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Comparison of Machine Learning Performance for the Prediction of Melting Efficiency  
and Bead Geometry in wire Arc Additive Manufacturing Process

Wire arc additive manufacturing (WAAM) is amongst the emerging technologies of the layer-by-layer deposition process to 
manufacture the metallic parts. Multi-layer bead deposition using the WAAM process leads to the fabrication of complex products 
with practical utility. The bead profile of each layer controls the geometry of the final product. However, the melting efficiency and 
the bead geometry depend on the various process parameters. The primary process parameters affecting the melting efficiency and the 
bead geometry are the wire feed rate, travel speed, diameter of the wire, and power. Owing to the various complexities during 
metal deposition, predicting the dimensions at each deposition attribute is not always feasible. Hence, the current work is focused 
on the utilization of different machine learning (ML) algorithms to understand the relationship between the process parameters, 
melting efficiency, and bead geometry. The different ML models used for the current work are linear regression (LR), decision 
tree regressor (DTR), random forest (RF), support vector regression (SVR) and, extra tree regressor (ETR). The ETR is found 
to predict the melting efficiency with the highest prediction rate of 97.4%, whereas, the SVR and LR predict the bead width and 
height with the highest accuracy rate of 97.4% and 98.7%, respectively. 
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1. Introduction

Additive Manufacturing (AM) is an advanced manufactur-
ing technique utilized for fabricating components in a layer-by-
layer fashion using a STL file developed from a CAD model. 
Its popularity is by virtue of its advantage over conventional 
manufacturing processes in terms of design freedom and ability 
to manufacture complex geometries. AM has been commercially 
adopted for use in high-tech industries such as healthcare for 
custom implants, aerospace for lightweight designs, automotive, 
civil construction, and energy production [1-4]. Although AM has 
attracted a lot of interest in the industrial and academic sectors, 
accelerating the production rate, volume, and quality of printed 
goods production remains a significant problem [5]. Commonly, 
metallic parts can be produced by AM technologies by using 
the techniques like wire arc additive manufacturing (WAAM), 
Electron beam freeform fabrication (EBF), Selective laser melting 
(SLM), Selective laser sintering (SLS), and Electron beam melting 
(EBM). Welding wire is used as a feedstock material and an elec-
tric arc serves as the heat source for melting in WAAM process. 
It can manufacture massive components with great efficiency and 

little expense [6]. It can fabricate near-net-shape products without 
complex tooling, moulds, or dies. Gas metal arc welding, gas 
tungsten arc welding, and plasma arc welding are the three pre-
dominant processes that are extended to WAAM technologies [7]. 

The required product is directly printed layer-by-layer 
through the elimination of several conventional manufacturing 
processes. Each layer has a bead profile that ultimately deter-
mines the physical features of the printed product. A major con-
cern in the existing WAAM technology is that the quality of the 
final printed product is not consistent, which is highly dependent 
on various processing parameters, such as deposition speed, 
current, voltage, travel speed, wire feed, and stick-out length 
[8,9]. The width of the bead and the penetration depth decreases 
with an increase in the travel speed [10]. The wire feed does not 
significantly affect the depth of penetration and surface rough-
ness. However, the ratio of the wire feed to the travel speed can 
substantially influence the width, height, and depth of penetra-
tion [11]. In effect, the travel speed, current, and current polarity 
remarkably influence the shape of a 3D-printed bead. Straight 
polarity and higher current provide larger reinforcement areas 
which in turn reduce the cooling rate of the metal and reduce 
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the weld dilution [12]. Depth of penetration usually increases 
with an increase in welding current, reaches an optimum point, 
and reduces further with an increase in current [13]. However, 
welding current, cooling time, and interlay temperature affect the 
surface finish and dimensional accuracy [14]. Literature indicates 
that natural cooling time and idle time do not significantly affect 
the properties of the deposited WAAM layer [15, 16].

The causative variables such as temperature gradient and 
cooling rate are controlled by the heat input. Hence, the heat 
input is an important parameter of the WAAM process. Fuer-
schbach et al. [17] have pointed out that the heat input alone 
cannot determine the amount of metal melted during deposition. 
The energy that goes into the material and out of the deposition 
centreline, due to heat dissipation, is a significant loss for melt-
ing of the material [18]. Therefore, the melting efficiency is 
used to characterize this heat loss and is defined as the ratio of 
the minimum heat required for the fusion and the actual energy 
consumed. Melting efficiency also depends on the width of the 
heat affected zone [19]. The melting efficiency can be meas-
ured accurately using calorimetric techniques, but they do not 
account for losses that occur between the start of the operation 
and the measurement [20]. Various numerical models have been 
developed based on the physics of the process [21]. However, the 
solution of the Navier-Stokes equation increases the computation 
cost involved. AM research has experienced a paradigm change 
in favour of a mix of physics-based and data-driven techniques 
due to the complicated multi-physics and multi-scale nature of 
AM processes and the impact of different process factors on the 
quality of the produced product [22]. 

