slide out during the movement,
4) there is a small chance of sliding out,
5) the gripper will catch the object without it sliding out (perfect grasp).

Table 3: Human evaluation of best grasp, graded 1–5, where 1 means that object can’t be gripped
while 5 is a perfect fitted grip

Object no. GRCNN GPE DNN GN SC FTF Cluster BBox

1 (toy car) 1 3.8 0.4 0 2.4 3 2.6 3.8
2 (cube block) 1 3.6 0 2.5 5 1.2 3.4 4.2

3 (white corner) 0.8 0.2 0 2.2 4 1 1.2 1.2
4 (aluminium corner) 1 1.4 0 0.8 5 3.4 2.2 2

5 (beacon) 0.6 3.6 0 0.4 5 3.8 1.6 3.6
6 (cylinder block) 0.4 2.4 0 2 5 5 2.2 1.8

7 (handle) 1 3.6 0 0.4 1.2 2.6 2 1.2
8 (PG29 gland) 0.4 1.2 1.6 2.8 0 5 2.2 3.4

9 (ball) 0.5 0.5 0 2.25 0 5 1.5 1
10 (aluminium frame) 1 3.25 0 0.5 2.75 3.25 3.75 4.5

11 (bridge block) 1 3.75 0 1 4 2.5 2.75 3
12 (toy soldier) 1 0 0 0 0 2 1.2 1.2

13 (half of cylinder) 1 2.25 0 1.5 5 3.5 2.5 2.75
14 (plastic detail) 1 0.75 0.5 0 4 1 2.5 3.25

15 (M20 × 1.5 gland) 1 1 1.6 3.6 0 5 3.2 3.2

average 0.85 2.09 0.27 1.33 2.89 3.15 2.32 2.67

Each object was analyzed five times in different positions and angles in a
workspace (the orientation of the objects did not change). The results of such
tests are presented in Table 3. In general, the GRCNN method almost always
generates a grasping point, however it is usually outside of the object. The GPE
method is most useful from the external ones. Its average score is similar to the
Cluster and BBox algorithms. The score of the DNN method is quite low since it
had been trained on a certain closed dataset where the objects were completely
different from those tested. This is the biggest disadvantage of using neural net-
works. On the other hand, in several cases, the Contact GraspNet (GN) gives the
best results. Especially in the case of the gland, GN proposes grasping points
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perpendicular to the planes of the nut but at a certain angle to the gland, which is
a very interesting approach.

For our partial algorithms, the results show that the FTF always works well
with round objects (which was the main assumption of this algorithm). If there
is a flat plane and a regular shape of the object, we should use a suction cup. The
Cluster and BBox algorithms work well for rectangular objects, however they
have some issues with irregular shapes. Moreover, they are not complementary to
each other. In most cases, they give similar grasping points. Thus, in the future,
they should be merged into one algorithm.

The state-of-the-art methods can only determine gripping points for two-
fingered grippers. Our expert’s evaluation shows that they strongly outperform
our methods in only two cases, for objects 1 and 7. Note that the GRCNN method
relies on a neural network [35], and in the case of objects other than those in
the training set, the grip may be inaccurately determined. The model lacks the
ability to generalize, which is a drawback and renders it unsuitable for these
studies due to the goal of adaptability to each type of object. Similarly, GraspNet
works quite well for several objects, while in other cases, the effect of the finite
learning dataset is also visible. On the other hand, the GPE method [57], based
on geometric analysis, performs better than any other state-of-the-art method.

Note that our final algorithm, GPA, consists of all four functions, which
complement each other depending on the type of object.

4.2. The environment

The Delta DRV90L robot with its controller box was used in the tests. RGBD
images were taken using a ZIVID2 camera. The robot and gripper were connected
to the host PC via the Modbus protocol, while the camera used Ethernet commu-
nication via the ZIVID API. The host PC was equipped with an Intel i7-11700F
processor, 32 GB of RAM and an RTX3060 graphics card.

