
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 73(3), 2025, Article number: e154062
DOI: 10.24425/bpasts.2025.154062

ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE

Improving testing of multi-agent systems:
An innovative deep learning strategy for automatic,

scalable, and dynamic error detection
and optimisation

Nour El Houda DEHIMI1 ∗ , Zakaria TOLBA1, Mehdi MEDKOUR1, Anis HADJADJ1,
and Stéphane GALLAND2

1 LIAOA Laboratory, Department of Mathematics and Computer Science, University of Oum El Bouaghi, Algeria
2 UTBM, CIAD UR 7533, F-90010 Belfort, France

Abstract. In this paper, a novel method is introduced for automated, scalable, and dynamic identification of errors in various behavioural
versions of a multi-agent system under test, employing deep learning techniques. It is designed to enable accurate error detection, thus opening
new possibilities for improving and optimising traditional testing techniques. The approach consists of two phases. The first phase is the training
of a deep learning model using randomly generated inputs and predicted outputs generated from the behavioural model of each version. The
second phase consists of detecting errors in the multi-agent system under test by replacing the predicted outputs with which the model is trained
with execution outputs. The envisioned strategy is put into action through a real case study, which serves to vividly showcase and affirm its
practical efficacy.

Keywords: multi-agent systems; system-level testing; error detection; artificial intelligence techniques; deep learning.

1. INTRODUCTION

In the dynamic field of computing, novel programming para-
digms continually emerge to address the escalating demands
of computer systems. Among these, the agent paradigm [1] is a
pivotal development technology for intricate and distributed sys-
tems [2–4]. It has not only proven itself, but has also reshaped
perceptions, challenging the conventions of more traditional
paradigms like object-oriented programming. This is attributed
to the distinctive functional and behavioural characteristics in-
herent in this paradigm. Features such as autonomy, reactivity,
proactivity, and the dynamic shifts in behaviour resulting from
the acquisition or release of roles by these agents contribute to
its uniqueness. Furthermore, the organisational concepts asso-
ciated with this paradigm are relatively novel, further improving
its appeal and innovative nature for the modelling of complex
systems.

The new characteristics of this paradigm pave the way for
several lines of research at different levels of design, in partic-
ular, software testing. Several agent-orientated methodologies
with a clear organisational vision have been created in recent
years to support modelling complex systems, such as agent,
group and role (AGR) [5], agent-orientated software process for

∗e-mail: dehimi.nourelhouda@univ-oeb.dz

© 2025 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Manuscript submitted 2024-11-21, revised 2025-01-12, initially
accepted for publication 2025-02-26, published in May 2025.

complex engineering systems (ASPECS) [6], extended gaia [7],
engineering for software agents (INGENIAS) [8], Model of
multi-agent systems organisation (Moise+) [9] and OperA [10].
All these methodologies provide methods and tools for the de-
sign and implementation of multi-agent systems (MAS). Within
these methodologies, testing agent code and system behaviour
is not extensively addressed. Testing systems developed using
the agent paradigm is an important task in the quality assurance
process. It can be very useful for identifying faults and vali-
dating the system under test [11, 12]. Its purpose is to examine
or execute a program to reveal errors and thus increase confi-
dence in the software. It is often defined as how it is possible
to ensure that an implementation conforms to what has been
specified. Unlike other types of system, testing MAS is a chal-
lenging task [13] due to various factors such as the autonomous
nature of the agents, the nonreproducible effect, which implies
that two system executions using the same input data may not
produce the same state, the simultaneous and independent ex-
ecution of multiple agents, the manipulation of a substantial
amount of data by each agent, each with its objectives, the un-
predictable evolution of the agents’ behaviour, and the growing
complexity associated with the distributed nature of applica-
tions composed of multiple agents. Consequently, despite the
rapid evolution of MAS, there are few proposals for testing
MAS in the literature. Furthermore, most of these proposals
are related to unit-level testing, which consists of testing all
units that comprise an agent [14–16], and agent-level testing,

Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 3, p. e154062, 2025 1

https://orcid.org/0000-0001-9402-2304
mailto:dehimi.nourelhouda@univ-oeb.dz

N. El Houda Dehimi, Z. Tolba, M. Medkour, A. Hadjadj, and S. Galland

which consists of (i) testing the integration of the different mod-
ules, tested at the unit level, within an agent, (ii) testing the
agent’s ability to achieve its goal in its environment [17, 18].
System-level testing, which ensures that all agents in the system
operate according to specifications and interact correctly, has
attracted little interest from researchers. In fact, in the litera-
ture, only a few approaches have been proposed for system-level
testing [19–23].

Although these works have made considerable progress in the
field of MAS testing by proposing new strategies, they are, on
the other hand, very complex. This complexity primarily stems
from their focus on developing test case generation algorithms
aimed at covering the very sophisticated characteristics of MAS.
However, this complexity also poses challenges in terms of gen-
eralisation and adaptability across different MAS contexts. Ex-
isting approaches often struggle to adapt to the unpredictable
evolution of MAS behaviour. This limitation suggests the need
for more flexible and adaptive testing methodologies that can
accommodate the dynamic nature of MAS.

To overcome this problem, in this work, a new approach is
proposed to automatically detect and diagnose software errors
in MAS by replacing test case generation algorithms with a
deep learning model [24]. This aims to provide a powerful and
innovative solution capable of improving accuracy, adaptability,
execution speed, and reducing dependency on expert knowledge,
thus overcoming the problems imposed by traditional testing
techniques.

Deep learning has already found promising applications in
software testing, revolutionising traditional testing methodolo-
gies [25–29]. Deep learning models can be trained to automat-
ically detect and diagnose software defects, vulnerabilities, and
performance problems. These models excel at analysing con-
siderable amounts of code, identifying patterns, and predicting
potential failure points. The use of machine learning [30] and
deep learning for software testing has been mentioned in cer-
tain studies [31–37]. These studies highlight the effectiveness of
deep learning in detecting anomalies and automating the testing
process. They demonstrate how neural networks can adapt to di-
verse software environments and provide accurate predictions,
significantly reducing the time and effort required for testing.
The application of deep learning to software testing not only im-
proves the efficiency of the testing process, but also contributes
to the overall improvement of software quality and reliability.
Despite the numerous research on the use of deep learning for
automatic software tests, none of them are specifically on the
key properties of a MAS, such thatits distributed nature and
the unpredictable evolution of its behaviour. The remainder of
this paper is organised as follows: Section 2 provides a brief
overview of the main related work. Section 3 describes the mo-
tivations and research gaps in this field. Section 4 describes the
proposed approach and its different phases. Section 5 presents
the multi-agent system chosen for testing. Section 6 illustrates
the formation of the deep learning model. The testing of the
multi-agent system using the deep learning model presented
in Section 6 is demonstrated in Section 7. Section 8 presents
the developed tool. Section 9 presents some conclusions and
recommendations for future work.

2. RELATED WORKS
In the literature, a limited number of approaches have been
proposed for testing multi-agent systems in recent years. Sub-
sequently, we outline a selection of these approaches in the
following.