The conventional forecasting techniques are incapable of 
predicting, and establishing the physical responses with varying 
process parameters of the AM processes [13]. Therefore, in the 
recent past, various Artificial Intelligence approaches such as 
machine learning (ML), Artificial Neural Networks (ANN), and 
deep learning based on data-driven analysis are applied to AM 
processes [23,24]. Abdullah Al-Faruk et al. [13] developed an 
ANN-based model that can be used successfully to predict output 
parameters like bead height, bead width, and depth of penetra-
tion. But the errors can be high in some cases, like predicting 
bead width. Increasing the number of hidden layers, data sample 
size, and iterations can minimize this error [13]. Pradhan et al. 
developed Linear Regression (LR) and ANN models to predict 
the dimensions of weld beads like throat height, leg length, 
width, and penetration. LR model developed produced much 
better results as compared to the ANN model. Barrionuevo et al. 
[26] developed various ML models like Gaussian process regres-
sion (GPR), Extreme gradient boosting regressor (XGBR), and 
Multi-layer perceptron (MLP) to accurately predict the melting 
efficiency with various process parameters. It was reported that 
the accuracy in all these cases was around 85%.

Based on the extensive literature survey, it has been ob-
served that various works related to bead geometry for AM and 
especially WAAM have been reported, but studies which can 
correlate the physical dimensions of the bead deposited and the 
melting efficiency of the process with the input process param-

eters and accurately predict them are scarce. This gap has been 
addressed in the current article with the help of ML algorithms. 
This work aims to develop different ML models to predict the 
outcome of WAAM deposition. As, we know that the predic-
tion accuracies of the ML models depend on the levels of the 
complexity of problem depicted by the datasets, and acquiring 
the domain knowledge of the problems while training. Based on 
the datasets, several ML models are developed. Hence, before 
deploying the best models for the prediction, multiple ML algo-
rithms must be fitted and compared to obtain the best accuracy 
and low errors for the prediction. For our analysis, SVR (for the 
prediction of width) and, ETR (for the predictions of melting 
efficiency) provides the best result. The accurate prediction of 
the bead geometry and melting efficiency will further improve 
the acceptance of WAAM in the manufacturing industry.

2. Machine learning models

2.1. Importing dataset and cleaning the data

Data is the most important asset of any ML model. Volume 
and quality of data directly affect the accuracy and efficiency of 
the ML regression model developed. Cleaning the data includes 
validating the datatype (integer, characters, float, etc.) and filter-
ing the data entries with structural errors. This is important as 
the data is acquired from different sources and it might contain 
inconsistent data points. This can give rise to undue errors in 
the output results. 

2.2. Check for outliers and build basic intuition

Outliers can exist in any data which may be caused by 
multiple reasons. But it is crucial to weed out any such outliers 
at the early stage i.e., before using them for ML. If the model 
starts considering the data which are not correct and out of range, 
the predictions will lose their accuracy. Hence, it is important to 
identify the data that are outliers and treat them suitably before 
reconsidering them. Generally, the outlier data points are taken 
off the dataset. A boxplot depicts the data in the form of five 
numeric summaries helping in the visualization of dispersion 
and skewness of the available data points [27]. Basic intuitions 
are then formed around the data given. Visualization helps to 
understand the data better and acts as an aid to make further deci-
sions. Various plots like pair plots, and correlation matrix (heat 
map) are plotted to understand the data better before building 
an appropriate ML regression model.

2.3. Splitting the data into the training set  
and testing set

Any ML model developed needs to be tested before final-
izing. For the same purpose, the available dataset is divided into 
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two categories. The training dataset is used for developing and 
training the model. The larger chunk of data is split into this 
category, usually, about 75-90% as this determines the quality of 
the ML model developed. The other set of data is not made avail-
able for the model as it is strictly used only to test and validate 
the accuracy of the ML model. This is done before proceeding 
to further steps to avoid any data leakage and preserve the test 
data for validating the developed regression model.

2.4. Feature scaling

Given that a dataset might contain numbers of different 
orders, it becomes difficult for an ML model to deal with them. 
If the distance between data points is large, it can lead to er-
roneous results. To reduce the errors and help the ML model 
predict better, feature scaling is done. Feature scaling ensures 
that all the data points available are in a certain range. Feature 
scaling is done after splitting the data to avoid any data leakage. 
Splitting before feature scaling ensures that the training dataset 
is completely independent of the testing dataset and there is no 
bias induced. The range is decided by the feature scaling model 
that is chosen. Largely, there are two types of feature scaling.

2.4.1. Normalization: 
It keeps the data between [0,1] using a minmax scalar. The 

relationship used for normalization is given below.
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where Xnorm is the normalized feature value, X is the feature 
value, Xmin is the minimum feature value, and Xmax is the maxi-
mum feature value.