Our tool, presented in Fig. 1, is an originally designed gripper with three
possible ways of grasping objects: a three-fingered, a two-fingered, or a suction
cup grip. The suction cup is centrally located on a pneumatic actuator. It extends
below the gripper’s fingers when it picks up an object and hides over the fingers
otherwise. The three fingers of the gripper are positioned at 120◦ intervals and
close by clamping towards the center. One of the gripper’s fingers can be rotated
around the gripper’s center axis, which allows it to align parallel to one of the re-
maining fingers, creating the two-fingered grip. Examples of object manipulation
by the gripper are depicted in Fig. 10.

https://www.deltaww.com/en-US/products/Articulated-Robot/3816
https://www.zivid.com/zivid-2
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(a) Three-finger gripper (b) Suction gripper (c) Two-finger gripper

Figure 10: Sample grips using different configurations

4.3. GPA algorithm test

Experiments involving the gripper’s object handling were conducted through
two scenarios: picking up individual objects from the workspace, and unloading a
stack of objects. In both cases, the mentioned manipulator was used. All tests and
grasping attempts were carried out under consistent environmental conditions in
a single location with constant lighting.

4.3.1. Individual test

In the first scenario, 80 diverse objects in terms of shape and color were
chosen (Fig. 11a). For each object, five attempts were made to pick it up. Thus,

(a) Individual objects (b) The objects from the stack

Figure 11: Objects used in tests
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the robot performed 400 grasping attempts. In each attempt, the objects were
positioned randomly.

For the individual object grasping experiment, a successful grasp involved the
robot transferring the object from the initial placement to predetermined location
– target storage box – and then releasing the object there. An unsuccessful grasp
was noted if the algorithm failed to determine the grasp, the gripper did not pick
up the object, the object slipped during transfer, or if it was not released at the
destination point.

After 400 attempts, the successful transfer of a single object was found to
occur in 91.25% of cases. The results divided into the gripper mode are presented
in Table 4. Table 5 contains information about the grasping mode selected for
different objects. Note that only 4 object were grasped in 5 attempts by three
different modes. The same table also shows that one object was very hard to
grasp – only one attempt was successful.

Table 4: Number of attempts made with a particular gripper mode

Gripper mode Number of attempts Successful attempts[%]

Suction cup 223 95.51

Two-finger 144 84.72

Three-finger 33 90.90

Table 5: Number of objects grasped by each gripper and number of successful attempts
at grasping an object

Selected gripper mode/s Objects Successful attempts Objects

Suction cup 27 5 51

Two-fingers 14 4 24

Three-fingers 3 3 4

Suction cup, Two-fingers 25 2 1

Suction cup, Three-fingers 1 1 0

Two-fingers, Three-fingers 6 0 0

Suction cup, Two-fingers, Three-fingers 4 – –

4.3.2. Stack unloading

In the second scenario, we tried to unload 100 different stacks composed of
25 distinct objects (Fig. 11b). We achieved a success rate of 92.24%. On average,
we moved about 23 objects from each stack. Our algorithm and robot achieved
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full success only 8 times – moved all objects from the stack to the destination.
The details of the test are presented in Table 6.

Table 6: Number of attempts for which a specific number of successful transfers occurred

Successfully placed objects Number of attempts
21/25 3
22/25 10
23/25 71
24/25 6
25/25 8

4.4. Discussion

Determining the appropriate gripper mode for objects and defining their se-
quence works optimally, but there is always room for improving the algorithm’s
quality. A significant challenge was encountered with small irregular objects,
where the algorithm failed to identify the object’s top surface or struggled to
determine the bounding box, thus unable to ascertain a suitable grasp. Small
objects pose greater difficulty due to their less precise point cloud compared to
larger or medium-sized objects. Objects grasped using the suction cup present an
issue when their surface is not perfectly flat but this deviation is too subtle to be
detected reliably by the software after capturing the image.

The three-fingered gripper performs excellently with spherical objects. Errors
here stemmed from misjudging whether an object is spherical or not. Identifying
an object’s spherical or round shape works optimally, but achieving maximum
accuracy solely from a single camera placed statically cannot be guaranteed.
Additionally, in several instances, image segmentation failed, categorizing one
object as two or not detecting parts of an object, especially if an object had
multiple colors.