Shafiq et al. [38] introduce an innovative method to test multi-
agent systems using Prometheus design artefacts. In this pro-
posed approach, various interactions between agents and actors
are considered to evaluate the multi-agent system. These inter-
actions encompass perceptions, actions, and message exchanges
between agents, which are represented in a protocol diagram.
Subsequently, the protocol diagram is transformed into a proto-
col graph, upon which various coverage criteria are employed to
produce test paths covering agent interactions. To facilitate this
process, a prototype tool has been developed to generate test
paths from the protocol graph based on the specified coverage
criterion.

In Dehimi [39], a novel model-based testing method is intro-
duced for holonic agents. This method uses genetic algorithms
and considers the evolution of an agent over successive versions.
The process is divided into two main phases that are carried out
iteratively. Initially, the focus is on identifying a new version of
the agent under examination. Subsequently, the focus is on test-
ing each newly identified version. The analysis of the new agent
version aims to construct a behavioural model, facilitating the
generation of test cases. Notably, the test case generation pro-
cess emphasises the examination of the new or modified aspects
of agent behaviour. This approach enables an incremental en-
hancement of test cases, addressing a pivotal concern in testing
methodology.

Bakar and Selamat [40] thoroughly examined the testing
methods applicable to agent systems, delineating the range of
properties and faults detectable by current techniques. The pri-
mary objective was to pinpoint areas of research deficiency and
outline future directions for the verification of agent systems.

Barnier et al. [41] conducted a comparison between testing
methodologies for software and multi-agent systems, focusing
specifically on embedded contexts. This research delved into
various testing techniques for multi agent systems, analysing
them with respect to the AEIO facets. The aim was to offer a
tailored testing approach for multi-agent systems on embedded
platforms. The suggested method consisted of three fundamental
levels: individual agent testing, collective resources, and accep-
tance testing.

Winikoff [42] suggested a method to assess the testability
of BDI agents (belief-desire-intention), comparing two distinct
adequacy criteria: the ‘all edges’ criterion, which is met when
a set of tests covers all edges in a control flow graph, and the
‘all-paths’ criterion, where a test set is adequate if it covers all
paths in the control flow graph of the program. The level of
testability achieved was used to determine the number of test
cases required to validate a BDI program.

Gonçalves et al. [43] introduced a comprehensive framework
to analyse and test the social aspect of MAS within the Moise+
organisational model. This framework employs a set of Moise+
specifications as an information artefact mapped into a coloured
Petri net (CPN) model known as CPN4M, serving as a mecha-

2 Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 3, p. e154062, 2025

Improving testing of multi-agent systems: An innovative deep learning strategy. . .

nism for generating test cases. CPN4M operates with two distinct
test adequacy criteria: all paths and state-transition path. The pa-
per formalises the process of transitioning from Moise+ to CPN,
outlines the procedures for generating test cases, and performs
the tests in a case study scenario. The findings suggest that this
methodology has the potential to enhance the accuracy of the so-
cial aspect in a multi-agent system specified by a Moise+ model,
highlighting the system context that may lead to MAS failure.

Shafiq et al. [44] presented a model-based methodology to
ensure comprehensive coverage of goals and plans within multi-
agent systems. A fault model has been established to encompass
faults related to the execution of the objectives and plans and
interactions within MAS. This approach utilises Prometheus
design artefacts, such as the goal overview diagram, scenario
overview, and agent and capability overview diagrams, to con-
struct a test model. Additionally, new coverage criteria have
been formulated for fault detection purposes. Test paths are
identified from the test model, and test cases are subsequently
generated from these paths. The effectiveness of this technique is
evaluated using the JACK Intelligent Agents framework, which
is a Java-based platform for multi-agent system development.
More than 100 different test cases are executed on the actual
implementation of MAS, with code instrumentation used for
coverage analysis and fault injection. The results demonstrate
the successful detection of injected faults by applying test cases
aligned with the coverage criteria paths during the execution of
MAS. Particularly, the ‘Goal Plan Coverage’ criterion proves
to be more effective in fault detection compared to scenario,
capability and agent coverage criteria, which exhibit relatively
lower effectiveness in identifying faults.

Huang et al. [45] implement semantic mutation testing
(SMT) in three rule-based agent programming languages: Jason,
GOAL, and 2APL. Describes various scenarios where SMT is
beneficial for these languages. In addition, it introduces three
sets of semantic mutation operators rules designed to induce
semantic changes for each language and presents a systematic
method to derive such operators for rule-based agent languages.
The paper further demonstrates, through initial evaluation, that
the proposed semantic mutation operators for Jason showcase
the potential of SMT in evaluating tests, robustness, and relia-
bility concerning semantic alterations.

In Dehimi et al. [46], we introduced a novel test case gener-
ation approach designed to address individual behavioural sce-
narios within a multi-agent system. The primary objective is to
isolate the scenario responsible for any errors detected between
concurrently running scenarios. To achieve this, our approach
employs mutation analysis and parallel genetic algorithms in the
initial stage. These techniques help identify situations in which
agents execute interactions outlined in the sequence diagram of
the target scenario exclusively, which then serve as inputs for
the test case. In the subsequent stage, our approach utilises the
activities depicted in the activity diagram to determine the ex-
pected outputs of the test case corresponding to its inputs. The
generated test cases are subsequently utilised for error detection
purposes.

In Dehimi et al. [47], we presented a novel approach to gener-
ating test cases capable of accommodating the new interactions

introduced due to the unpredictable evolution of the behaviour
of a multi-agent system under test. Our approach dynamically
applies a model-based testing methodology for each new version
of the system under examination. Specifically, it utilises (i) the
AUML sequence diagram of each new system version to derive
test cases capable of addressing the newly introduced interac-
tions. (ii) Constraints expressed in Object Constraint Language
(OCL) to ensure the execution of each interaction, thereby con-
sidering the specificities of interactions between agents, includ-
ing inclusive, exclusive, or parallel execution. (iii) Genetic al-
gorithms to assess the incorporation of new interactions into the
system under test. This approach facilitates comprehensive test
coverage of evolving MAS behaviour and enables the identifica-
tion of potential issues arising from system updates. Although
significant progress has been made in MAS testing through
the introduction of new strategies, there are also significant
shortcomings in these research efforts. The following section
highlights these gaps and describes proposed contributions to
address them.

3. RESEARCH GAPS AND OPEN ISSUES

Identifying research gaps in traditional testing techniques for
MAS is imperative to advance the field and addressing inher-
ent challenges. Traditional methods may encounter scalability
issues, struggling to efficiently scale with an increasing number
of agents within a system. The dynamics of interactions among
numerous agents can create complex scenarios that these meth-
ods may not adequately address. Furthermore, many traditional
testing approaches may lack adaptability to the dynamic and
evolving nature of MAS, especially in real-world scenarios with
changing conditions. Nondeterministic behaviour, inherent in
some MAS, poses a challenge for conventional testing method-
ologies, as agents’ actions can be influenced by external factors,
leading to variations in system behaviour. Emergent behaviour
challenges, where unexpected behaviours arise from agent in-
teractions, may be overlooked by conventional testing, requir-
ing enhancements to capture and validate these unexpected be-
haviours. The inadequate coverage of diverse interaction sce-
narios among agents further underscores the need to enhance
existing testing methods. Furthermore, traditional testing ap-
proaches may not be well-equipped to handle learning-based
agents, such as those employing reinforcement learning, as they
adapt and evolve over time. The absence of standardised test-
ing frameworks tailored for MAS is another gap that hinders a
common ground for evaluating and comparing methodologies.
Lastly, limited consideration of security aspects in traditional
MAS testing techniques, especially in critical applications, ne-
cessitates the development of specialised testing approaches.
Addressing these research gaps is crucial for the development of
more effective and comprehensive testing methodologies specif-
ically tailored to the unique challenges posed by MAS.

The main contribution of this research lies in the introduc-
tion of a novel deep learning approach that addresses critical
research gaps in traditional MAS testing techniques. By system-
atically identifying and addressing these gaps, the study aims

Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 3, p. e154062, 2025 3

N. El Houda Dehimi, Z. Tolba, M. Medkour, A. Hadjadj, and S. Galland

to significantly improve the accuracy of error detection and op-
timisation processes within MAS. The proposed deep learning
approach offers a solution to scalability issues, providing an ef-
ficient method for handling a growing number of agents within
a system. It also focuses on adaptability to dynamic environ-
ments, accommodating the evolving nature of MAS in real-
world scenarios. Moreover, the approach tackles the challenges
posed by nondeterministic behaviour, emergent behaviour, in-
adequate coverage of interaction scenarios, and limited support
for learning-based agents. By integrating these advancements,
the research contributes to overcoming the limitations of tradi-
tional testing methodologies, paving the way for more robust,
comprehensive, and adaptive testing techniques tailored to the
intricate dynamics of MAS. This innovative deep learning ap-
proach holds promise for furthering the field and addressing the
complex testing requirements inherent in MAS.

4. THE PROPOSED APPROACH

Our approach aims to automatically detect possible errors in the
different behavioural versions 𝑉𝑖 of a multi-agent system under
test that are obtained following the acquisition and/or release
of roles by the agents that comprise it. It consists of two main
phases (Fig. 1):

The first phase consists of training a deep learning model
whose training data set consists of 𝑛 subsets of data. Each data
subset is built primarily for a 𝑉𝑖 behavioural version of the
system under test. Indeed:

Fig. 1. The phases of the approach

• Each input for each subset of data is presented as a vector
consisting of: (i) a possible input 𝐼𝑛𝑝𝑢𝑡𝑞 to execute one of
the possible behavioural scenarios 𝑆 𝑗 of the system under
test in its behavioural version 𝑉𝑖 . This entry is randomly
generated from the execution interval of the behavioural
scenario 𝑆 𝑗 , (ii) the expected output 𝑂𝑢𝑡𝑝𝑢𝑡𝑞 for this input
according to the 𝑉𝑖 behavioural version of the system under
test. This output is generated from the behavioural model
of the 𝑉𝑖 version of the system under test. The behavioural
model used for this is the sequence diagram and the activity
diagram of version 𝑉𝑖 , which will be transformed into a
𝐺𝑖 graph to automate this operation. In this graph, each
path 𝑃 𝑗 represents a behaviour scenario 𝑆 𝑗 , with each node
𝑛𝑘 representing an interaction between two agents in the
sequence diagram.
It contains the information needed to generate the expected
outputs for the randomly generated inputs, namely, activities
𝑛𝑘 to be executed by the receiving agent will execute fol-
lowing receipt of the interaction represented by that node.
To generate the expected outputs for the inputs randomly
generated using the graph 𝐺𝑖 , suffices that, for each input
𝐼𝑛𝑝𝑢𝑡𝑞 belonging to the execution interval of the behaviour
scenario 𝑆 𝑗 , we simply traverse the path 𝑃 𝑗 of the graph
𝐺𝑖 , node by node, and for each node 𝑛𝑘 of the path 𝑃 𝑗 , we
calculate the results of applying the activities 𝑛𝑘 . Activities
of that node on 𝐼𝑛𝑝𝑢𝑡𝑞 . The following algorithm (Fig. 2)
summarises the process of generating expected outputs.

• The output of each input in each subset of data can take
two values: ‘1’ if the expected output of the randomly gener-
ated input is correct (generated from the behavioural model),
meaning that the system behaves correctly, and ‘0’ if the ex-
pected output of the randomly generated input is not correct,
meaning that the system behaves incorrectly.

Fig. 2. Expected outputs generation algorithm

The second phase consists of testing the different 𝑉𝑖 be-
havioural versions of the system under test using the deep learn-
ing model trained and validated in the first phase. To do this, this
phase begins by generating, for each 𝑉𝑖 behavioural version of

4 Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 3, p. e154062, 2025

Improving testing of multi-agent systems: An innovative deep learning strategy. . .

the system under test, a subset of inputs that will later be used to
deploy the model to detect any errors in this version. Unlike the
inputs used for training the model, each vector of these inputs
is made up of a randomly generated input, possible for the exe-
cution of the system under test, and the execution output of the
system under test in its 𝑉𝑖 behavioural version with this input.
The result of deploying the model with these inputs facilitates
error detection. Indeed, if the result is 1 for a given input, this
means that the system execution output is correct (conforms to
the expected outputs with which the model is trained), which
implies that there is no error; otherwise, if the result is 0, this
means that the system execution output is incorrect (it does
not conform to the expected outputs with which the model is
trained), which implies that there is an error.

In what follows, we will first present the multi-agent system
chosen for our study and its various behavioural versions. We
will then present the first phase of our approach, which con-
sists of training a deep learning model. To do this, we will
address the following points: preparing subsets of data for each
𝑉𝑖 behavioural version of the system under test, training, and
validating the model. The second phase of our approach, which
consists of testing the different 𝑉𝑖 behavioural versions of the
system under test using the trained model, will be presented at
the end of this section.

5. PRESENTATION OF THE MULTI-AGENT SYSTEM
UNDER TEST

The traffic control system chosen for our study aims to ensure
traffic management by making decisions capable of minimising
traffic disruption and delay, considering several variables such
as weather conditions, road traffic, the presence of traffic jams,
the presence of events, and accidents. In its first behavioural
version V1, the system agents play the following roles:
• Weather agent: This agent is responsible for monitoring, in

real time, weather conditions such as temperature, precipita-
tion (particularly rain), and snowfall, using sensors located
in key areas of the city and data supplied by climate monitor-
ing services. Then it sends the collected data (temperature in
degrees Celsius, amount of rain in millimeters, and amount
of snow in millimeters) to the data collection agent to be
used for effective traffic management.

• Environment agent: This agent is responsible for monitor-
ing, in real time, congestion problems such as traffic jams
or accidents. When the environment agent identifies a con-
gestion problem, it sends the relevant information (accident
line, accident type %, presence of traffic (binary value: 0 or
1), traffic line, traffic type) to the data collection agent.

• Event agent: This agent is responsible for monitoring, in
real-time, events that may disrupt normal traffic flow, such as
demonstrations, funeral processions, parades, the arrival of a
democratic person, etc. It then sends the relevant information
((the presence of an event (binary value: 0 or 1), the line of
the event, the type of event (unit not specified)) to the data
collection agent.