The tests on individual objects revealed that some errors arise from the cam-
era’s inaccuracies, segmentation issues, or the specific nature of some objects
that are challenging for geometric analysis. The suction cup performed best at
grasping objects, followed by the three-fingered gripper, while the two-fingered
gripper showed the weakest performance. Issues with the suction cup arose not
only from the objects’ imperfectly flat surfaces at the grasp point but also from any
excessive distance from the objects’ geometric center. Establishing the distance
limit for the suction cup from the geometric center poses a challenge as it varies
for each object depending on its shape and mass distribution. The subpar results
of the two-fingered gripper stem from attempting to grasp irregular, challenging
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objects complicated by data noise. This version of our gripper lacks built-in sen-
sors on its fingers, leading to instances where it did not apply sufficient grip force
or incorrectly aligned the fingers relative to the object’s surface (as the fingers
do not always align parallel due to irregular surfaces or miscalculations caused
by data noise). The three-fingered gripper functioned properly when the objects’
spherical or round nature was correctly identified.

Regarding unloading stacks of objects, the algorithm achieved an average
transfer rate of 92.24% of objects. Typically, two objects out of 25 remained at the
end. These objects, characterized by unsuccessful attempts, exhibited irregular
shapes, lacked a flat surface, were small (approximately 1 cm tall), and often
caused collision issues between the calculated gripping points by the two-fingered
gripper and the surface. As a precaution against the risk of collision with the
surface, the robot refrained from attempting to grasp these objects. In several
instances, the segmentation failed to detect these objects, leading to the premature
termination of the robot’s automated operation. There were multiple unsuccessful
attempts due to slight shifts in the object during gripping, yet subsequent attempts
with refined grasp points often led to successful pickups.

5. Conclusions

Selecting the right gripper for objects and determining their order optimally
works well, but there is always room for improving the algorithm’s performance.
An important factor to minimize potential errors involves developing a robot
trajectory algorithm that is not automated by its software, as this might cause
unforeseen movements or attempts to navigate the robot beyond its working area.
Enhancing the approach angle of the robot’s suction cup towards the object can
reduce the risk of finger contact with the surface. If the angle is too steep, avoiding
using the suction grip altogether might prevent finger impact with the surface.
Although such an error did not occur during testing, there is a potential risk based
on the robot’s behavior and algorithm. Improving segmentation and placing the
camera on the robot instead of statically above it could enhance the point cloud
quality and reduce the data noise. Installing additional sensors on the fingers to
verify if an object is gripped would simplify the estimation of grasp points, as it
would not require pinpointing exact points on the object, only around it.

References

[1] S. Ainetter and F. Fraundorfer: End-to-end trainable deep neural network for robotic
grasp detection and semantic segmentation from rgb. In 2021 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 13452–13458. IEEE, 2021. DOI:
10.1109/ICRA48506.2021.9561398

https://doi.org/10.1109/ICRA48506.2021.9561398


ESTIMATION OF GRASP TYPE AND DETERMINING GRASPING POINTS
FOR ADAPTIVE GRASPING DEVICE 117

[2] S. Back, J. Kim, R. Kang, S. Choi, and K. Lee: Segmenting unseen industrial components
in a heavy clutter using rgb-d fusion and synthetic data. In 2020 IEEE International
Conference on Image Processing (ICIP), pages 828–832. IEEE, 2020. DOI: 10.1109/ICIP
40778.2020.9190804

[3] A. Billard and D. Kragic: Trends and challenges in robot manipulation. Science,
364(6446), (2019), eaat8414. DOI: 10.1126/science.aat8414

[4] L. Birglen and T. Schlicht: A statistical review of industrial robotic grippers. Robotics and
Computer-Integrated Manufacturing, 49 (2018), 88–97. DOI: 10.1016/j.rcim.2017.05.007

[5] V. Blåsjö: The isoperimetric problem. The American Mathematical Monthly, 112(6),
(2005), 526–566. DOI: 10.2307/30037526