• Data Collection Agent: This agent is responsible for gather-
ing all important traffic information, including data provided
by the Weather Agent, Environment Agent and Event Agent.

Once it has collected all this data, the data collection agent
sends it to other agents in the system that use this information
to plan and manage traffic efficiently.

• Traffic light officer: This officer is responsible for control-
ling the traffic lights at an intersection or in a specific area.
They use data collected by other agents to optimise signal
times and reduce waiting times for drivers. These data can
include information on current traffic conditions, the num-
ber of vehicles in each area, traffic density, etc. It sends to the
decision agent to acquire additional information about the
situation. These data can be used to improve the precision of
traffic forecasts and to make more informed decisions about
traffic management.

• Speed agent: This agent can also play a role in the speed of
vehicles. It can receive information from the weather, envi-
ronment, and event agent to adjust the recommended speed
for drivers accordingly. By providing real-time information
on the traffic situation, the speed agent can help regulate
traffic flow and improve road safety.

• Lane agent: This agent plays an important role in the man-
agement of traffic lanes. It is responsible for monitoring the
conditions of each lane in real time and making decisions
about opening or closing lanes based on traffic demand. The
lane agent can receive information from the weather, envi-
ronment and event agent from the data collection agent to
identify congestion areas and adapt the opening or closing of
lanes accordingly. It can also inform drivers of the condition
of each lane, which can help improve safety and traffic flow.
Working in collaboration with other agents, the lane agent
can help optimise road use and reduce driving times.

• Decision-making agent: This agent is responsible for making
the final decision based on the information provided by the
lane agent, the speed agent and the traffic light agent. Then
sends its decision to the interface agent to be displayed.

• Interface agent (GUI): This is the interface agent that
launches and supervises the system three main agents: the
weather agent, the event agent and the environmental agent.
Once the decision agent has decided, the interface agent
displays this decision in a way that is clear and compre-
hensible to users. It provides detailed information on the
measures taken, such as the adaptation of signaling, speed
recommendations, or changes to lane opening. Thanks to
this user-friendly interface, users can quickly understand the
actions taken by the traffic management system to improve
traffic flow and safety.

In the second behavioural version V2 of the system, the envi-
ronment agent was given a new role, which enabled it to detect
obstacles. This is due to the installation of a new sensor dedi-
cated to obstacle detection. This enhancement has added crucial
information to the list of transmitted data, such as the presence of
obstacles, the line of the obstacle, and its identification number.
These new data enable other agents to make informed decisions
to avoid obstacles and ensure that traffic flows smoothly. As a
result, data concerning obstacles have been added to the list of
data sent to the data collection agent, including the presence of
obstacles (binary value: 0 or 1), the line where the obstacle is
located and the obstacle’s identification number.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 3, p. e154062, 2025 5

N. El Houda Dehimi, Z. Tolba, M. Medkour, A. Hadjadj, and S. Galland

In the third version V3 of the system, the weather agent has ac-
quired a new role thanks to the installation of a sensor dedicated
to air detection. This new feature has added crucial data to the
list of information transmitted to the data collection agent. These
data include the presence of air (0 or 1) and the measurement
of air density expressed in PM2.5 up to 50 µg/m3. This infor-
mation is essential for other agents to make informed decisions
and adopt appropriate measures to avoid potential air quality-
related accidents on the roads. The integration of these new data
strengthens the monitoring and risk management capabilities of
the traffic control system.

6. FIRST PHASE (FORMATION OF THE DEEP
LEARNING MODEL)

6.1. Generating data subsets

To take into consideration the three behavioural versions of the
system under test, three subsets of data are generated. Each data
item in each subset generated for the 𝑉𝑖 behavioural version of
the system is made up of an input (presented in the form of a
vector made up of a randomly generated execution input and the
expected output for this input generated automatically from the
graph obtained following the transformation of the sequence and
activity diagram for the 𝑉𝑖 version using the expected outputs
generation algorithm) and an output (. . . 0/1).

In our case, the input vector contains 37 integer elements,
17 of which represent the randomly generated input (Temper-
ature, Rain, Snow, Air_line, Air_density, Accidents, Acc_line,
Acc_type, Obstacles, Obs_line, Obs_num, Traffic, Traffic_line,
Traffic_type, Event, Event_line, and Event_type), and 20 ele-
ments represent the expected output (Line1 to Line20: knowing
that each line is open or closed, the maximum speed for each
line, the traffic light, and the event time).

For each version, we generated a data set of size = 4000.
Therefore, the total size of the data set is 12 000.

6.2. Data set pre-processing

In this data pre-processing section, we start by importing the raw
data set and then proceed to manage it for training the neural
network. This management includes separating the data set into
a training set and a test set, to evaluate the model performance
on unknown data. Additionally, we apply scaling to the charac-
teristics of the data set to facilitate computation when training
the model. Scaling is an important step in data preparation, as it
prevents certain features from dominating others in the learning
process, which can distort the results. In our case, we trained
our model with a data set comprising 9600 examples for training
and 2400 examples for testing.

6.3. Model proposal

To carry out our study, we used several deep learning training
models, including recurrent neural networks (RNN) [48, 49],
artificial neural networks (ANN) [50], deep neural networks
(DNN) [51], and convolutional neural networks [52]. Each of
these models was tested on the data set to determine their respec-
tive effectiveness in the prediction task at hand. After careful

evaluation, we found that the ANN model gave the most accurate
and consistent results = 0.96 (Fig. 3). In what follows, we will
describe in detail how we trained and evaluated our ANN model
to obtain the best possible results. In the following, we will dis-
cuss model architecture, model training, model evaluation, and
model improvement.

Fig. 3. Accuracy of the different models

– Model architecture: The architecture of our model (ANN)
(Fig. 4) consists of an input layer, four hidden layers, and an
output layer as follows:
• The input layer contains 37 nodes, one for each independent

variable in the data set.
• Each hidden layer contains 19 nodes. The rectified linear rec-

tification function (ReLU) is used as the activation function
for these layers, which solves vanishing gradient problems
and improves network convergence. A deactivation layer
with a deactivation rate of 0.1 is added after each hidden
layer to avoid overlearning.

• The output layer contains a single node, which returns a
binary output (1 or 0) for the binary classification problem
in question. The sigmoid function is used as the activation
function for this layer.

Fig. 4. Architecture of the ANN model

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 3, p. e154062, 2025

Improving testing of multi-agent systems: An innovative deep learning strategy. . .

– Training the ANN: To train the model, we used the Keras
library to compile the ANN by specifying the optimisation al-
gorithm (Adam), the loss function (mean squared error), and
the metrics (precision and recall). The ANN was trained on the
training set with a predefined number of epochs and batch size.
We also used a technique called cross-validation to evaluate the
performance of the model on the validation set at each epoch.
Visualising the training (Fig. 5) has allowed us to understand
how the model classifies the different classes in the data space,
which can help identify potential problems such as overfitting
or underfitting. By visualising the results of the training set, it is
also possible to check whether the model is capable of correctly
separating the different classes in the data space. In addition,
visualising the results of the training set can help to select the
optimal hyperparameters for the neural network model, such as
the number of hidden layers, the number of neurons in each
layer, the learning rate, etc. The following figures (Figs. 6–9)
demonstrate the error functions of the different models obtained
during the training process.

Fig. 5. Accuracy of the various hyper parameters

Fig. 6. Error function of the ANN model

– Model evaluation: In this section, we comprehensively
evaluate the performance of the ANN model on the test set by
calculating key evaluation metrics, including accuracy and loss,
alongside additional performance measures such as the classifi-
cation report and the confusion matrix. The classification report

Fig. 7. Error function of the CNN model

Fig. 8. Error function of the DNN model

Fig. 9. Error function of the RNN model

provides detailed insights into the model behaviour, including
precision, recall, F1-score, and support for each class, enabling
a granular understanding of its strengths and weaknesses across
different categories. The confusion matrix, on the other hand,
offers a visual representation of the model classification er-
rors, highlighting misclassifications and their distribution across
classes. These metrics together provide a multi-faceted evalu-
ation framework, ensuring a robust assessment of the model
predictive capabilities. By integrating these results, we can crit-
ically analyze whether the ANN model is well-suited to the

Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 3, p. e154062, 2025 7

N. El Houda Dehimi, Z. Tolba, M. Medkour, A. Hadjadj, and S. Galland

data and meets the precision and reliability requirements for the
specific task. Moreover, this multi-metric evaluation framework
underscores the model performance not only in terms of overall
accuracy but also in its ability to handle imbalanced datasets
and diverse class distributions, thus validating its effectiveness
and practical applicability.

– Model improvement: To improve the performance of the
model, we use a grid search technique to explore different com-
binations of ANN hyperparameters (Fig. 10). This allowed us
to find the optimal combination of hyper parameters, including
the optimisation algorithm and the kernel initialisation method,
which improved the performance of the model. We also eval-
uated the performance of the improved model on the perfor-
mance of the test set to ensure that the model was significantly
improved. Ultimately, this section optimises the performance of
the model for better accuracy and generalisation.

Fig. 10. ANN training set

7. THE SECOND PHASE (ERROR DETECTION
USING THE TRAINED MODEL)

To detect possible errors in the traffic control system under test,
we will present in this section the second phase of our approach
which consists of testing the different behavioural versions𝑉𝑖 of
this system using the deep learning model trained and validated
in the first phase by replacing the part of the predicted outputs
by execution outputs. In what follows, we will present for each
behavioural version 𝑉𝑖 of the system under test (i) part of the
subset of inputs generated for the testing of this version, where
each input consists of a randomly generated input, possible for
the execution of the system under test, and the output of the
execution of the system under test in its behavioural version
𝑉𝑖 with this input, (ii) the results obtained by deploying the
learning model with these inputs, where if the result is 1 for a
given input, this means that the execution output of the system is
correct (conforms to the predicted outputs with which the model
is trained), which implies that there is no error; otherwise, if the
result is 0, this means that the execution output of the system
is incorrect (it does not conform to the predicted outputs with
which the model is trained), which implies that there is an error.
Finally, we will discuss the results obtained, highlighting the
successes and limitations of our approach. The results shown
in the following sections are obtained automatically using a
software tool1 that we developed on Python.

7.1. Testing version V1

The following figure (Fig. 11) represents part of the subset of
inputs generated for the first behavioural version V1 of the sys-
tem under test and the results obtained by deploying the learning
model with these inputs. The results of the deployment of the
training model show that the V1 version of the system under test
is error-free. This can be explained by the fact that the system
behaviour is compatible with the expected behaviour with which
the model was trained.

Fig. 11. Test results for Version 1

7.2. Testing version V2

In this version, the agents of the system under test were given
new roles to consider the presence of obstacles. The following
figure (Fig. 12) represents part of the subset of inputs generated
for the behavioural version V2 of the system under test and
the results obtained by deploying the learning model with these
inputs.

Fig. 12. Version 2 test results

The results of the deployment of the training model show that
the V2 version of the system under test is error-free. This can
be explained by the fact that the system behaviour is compatible
with the expected behaviour with which the model was trained.

7.3. Testing version V3

In this version, the agents of the system under test were given
new roles to consider the presence of air. The following figure
(Fig. 13) represents part of the subset of inputs generated for the
V3 behavioural version of the system under test and the results
obtained by deploying the learning model with these inputs.

The results of the deployment of the training model show that
the V3 version of the system under test contains errors. This
can be explained by the fact that the system behaviour was not
compatible with the expected behaviour with which the model
was trained.

8 Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 3, p. e154062, 2025

Improving testing of multi-agent systems: An innovative deep learning strategy. . .

Fig. 13. Version 3 test results

8. DISCUSSION AND LIMITATIONS

The application of our approach to error detection in the various
Vi behavioural versions of the traffic control system demon-
strates several key advantages over existing approaches, directly
responding to the challenges outlined in Section 3:
• Enhanced accuracy: Our deep learning model significantly

improves error detection accuracy in MAS by leveraging the
ability of deep learning techniques to identify subtle patterns
and complex relationships within the data. This enables more
precise error detection than traditional methods, particularly
in dynamic and complex systems where traditional rule-
based techniques often fall short.

• Adaptability to dynamic environments: One of the primary
strengths of our approach is its adaptability. Deep learning
models can be trained on system-specific datasets, allow-
ing them to effectively handle the evolving nature of MAS.
This adaptability is crucial for real-world scenarios, where
agent behaviours and system configurations may change over
time. Our approach provides real-time adaptability to these
changes, ensuring consistent performance even in dynamic
environments.

• Generalisation across MAS: The focus on behavioural mod-
els rather than system-specific features ensures that our ap-
proach can be generalised and applied to a wide range of
MAS. This modularity allows our method to accommodate
different configurations and behaviours commonly found in
diverse multi-agent systems, making it a versatile solution
for various domains such as traffic management, robotics,
and industrial automation.

• Handling nondeterministic and emergent behaviours: Our
deep learning-based approach effectively addresses the chal-
lenges posed by nondeterministic and emergent behaviours,
which are often difficult to detect using traditional methods.
By training the model on diverse interaction scenarios, it
becomes capable of identifying deviations from expected
outcomes, even in unpredictable or complex situations. This
ability to manage emergent behaviours is a critical feature
in dynamic MAS where unexpected interactions can arise.

• Reduced execution times: Through the use of parallel pro-
cessing capabilities inherent in deep learning, our approach
significantly reduces execution times. Models can be de-
ployed on parallel architectures like GPUs, enabling faster
processing and quicker error detection. This reduction in
detection time is especially important when scaling to larger
MAS, as it allows for real-time responses to detected issues.

• Scalability: Our approach was specifically designed with
scalability in mind. As the number of agents in the sys-
tem increases, deep learning models can handle large-scale
MAS without sacrificing accuracy or efficiency. The ability
to process large datasets and capture complex relationships
between agents ensures that the approach remains robust
even in systems with a growing number of agents and dy-
namic behaviours.

• Reduced reliance on expert knowledge: Unlike traditional
methods that require experts to manually define error detec-
tion rules, our deep learning-based approach learns directly
from the data. This reduces the dependency on specialised
expertise, allowing the method to be applied across a variety
of domains without requiring deep technical knowledge in
each specific field.