[6] T.J. Cairnes, C.J. Ford, E. Psomopoulou, and N. Lepora: An overview of robotic
grippers. IEEE Potentials, 42(3), (2023), 17–23. DOI: 10.1109/MPOT.2023.3236143

[7] H. Cao, G. Chen, Z. Li, Y. Hu, and A. Knoll: Neurograsp: multimodal neural net-
work with euler region regression for neuromorphic vision-based grasp pose estima-
tion. IEEE Transactions on Instrumentation and Measurement, 71, (2022), 1–11. DOI:
10.1109/TIM.2022.3179469

[8] H. Cheng, Y. Wang, and M.Q.-H. Meng: A robot grasping system with single-stage
anchor-free deep grasp detector. IEEE Transactions on Instrumentation and Measurement,
71, 1–12, 2022. DOI: 10.1109/TIM.2022.3165825

[9] H. Cheng, Y. Wang, and M.Q.-H. Meng: A vision-based robot grasping system. IEEE
Sensors Journal, 22(10), (2022), 9610–9620. DOI: 10.1109/JSEN.2022.3163730

[10] M. Czubenko and Z. Kowalczuk: A simple neural network for collision detection of
collaborative robots. Sensors, 21(12), (2021), 4235. DOI: 10.3390/s21124235

[11] M. Czubenko, A. Chrzanowski, and R. Okuński: Instance segmentation of stack com-
posed of unknown objects. Engineering Applications of Artificial Intelligence, 126 (2023),
106942. DOI: 10.1016/j.engappai.2023.106942

[12] A. Depierre, E. Dellandréa, and L. Chen: Jacquard: A large scale dataset for robotic
grasp detection. In 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3511–3516. IEEE, 2018. DOI: 10.1109/IROS.2018.8593950

[13] G. Du, K. Wang, S. Lian, and K. Zhao: Vision-based robotic grasping from object local-
ization, object pose estimation to grasp estimation for parallel grippers: a review. Artificial
Intelligence Review, 54(3), (2021), 1677–1734. DOI: 10.1007/s10462-020-09888-5

[14] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel: On the shape of a set of points
in the plane. IEEE Transactions on Information Theory, 29(4), (1983), 551–559. DOI:
10.1109/TIT.1983.1056714

[15] N. Elangovan, L. Gerez, G. Gao, and M. Liarokapis: Improving robotic manipulation
without sacrificing grasping efficiency: a multi-modal, adaptive gripper with reconfigurable
finger bases. IEEE Access, 9 (2021), 83298–83308. DOI: 10.1109/ACCESS.2021.3086802

[16] C. Eppner, A. Mousavian, and D. Fox: Acronym: A large-scale grasp dataset based on
simulation. In 2021 IEEE International Conference on Robotics and Automation (ICRA),
pages 6222–6227. IEEE, 2021. DOI: 10.1109/ICRA48506.2021.9560844

https://doi.org/10.1109/ICIP40778.2020.9190804
https://doi.org/10.1109/ICIP40778.2020.9190804
https://doi.org/10.1126/science.aat8414
https://doi.org/10.1016/j.rcim.2017.05.007
https://doi.org/10.2307/30037526
https://doi.org/10.1109/MPOT.2023.3236143
https://doi.org/10.1109/TIM.2022.3179469
https://doi.org/10.1109/TIM.2022.3165825
https://doi.org/10.1109/JSEN.2022.3163730
https://doi.org/10.3390/s21124235
https://doi.org/10.1016/j.engappai.2023.106942
https://doi.org/10.1109/IROS.2018.8593950
https://doi.org/10.1007/s10462-020-09888-5
https://doi.org/10.1109/TIT.1983.1056714
https://doi.org/10.1109/ACCESS.2021.3086802
https://doi.org/10.1109/ICRA48506.2021.9560844


118 M. CZUBENKO, P. ŁYCZKO, R. OKUŃSKI

[17] G. Erboz: How to define industry 4.0: Main pillars of industry 4.0. Managerial Trends in
the Development of Enterprises in Globalization Era, 761 (2017), 761–767.

[18] E. Gibney: The ai revolution is coming to robots: how will it change them? Nature,
630(8015), (2024), 22–24. DOI: 10.1038/d41586-024-01442-5

[19] N. Guo, B. Zhang, J. Zhou, K. Zhan, and S. Lai: Pose estimation and adaptable
grasp configuration with point cloud registration and geometry understanding for fruit
grasp planning. Computers and Electronics in Agriculture, 179 (2020), 105818. DOI:
10.1016/j.compag.2020.105818

[20] K. He, X. Zhang, S. Ren, and J. Sun: Identity mappings in deep residual networks. In
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11–14, 2016, Proceedings, Part IV 14, pages 630–645. Springer, 2016. DOI:
10.1007/978-3-319-46493-0_38

[21] M. Hegedus, K. Gupta, and M. Mehrandezh: Efficiently finding poses for multiple grasp
types with partial point clouds by uncoupling grasp shape and scale. Autonomous Robots,
46(6), (2022), 749–767. DOI: 10.1007/s10514-022-10049-6

[22] J. Hernandez, M.S.H. Sunny, J. Sanjuan, I. Rulik, M.I.I. Zarif, S.I. Ahamed,
H.U. Ahmed, and M.H. Rahman: Current designs of robotic arm grippers: a compre-
hensive systematic review. Robotics, 12(1), (2023), 5. DOI: 10.3390/robotics12010005

[23] J. Hughes, U. Culha, F. Giardina, F. Guenther, A. Rosendo, and F. Iida: Soft ma-
nipulators and grippers: A review. Frontiers in Robotics and AI, 3, (2016), 69. DOI:
10.3389/frobt.2016.00069

[24] B.R. insights. Centric grippers market report overview. Technical report, 2024. URL https:
//www.businessresearchinsights.com/market-reports/centric-grippers-market-103894

[25] V. Ivanov, V. Andrusyshyn, I. Pavlenko, J. Pitel’, and V. Bulej: New classification of
industrial robotic gripping systems for sustainable production. Scientific Reports, 14(1),
(2024), 295. DOI: 10.1038/s41598-023-50673-5

[26] R.A. Jarvis: On the identification of the convex hull of a finite set of points in the plane.
Information processing letters, 2 (1): 18–21, 1973, DOI: 10.1016/0020-0190(73)90020-3

[27] E. Jezierski, P. Łuczak, P. Smyczyński, and D. Zarychta: Human–robot cooperation
in sorting of randomly distributed objects. Archives of Control Sciences, 29 (2019). DOI:
10.24425/acs.2019.131228

[28] Y. Jiang, S. Moseson, and A. Saxena: Efficient grasping from rgbd images: Learning
using a new rectangle representation. In 2011 IEEE International conference on robotics
and automation, pages 3304–3311. IEEE, 2011. DOI: 10.1109/ICRA.2011.5980145

[29] M.D. Johnson, S. Berman, R. Azen, W. Otieno, and N. Campbell-Kyureghyan: Robo-
tization of industrial processes: Motivational differences between companies with and
without existing robotic processes. IISE Transactions on Occupational Ergonomics and
Human Factors, pages 1–14, 2023. DOI: 10.1080/24725838.2023.2278794

[30] N. Kaitwade: Robotic grippers market. Technical report, Newark, Delaware, United States,
2023. URL https://www.futuremarketinsights.com/reports/robotic-grippers-market

https://doi.org/10.1038/d41586-024-01442-5
https://doi.org/10.1016/j.compag.2020.105818
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1007/s10514-022-10049-6
https://doi.org/10.3390/robotics12010005
https://doi.org/10.3389/frobt.2016.00069
https://www.businessresearchinsights.com/market-reports/centric-grippers-market-103894
https://www.businessresearchinsights.com/market-reports/centric-grippers-market-103894
https://doi.org/10.1038/s41598-023-50673-5
https://doi.org/10.1016/0020-0190(73)90020-3
https://doi.org/10.24425/acs.2019.131228
https://doi.org/10.1109/ICRA.2011.5980145
https://doi.org/10.1080/24725838.2023.2278794
https://www.futuremarketinsights.com/reports/robotic-grippers-market