By addressing the scalability, adaptability, and dynamic na-
ture of MAS, our approach overcomes the limitations of tra-
ditional testing methodologies. It provides a comprehensive,
scalable, and adaptive solution that can handle the challenges
posed by nondeterministic behaviours, emergent dynamics, and
large-scale systems. This makes it a powerful and innovative
tool for error detection in MAS, paving the way for more robust
testing techniques in the future.

Although deep learning strategies offer promising prospects
to achieve automatic, scalable, and dynamic error detection and
optimisation in MAS, several significant limitations need to
be considered. One critical challenge lies in the limited inter-
pretability of deep learning models, particularly complex neural
networks, which often lack transparency. This opacity makes it
difficult to understand the decision-making process, hindering
the interpretability and explanation of detected errors. Conse-
quently, stakeholders may be reluctant to rely on outcomes that
they cannot fully comprehend, which can impact the trustworthi-
ness of the error detection process. Another notable limitation is
the dependence on large volumes of high-quality training data,
which poses challenges in obtaining diverse and representative
datasets for MAS.

Incomplete or biased training data may result in suboptimal
performance, hampering the model ability to generalise effec-
tively to real-world scenarios. Furthermore, the proposed ap-
proach relies heavily on the accuracy and completeness of the
behavioural model used for training. If the model fails to cap-
ture all possible behaviours or edge cases, the approach may
struggle to detect errors effectively, particularly in complex and
unpredictable MAS environments. This dependency highlights
the need for careful modeling and validation processes to en-
sure sufficient coverage of the system behaviours. Consequently,
the approach may underperform in comparison toformal veri-
fication techniques [53] in scenarios where strict correctness
guarantees are required, as deep learning methods inherently
introduce probabilistic uncertainty rather than deterministic re-
sults. Additionally, scalability challenges may arise when ap-
plying deep learning models to real-world MAS with a vast
number of agents and intricate interactions, potentially leading
to increased computational requirements and longer training
times. The adaptability of deep learning models to dynamic en-
vironments is another concern, as these models may struggle to

Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 3, p. e154062, 2025 9

N. El Houda Dehimi, Z. Tolba, M. Medkour, A. Hadjadj, and S. Galland

keep pace with evolving system behaviours if not continuously
retrained or adapted. High computational costs, sensitivity to
variations in input data, dependence on hyperparameter tuning,
and ethical concerns related to biases inherited from training
data further contribute to the limitations. To overcome these
challenges, it is essential to adopt a comprehensive approach that
integrates deep learning with other testing and formal method-
ologies. Ensuring regular updates, continuous monitoring, and
a deep understanding of the specific characteristics and require-
ments of the multi-agent system is vital for addressing these lim-
itations and enhancing the effectiveness of error detection and
optimisation strategies. Additionally, incorporating explainable
AI (XAI) techniques [54] can significantly improve the inter-
pretability of the model decisions, offering clearer insights into
error detection processes and system behaviour.

9. CONCLUSIONS AND PERSPECTIVES

Testing is an important task in the software quality assurance
process. Despite the rapid evolution of MAS, testing these sys-
tems is still an under-researched area. In fact, only a few pro-
posals for the testing of MAS have been put forward in the
literature, although they have led to real progress in the field
of MAS testing. However, most of these proposals are related
to unit-level and agent-level testing. Moreover, they are very
complex and difficult to apply in real cases. In this work, we
have presented a novel approach to error detection in MAS us-
ing deep learning. This method aims to improve the reliability
and performance of MAS by accurately and efficiently identi-
fying errors that can compromise its proper functioning. The
proposed approach, supported by the tool we have developed,
has been validated on a concrete case study: ‘Traffic control
system’. The results obtained have enabled us to show that our
approach to error detection in MAS using deep learning of-
fers significant advantages in terms of reliability, performance,
and automation. In fact, by exploiting the capabilities of deep
learning, our approach enables accurate error detection, open-
ing up new possibilities for improving and optimising traditional
testing techniques. In the short and medium term, we plan to
enhance the accuracy and reliability of error detection and op-
timisation in MAS by integrating formal and complementary
methodologies with deep learning approaches.Additionally, we
aim to explore the integration of XAI techniques to improve
the interpretability of model decisions, offering clearer insights
into error detection processes and system behaviour. To further
strengthen error localisation, we plan to analyze error situations
detected during the deployment of the deep learning model
using advanced anomaly detection algorithms to identify abnor-
mal behaviour or inconsistencies that could indicate the cause
of errors.

Building on this, we will develop more precise error local-
isation methods by combining tracing techniques and in-depth
analysis of message exchanges between agents in error situa-
tions to determine the specific agent responsible for the error,
enabling faster and more targeted problem resolution. We also
intend to explore the use of visualisation and graphical represen-
tation techniques to map agent states and interactions, providing

visual insights into areas where errors propagate or concentrate,
thus highlighting critical areas requiring attention. Furthermore,
we will integrate machine learning techniques to enhance error
localisation by analyzing agent data to detect abnormal patterns,
which could pave the way for automatic error correction mech-
anisms. Finally, we plan to validate the generalizability of the
proposed approach by applying it to other systems and domains,
demonstrating its scalability, adaptability, and robustness across
diverse application contexts.

REFERENCES

[1] S.T. Goonatilleke and B. Hettige, “Past, present, and future trends
in multi-agent system technology,” J. Eur. Syst. Autom., vol. 55,
no. 6, pp. 723–739, 2022, doi: 10.18280/jesa.550604.

[2] S. Bitimanova and A. Shukirova, “Agents and Multi-agent Sys-
tems in the Management of Electric Energy Systems,” Manage.
Product. Eng. Rev., vol. 14, no. 2, pp. 99–110, Jun. 2023, doi:
10.24425/mper.2023.146027.

[3] B. Das, B. Subudhi, and B.B. Pati, “Formation control of un-
derwater vehicles using Multi Agent System,” Arch. Control
Sci., vol. 30, no. 2, pp. 365–384, Jun. 2020, doi: 10.24425/
acs.2020.133503.

[4] P. Qaderi-Baban, M.B. Menhaj, M. Dosaranian-Moghaddam,
and A. Fakharian, “Intelligent multi-agent system for DC mi-
crogrid energy coordination control,” Bull. Pol. Acad. Sci. Tech.
Sci., vol. 67, no. 4, 2019, doi: 10.24425/bpasts.2019.130183.

[5] J. Ferber, O. Gutknecht, and F. Michel, “From agents to organi-
zations: An organizational view of multi-agent systems,” in Proc.
4th Int. Workshop Agent-Oriented Softw. Eng., 2003, vol. 2935,
pp. 214–230.

[6] M. Cossentino, N. Gaud, V. Hilaire, S. Galland, and A. Koukam,
“ASPECS: An agent-oriented software process for engineering
complex systems—How to design agent societies under a holonic
perspective,” Int. J. Autonomous Agents Multi-Agent Syst., vol. 2,
no. 2, pp. 260–304, 2010.

[7] M. Wooldridge, N.R. Jennings, and D. Kinny, “The GAIA
methodology for agent-oriented analysis and design,” Int. J. Au-
tonomous Agents Multi-Agent Syst., vol. 3, no. 3, pp. 285–312,
2000.