ESTIMATION OF GRASP TYPE AND DETERMINING GRASPING POINTS
FOR ADAPTIVE GRASPING DEVICE 119

[31] L. Kang, J.-T. Seo, S.-H. Kim, W.-J. Kim, and B.-J. Yi: Design and implementation of a
multi-function gripper for grasping general objects. Applied Sciences, 9(24), (2019), 5266.
DOI: 10.3390/app9245266

[32] L. Kang, Y. Yang, J. Yang, and B.-J. Yi: A three-fingered adaptive gripper with multiple
grasping modes. In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 6097–6103. IEEE, 2021. DOI: 10.1109/IROS51168.2021.9636758

[33] Z. Kowalczuk and M. Czubenko: Intelligent decision-making system for autonomous
robots. International Journal of Applied Mathematics and Computer Science, (4), (2011),
671–684. DOI: 10.2478/v10006-011-0053-7

[34] Z. Kowalczuk and M. Czubenko: Cognitive motivations and foundations for building
intelligent decision-making systems. Artificial Intelligence Review, 56(4), (2023), 3445–
3472. DOI: 10.1007/s10462-022-10255-9

[35] S. Kumra, S. Joshi, and F. Sahin: Antipodal robotic grasping using generative resid-
ual convolutional neural network. In 2020 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 9626–9633. IEEE, 2020. DOI: 10.1109/IROS
45743.2020.9340777

[36] I. Lenz, H. Lee, and A. Saxena: Deep learning for detecting robotic grasps. The In-
ternational Journal of Robotics Research, 34(4-5), (2015), 705–724. DOI: 10.1177/0278
364914549607

[37] G. Li, C. Fu, F. Zhang, and S. Wang: A reconfigurable three-finger robotic gripper. In
2015 IEEE International Conference on Information and Automation, pages 1556–1561.
IEEE, 2015. DOI: 10.1109/ICInfA.2015.7279534

[38] J. Li, T. Liao, H. Nigatu, H. Guo, G. Lu, and H. Dong: Under-actuated robotic gripper
with multiple grasping modes inspired by human finger. arXiv preprint arXiv:2403.12502,
2024, DOI: 10.48550/arXiv.2403.12502

[39] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie: Feature
pyramid networks for object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2117–2125, 2017. DOI: 10.48550/arXiv.1612.03144

[40] Z. Lu, H. Guo, W. Zhang, and H. Yu: Gtac-gripper: A reconfigurable under-actuated
four-fingered robotic gripper with tactile sensing. IEEE Robotics and Automation Letters,
7(3), (2022), 7232–7239. DOI: 10.1109/LRA.2022.3181370

[41] K. Makihara, Y. Domae, I.G. Ramirez-Alpizar, T. Ueshiba, and K. Harada: Grasp
pose detection for deformable daily items by pix2stiffness estimation. Advanced Robotics,
36(12), (2022), 600–610. DOI: 10.1080/01691864.2022.2078669

[42] D. Masłowski and M. Czubenko: System bezpieczeństwa dla współpracującego robota
przemysłowego na bazie kamer głębi. Pomiary Automatyka Robotyka, 23(4), (2019), 41–
46. DOI: 10.14313/PAR_234/41

[43] O. Melikechi and D. B. Dunson: Ellipsoid fitting with the cayley transform. IEEE Trans-
actions on Signal Processing, 72 (2023), 70–83. DOI: 10.1109/TSP.2023.3332560

[44] M.Q. Mohammed, K.L. Chung, and C.S. Chyi: Pick and place objects in a cluttered scene
using deep reinforcement learning. International Journal of Mechanical and Mechatronics
Engineering, 20(04), (2020), 50–57.

https://doi.org/10.3390/app9245266
https://doi.org/10.1109/IROS51168.2021.9636758
https://doi.org/10.2478/v10006-011-0053-7
https://doi.org/10.1007/s10462-022-10255-9
https://doi.org/10.1109/IROS45743.2020.9340777
https://doi.org/10.1109/IROS45743.2020.9340777
https://doi.org/10.1177/0278364914549607
https://doi.org/10.1177/0278364914549607
https://doi.org/10.1109/ICInfA.2015.7279534
https://doi.org/10.48550/arXiv.2403.12502
https://doi.org/10.48550/arXiv.1612.03144
https://doi.org/10.1109/LRA.2022.3181370
https://doi.org/10.1080/01691864.2022.2078669
https://doi.org/10.14313/PAR_234/41
https://doi.org/10.1109/TSP.2023.3332560


120 M. CZUBENKO, P. ŁYCZKO, R. OKUŃSKI

[45] C. Müller: World robotics 2023 – industrial robots. Technical report, Frankfurt am Main,
Germany, 2023. URL https://ifr.org/wr-industrial-robots/

[46] A. Orsula, S. Bøgh, M. Olivares-Mendez, and C. Martinez: Learning to grasp on the
moon from 3d octree observations with deep reinforcement learning. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 4112–4119.
IEEE, 2022. DOI: 10.1109/IROS47612.2022.9981661

[47] C.R. Qi, L. Yi, H. Su, and L.J. Guibas: Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in neural information process-
ing systems, 30 (2017). URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf

[48] S. Ren, K. He, R. Girshick, and J. Sun: Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in Neural Information Process-
ing Systems, 28 (2015). URL https://proceedings.neurips.cc/paper_files/paper/2015/file/
14bfa6bb14875e45bba028a21ed38046-Paper.pdf

[49] S. Rota Bulò, L. Porzi, and P. Kontschieder: In-place activated batchnorm for memory-
optimized training of dnns. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018. DOI: 10.48550/arXiv.1712.02616

[50] A.S. Sadun, J. Jalani, and F. Jamil: Grasping analysis for a 3-finger adaptive robot gripper.
In 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation
(ROMA), pages 1–6. IEEE, 2016. DOI: 10.1109/ROMA.2016.7847806

[51] Z. Samadikhoshkho, K. Zareinia, and F. Janabi-Sharifi: A brief review on robotic
grippers classifications. In 2019 IEEE Canadian Conference of Electrical and Computer
Engineering (CCECE), pages 1–4. IEEE, 2019. DOI: 10.1109/CCECE.2019.8861780

[52] M. Suchi, T. Patten, D. Fischinger, and M. Vincze: Easylabel: A semi-automatic pixel-
wise object annotation tool for creating robotic rgb-d datasets. In 2019 International
Conference on Robotics and Automation (ICRA), pages 6678–6684. IEEE, 2019. DOI:
10.1109/ICRA.2019.8793917

[53] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox: Contact-graspnet: Effi-
cient 6-dof grasp generation in cluttered scenes. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 13438–13444. IEEE, 2021. DOI: 10.1109/
ICRA48506.2021.9561877

[54] K. Tai, A.-R. El-Sayed, M. Shahriari, M. Biglarbegian, and S. Mahmud: State of
the art robotic grippers and applications. Robotics, 5(2), (2016), 11. DOI: 10.3390/robo
tics5020011

[55] A. Ten Pas, M. Gualtieri, K. Saenko, and R. Platt: Grasp pose detection in point
clouds. The International Journal of Robotics Research, 36(13-14), (2017), 1455–1473.
DOI: 10.1177/0278364917735594

[56] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield: Deep
object pose estimation for semantic robotic grasping of household objects. arXiv preprint
arXiv:1809.10790, 2018. DOI: 10.48550/arXiv.1809.10790

[57] M. Vohra, R. Prakash, and L. Behera: Real-time grasp pose estimation for novel objects
in densely cluttered environment. In 2019 28th IEEE International Conference on Robot and

https://ifr.org/wr-industrial-robots/
https://doi.org/10.1109/IROS47612.2022.9981661
https://proceedings.neurips.cc/paper_files/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://doi.org/10.48550/arXiv.1712.02616
https://doi.org/10.1109/ROMA.2016.7847806
https://doi.org/10.1109/CCECE.2019.8861780
https://doi.org/10.1109/ICRA.2019.8793917
https://doi.org/10.1109/ICRA48506.2021.9561877
https://doi.org/10.1109/ICRA48506.2021.9561877
https://doi.org/10.3390/robotics5020011
https://doi.org/10.3390/robotics5020011
https://doi.org/10.1177/0278364917735594
https://doi.org/10.48550/arXiv.1809.10790