[8] J. Pavón, J. Gómez-Sanz, and R. Fuentes, “The INGENIAS
methodology and tools,” in Agent-Oriented Methodologies, 2005,
pp. 236–276.

[9] M. Hannoun, O. Boissier, J.S. Sichman, and C. Sayettat,
“MOISE: An organizational model for multi-agent systems,” in
Advances in Artificial Intelligence, IBERAMIA-SBIA, 2000, pp.
156–165.

[10] B. Putten, V. Dignum, M. Sierhuis, and S. Wolfe, “OperA and
Brahms: A symphony?” in Agent-Oriented Software Engineering
IX. AOSE 2008, Lecture Notes in Computer Science, 2009.

[11] A. Kiran, W. H. Butt, M. W. Anwar, F. Azam, and B. Maqbool,
“A Comprehensive Investigation of Modern Test Suite Optimiza-
tion Trends, Tools and Techniques,” IEEE Access, vol. 7, pp.
89093–89117, 2019.

[12] S. Zardari et al., “A comprehensive bibliometric assessment
on software testing (2016–2021),” Electronics, vol. 11, no. 8,
p. 1984, 2022, doi: 10.3390/electronics11131984.

[13] C.D. Nguyen, A. Perini, C. Bernon, J. Pavón, and J. Thangarajah,
“Testing in multi-agent systems,” in Proc. Int. Workshop Agent-

10 Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 3, p. e154062, 2025

https://doi.org/10.18280/jesa.550604
https://doi.org/10.24425/mper.2023.146027
https://doi.org/10.24425/acs.2020.133503
https://doi.org/10.24425/acs.2020.133503
https://doi.org/10.24425/bpasts.2019.130183

Improving testing of multi-agent systems: An innovative deep learning strategy. . .

Oriented Software Engineering, Budapest, Hungary, 2009, pp.
180–190.

[14] Z. Zhang, J. Thangarajah, and L. Padgham, “Automated unit
testing intelligent agents in PDT,” in AAMAS (Demos), 2008, pp.
1673–1674.

[15] E.E. Ekinci, A.M. Tiryaki, O. Cetin, and O. Dikenelli, “Goal-
oriented agent testing revisited,” in Proc. 9th Int. Workshop
Agent-Oriented Software Engineering, 2008, pp. 85–96.

[16] C.D. Nguyen, A. Perini, and P. Tonella, “Goal-oriented testing
for MASs,” Int. J. Agent-Oriented Software Engineering, vol. 4,
no. 1, pp. 79–109, 2010.

[17] D.N. Lam and K.S. Barber, “Debugging agent behaviour in
an implemented agent system,” in PROMAS 2004, R.H. Bor-
dini, M.M. Dastani, J. Dix, and A. El Fallah Seghrouchni, Eds.,
Springer, Heidelberg, vol. 3346, pp. 104–125, 2005.

[18] C.D. Nguyen, S. Miles, A. Perini, P. Tonella, M. Harman, and
M. Luck, “Evolutionary testing of autonomous software agents,”
in Proc. 8th Int. Conf. Autonomous Agents and Multiagent Sys-
tems (AAMAS 2009), IFAAMAS, 2009, pp. 521–528.

[19] C.D. Nguyen, A. Perini, and P. Tonella, “Ontology-based test gen-
eration for multi-agent systems,” in Proc. Int. Conf. Autonomous
Agents and Multiagent Systems, 2008.

[20] M. Woodward, “Mutation testing: An evolving technique,” in
Colloquium Software Testing for Critical Systems, 1990.

[21] N.E.H. Dehimi, Z. Tolba, and N. Djabelkhir, “Testing inclusive,
exclusive, and parallel interactions in multi-agents system: A new
model-based approach,” Int. J. Saf. Secur. Eng., vol. 14, no. 4,
pp. 1125–1138, 2024.

[22] D. Guassmi, N.E.H. Dehimi, and M. Derdour, “A state of art
review on testing open multi-agent systems,” in Novel and In-
telligent Digital Systems Conferences, Athens, Greece, 2023, pp.
262–266, doi: 10.1007/978-3-031-44097-7_28.

[23] S. Boukeloul, N.E.H. Dehimi, and M. Derdour, “A state-of-the-
art review of the mutation analysis technique for testing multi-
agent systems,” in Novel and Intelligent Digital Systems Confer-
ences, Athens, Greece, 2023, pp. 230–235, doi: 10.1007/978-3-
031-44146-2_23.

[24] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[25] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
systematic literature review on fault prediction performance in
software engineering,” IEEE Trans. Software Eng., vol. 38, pp.
1276–1304, 2012.

[26] M. Meiliana, S. Karim, H.L.H.S. Warnars, F.L. Gaol, E. Ab-
durachman, and B. Soewito, “Software metrics for fault predic-
tion using machine learning approaches: A literature review with
PROMISE repository dataset,” in Proc. 2017 IEEE Int. Conf.
Cybernetics and Computational Intelligence (CyberneticsCOM
2017), 2018.

[27] N. Li, M. Shepperd, and Y. Guo, “A systematic review of un-
supervised learning techniques for software defect prediction,”
Inf. Softw. Technol., vol. 122, p. 106270, 2020, doi: 10.1016/
j.infsof.2020.106270.

[28] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and Others, “Test case
selection and prioritization using machine learning: A systematic
literature review,” Empirical Softw. Eng., vol. 27, p. 29, 2022, doi:
10.1007/s10664-022-10025-5.

[29] M. Khatibsyarbini et al., “Trend application of machine learn-
ing in test case prioritization: A review on techniques,” IEEE

Access, vol. 9, pp. 166262–166282, 2021, doi: 10.1109/AC-
CESS.2021.3135508.

[30] I.H. Witten, E. Frank, and M.A. Hall, Data Mining: Practical
Machine Learning Tools and Techniques, Elsevier eBooks, 2011.
[Online]. Available: https://doi.org/10.1016/c2009-0-19715-5.

[31] V.H. Durelli, R.S. Durelli, S.S. Borges, A.T. Endo, M.M. Eler,
D.R. Dias, and M.P. Guimaraes, “Machine learning applied to
software testing: A systematic mapping study,” IEEE Trans. Rel.,
vol. 68, pp. 1189–1212, 2019.

[32] N. Jha and R. Popli, “Artificial intelligence for software testing:
Perspectives and practices,” in Proc. Fourth Int. Conf. Computa-
tional Intelligence and Communication Technologies (CCICT),
2021, pp. 377–382, doi: 10.1109/CCICT53244.2021.00075.

[33] C. Ioannides and K.I. Eder, “Coverage-directed test generation
automated by machine learning – A review,” ACM Trans. De-
sign Autom. Electron. Syst., vol. 17, p. 7, 2012, doi: 10.1145/
2071356.2071363.

[34] J.M. Balera and V.A. de Santiago Junior, “A systematic map-
ping addressing hyper-heuristics within search-based software
testing,” Inf. Softw. Technol., vol. 114, pp. 176–189, 2019.

[35] Z. Zhou, M. Sunkara, Y. Lei, and A. Ramesh, “Machine learning
for software testing: A survey,” arXiv:1906.10742, 2019. [On-
line]. Available: https://arxiv.org/abs/1906.10742.