ESTIMATION OF GRASP TYPE AND DETERMINING GRASPING POINTS
FOR ADAPTIVE GRASPING DEVICE 121

Human Interactive Communication (RO-MAN), pages 1–6. IEEE, 2019. DOI: 10.1109/RO-
MAN46459.2019.8956438

[58] Y. Wang, Y. Gu, and J. Shun: Theoretically-efficient and practical parallel dbscan. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data,
SIGMOD’20, page 2555–2571, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450367356, DOI: 10.1145/3318464.3380582

[59] H. Wen, J. Yan, W. Peng, and Y. Sun: Transgrasp: Grasp pose estimation of a category of
objects by transferring grasps from only one labeled instance. In European Conference on
Computer Vision, pages 445–461. Springer, 2022, DOI: 10.1007/978-3-031-19842-7_26

[60] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser: Learning
synergies between pushing and grasping with self-supervised deep reinforcement learning.
In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 4238–4245. IEEE, 2018. DOI: 10.1109/IROS.2018.8593986

[61] B. Zhang, Y. Xie, J. Zhou, K. Wang, and Z. Zhang: State-of-the-art robotic grippers,
grasping and control strategies, as well as their applications in agricultural robots: A re-
view. Computers and Electronics in Agriculture, 177 (2020), 105694. DOI: 10.1016/
j.compag.2020.105694

[62] H. Zhang, J. Tang, S. Sun, and X. Lan: Robotic grasping from classical to modern:
A survey. arXiv preprint arXiv:2202.03631, 2022. DOI: 10.48550/arXiv.2202.03631

[63] T.Y. Zhang and C.Y. Suen: A fast parallel algorithm for thinning digital patterns. Com-
munications of the ACM, 27(3), (1984), 236–239,

[64] L. Zheng, W. Ma, Y. Cai, T. Lu, and S. Wang: Gpdan: Grasp pose domain adaptation
network for sim-to-real 6-dof object grasping. IEEE Robotics and Automation Letters,
2023, DOI: 10.1109/LRA.2023.3286816

[65] Q.-Y. Zhou, J. Park, and V. Koltun: Open3d: A modern library for 3d data processing.
CoRR, abs/1801.09847, 2018, DOI: 10.48550/arXiv.1801.09847. URL http://arxiv.org/abs/
1801.09847

[66] M. Zhu, K.G. Derpanis, Y. Yang, S. Brahmbhatt, M. Zhang, C. Phillips, M. Lecce, and
K. Daniilidis: Single image 3d object detection and pose estimation for grasping. In 2014
IEEE International Conference on Robotics and Automation (ICRA), pages 3936–3943.
IEEE, 2014. DOI: 10.1109/ICRA.2014.6907430

https://doi.org/10.1109/RO-MAN46459.2019.8956438
https://doi.org/10.1109/RO-MAN46459.2019.8956438
https://doi.org/10.1145/3318464.3380582
https://doi.org/10.1007/978-3-031-19842-7_26
https://doi.org/10.1109/IROS.2018.8593986
https://doi.org/10.1016/j.compag.2020.105694
https://doi.org/10.1016/j.compag.2020.105694
https://doi.org/10.48550/arXiv.2202.03631
https://doi.org/10.1109/LRA.2023.3286816
https://doi.org/10.48550/arXiv.1801.09847
http://arxiv.org/abs/1801.09847
http://arxiv.org/abs/1801.09847
https://doi.org/10.1109/ICRA.2014.6907430

	M. Czubenko, P. Łyczko, R. Okuński: Estimation of grasp type and determining grasping points for Adaptive Grasping Device