[36] M.M. Alam, S. Ali, A. Khan, M. Hamayun, and K.Z. Khan, “Ma-
chine learning for improving API testing,” arXiv:2207.13143,
2018. [Online]. Available: https://arxiv.org/abs/2207.13143.

[37] D. Guassmi, N.E.H. Dehimi, M. Derdour, and A. Kouzou, “Using
machine learning techniques for multi-agent systems testing,” in
Artificial Intelligence and Its Practical Applications in the Digital
Economy (I2COMSAPP 2024), Lecture Notes in Networks and
Systems, 2024, vol. 861, pp. 230–235, doi: 10.1007/978-3-031-
71426-9_16

[38] S.U. Rehman and A. Nadeem, “An approach to model-based test-
ing of multiagent systems,” Sci. World J., vol. 2015, p. 925206,
2015, doi: 10.1155/2015/925206.

[39] N.E.H. Dehimi, F. Mokhati, and M. Badri, “Testing HMAS-
based applications: An ASPECS-based approach,” Eng. Appl.
Artif. Intell., vol. 46, pp. 25–33, 2015, doi: 10.1016/j.engappai.
2015.09.013.

[40] N.A. Bakar and A. Selamat, “Agent systems verification: System-
atic literature review and mapping,” Appl. Intell., vol. 48, no. 5,
pp. 1251–1274, 2018, doi: 10.1007/s10489-017-1112-z.

[41] C. Barnier, O.-E.-K. Aktouf, A. Mercier, and J.P. Jamont, “To-
ward an embedded multi-agent system methodology and posi-
tioning on testing,” in Proc. 2017 IEEE Int. Symp. Software Re-
liability Engineering Workshops (ISSREW), 2017, pp. 239–244.

[42] M. Winikoff, “BDI agent testability revisited,” Autonomous
Agents and Multi-Agent Systems, vol. 31, no. 6, pp. 1094–1132,
2017, doi: 10.1007/s10458-016-9356-2.

[43] E.M.N. Gonçalves, R. A. Machado, B. C. Rodrigues, and D.
Adamatti, “CPN4M: Testing multi-agent systems under organi-
zational model Moise+ using colored Petri nets,” Appl. Sci., vol.
12, no. 12, p. 5857, 2022, doi: 10.3390/app12125857.

[44] M.S.U. Rehman, A. Nadeem, and M.A. Sindhu, “Towards auto-
mated testing of multi-agent systems using Prometheus design
models,” Int. Arab J. Inf. Technol., vol. 16, pp. 54–65, 2019. [On-
line]. Available: https://dblp.uni-trier.de/db/journals/iajit/iajit16.
html#RehmanNS19.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 3, p. e154062, 2025 11

https://doi.org/10.1007/978-3-031-44097-7_28
https://doi.org/10.1007/978-3-031-44146-2_23
https://doi.org/10.1007/978-3-031-44146-2_23
https://doi.org/10.1016/j.infsof.2020.106270
https://doi.org/10.1016/j.infsof.2020.106270
https://doi.org/10.1007/s10664-022-10025-5
https://doi.org/10.1109/ACCESS.2021.3135508
https://doi.org/10.1109/ACCESS.2021.3135508
https://doi.org/10.1016/c2009-0-19715-5
https://doi.org/10.1109/CCICT53244.2021.00075
https://doi.org/10.1145/2071356.2071363
https://doi.org/10.1145/2071356.2071363
https://arxiv.org/abs/1906.10742
https://arxiv.org/abs/2207.13143
https://doi.org/10.1155/2015/925206
https://doi.org/10.1016/j.engappai.2015.09.013
https://doi.org/10.1016/j.engappai.2015.09.013
https://doi.org/10.1007/s10489-017-1112-z
https://doi.org/10.1007/s10458-016-9356-2
https://doi.org/10.3390/app12125857
https://dblp.uni-trier.de/db/journals/iajit/iajit16.html#RehmanNS19
https://dblp.uni-trier.de/db/journals/iajit/iajit16.html#RehmanNS19

N. El Houda Dehimi, Z. Tolba, M. Medkour, A. Hadjadj, and S. Galland

[45] Z. Huang, R. Alexander, and J. Clark, “Mutation testing for Jason
agents,” in Proc. Int. Workshop Eng. Multi-Agent Syst. (EMAS
2014), Paris, France, 2014.

[46] N.E.H. Dehimi, A.H. Benkhalef, and Z. Tolba, “A novel mutation
analysis-based approach for testing parallel behavioural scenarios
in multi-agent systems,” Electronics, vol. 11, no. 22, p. 3642,
2022, doi: 10.3390/electronics11223642.

[47] N.E.H. Dehimi, S. Boukelloul, and D. Guassmi, “Towards a new
dynamic model-based testing approach for multi-agent systems,”
in Proc. 2022 4th Int. Conf. Pattern Analysis and Intelligent
Systems (PAIS), IEEE, 2022, pp. 1–6, doi: 10.1007/978-3-031-
44146-2_23.

[48] M. Schuster and K.K. Paliwal, “Bidirectional recurrent neural
networks,” IEEE Trans. Signal Process., vol. 45, no. 11, pp.
2673–2681, 1997, doi: 10.1109/78.650093.

[49] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT
Press, 2016. [Online]. Available: http://www.deeplearningbook.
org/.

[50] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[51] G. Hinton et al., “Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups,”
IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82–97, 2012.

[52] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “ImageNet clas-
sification with deep convolutional neural networks,” Commun.
ACM, vol. 60, no. 6, pp. 84–90, 2017.

[53] H.T. Nguyen, M.W. Berry, and J.D. Kiffe, “Numerical Methods
for Partial Differential Equations, 2nd ed., ser. Texts,” in Com-
putational Science and Engineering. Cham: Springer, 2019, doi:
10.1007/978-3-030-38800-3.

[54] N. El Houda Dehimi and Z. Tolba, “Attention Mechanisms in
Deep Learning: Towards Explainable Artificial Intelligence,”
in 6th International Conference on Pattern Analysis and In-
telligent Systems (PAIS), El Qued, Algeria, 2024, pp. 1-7, doi:
10.1109/PAIS62114.2024.10541203.

12 Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 3, p. e154062, 2025

https://doi.org/10.3390/electronics11223642
https://doi.org/10.1007/978-3-031-44146-2_23
https://doi.org/10.1007/978-3-031-44146-2_23
https://doi.org/10.1109/78.650093
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
https://doi.org/10.1007/978-3-030-38800-3
https://doi.org/10.1109/PAIS62114.2024.10541203

	Introduction
	RELATED WORKS
	RESEARCH GAPS AND OPEN ISSUES
	THE PROPOSED APPROACH
	PRESENTATION OF THE MULTI-AGENT SYSTEM UNDER TEST
	 FIRST PHASE (FORMATION OF THE DEEP LEARNING MODEL)
	Generating data subsets
	Data set pre-processing
	Model proposal

	THE SECOND PHASE (ERROR DETECTION USING THE TRAINED MODEL)
	Testing version V1
	Testing version V2
	Testing version V3

	DISCUSSION AND LIMITATIONS
	Conclusions and perspectives