2.4.2. Standardization:
The process of rescaling the features to give them the 

characteristics of a Gaussian distribution with µ = 0 and σ = 1, 
where µ is the mean and σ is the standard deviation from the 
mean, is known as standardization (or Z-score normalization). 
The following formula is used to determine the samples standard 
scores, often known as z-scores:
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2.5. Development of the ML models

As there is no thumb rule established regarding the model 
to be chosen for a particular kind of dataset, it is necessary to 
implement various regression models to check the best fit. Hence, 
importing and trying all the appropriate regressors are the best 
way to come up with the most accurate ML model. Multiple 
Linear Regression (MLR), Support Vector Regression (SVR), 
Lasso Regressor (LR), Random Forest Regressor (RFR), Extra 

Tree Regressor (ETR) etc. are a few regressors available for 
developing an ML model. MLR is the most commonly used 
algorithm and it’s fundamental for several other models. Math-
ematically it can be expressed as follows:

   0 1 1 2 2 n ny x a a x a x a x    	 (3)

where y is the output variable, x1, x2, …., xn are the input features, 
and a0, a1,…., an are the parameters that need to be evaluated 
while model training using suitable optimization algorithm like 
gradient descent. Solution of the problem by SVR consists of 
transferring the training datasets into high order dimensions that 
leads to the establishment of hyperplane and its separation. Let 
us assume that X = [X1, X2, ..., Xn]T be the input features, and 
Y = [Y1, Y2, ..., Yn]T are the output variable. Regression equation 
pertaining to these variables is given by:

 y(x) = ω . ∅(x) + b	 (4)

where y(x) depicts the output function, w is the weight coefficient, 
b is bias, and ∅(x) is the non-linear function that converts the 
datasets into high order dimension. According to the training set, 
DTR model generates a decision tree that predicts the specific 
output which in turn depends on the input features. Depending 
on the types of problem (classification or regression), CART 
(classification and regression tree) algorithm changes. Based on 
these algorithm, binary trees are constructed. Working principle 
of this algorithm is such as: at particular node, subset of training 
data (Nnode) is divided into two parts –      , |  left

f nodenodeN S x y x t  and     \  right left
nodenode nodeN S N N S; 

hence it is called as split S. Further dependency of S is on certain 
factor (f ) with particular threshold tnode; and xf be the feature at 
node. Hence, mathematical formulation is given by:

 S = ( f, tnode)	 (5)

      , |  left
f nodenodeN S x y x t  	 (6)

     \  right left
nodenode nodeN S N N S 	 (7)

Further, the impurity at split is evaluated according to 
Eq. (x) that leads to the utilization of loss function for regression 
problems. The main purpose of CART algorithm is to minimize 
the impurity at each node. Mathematical equations for the pre-
dicted output of regression problem is given by:
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Where Qn is utilized subset of training data, Nn is the number of 
training sample in Qn, y depicts the output, and y—n is the mean 



32

value of all the output. This complete process is repeated till 
maximum depth of tree is obtained or ly one sample at node is 
left out.

RFR model is an ensemble learning techniques that consists 
of generating forest of multiple decision trees and finally com-
putes the mean value of each tree and gives the predicted value. 
ETR model is also an ensemble learning techniques that gives 
the prediction based on the number of decision trees. Hence, 
the mathematical formulation of this model based on the DTR. 
Initially the ETR model was developed from RF algorithm. 
This algorithm gives higher prediction accuracy for the smaller 
size of datasets as it utilized the complete training set for the 
optimization of the branches of decision tree. 

2.5.1. Hyperparameter tuning

Every ML model has certain parameters for performing the 
required operations. They are unique to each regressor and decide 
the accuracy and efficiency of the model developed. These pa-
rameters are called hyperparameters. They define the model and 
its working. The hyperparameters can be tuned to obtain better 
performance from the model. A few of the hyperparameters for 
different regressor models are given in TABLE 1.

Table 1
Few of the regression models and their hyperparameters 

Regressor Hyperparameters
Ridge regressor Maximum iterations, tolerance, solver

Support vector Kernel type, Degree of the polynomial kernel 
function, Kernel coefficient, tolerance

Decision Tree 
regressor

Criterion, the maximum depth of the tree, 
splitter used

2.5.2. Check the performance and verify the results

The accuracy of the model developed is measured by two 
parameters viz. R-squared score (or score) and mean squared 
error (MSE). R-squared (R2) is widely used to measure the 
goodness of fit. Nonlinear models generally lead to a value that 
can lie beyond [0,1] interval and reduce as regressors are added 
[28]. Mathematically, R2 score is,
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Where, yi is the predicted value, ŷi is the actual value, and y– is the 
mean value. R-squared scores of 0.97 and above are considered 
good and can be deduced that the developed model is able to 
predict the required data accurately.

The degree of inaccuracy in statistical models is gauged 
by the mean squared error, or MSE. Between the observed and 

projected values, it evaluates the average squared difference. 
It is mathematically represented by the following formula. 
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Where, yi is the predicted value, ŷi is the actual value, and 
n is the number of observations. The model can alternatively be 
verified using a few known data points. The model can be used 
to predict data that is known and can be validated using the ML 
model developed.

2.6. Dataset of the process

2.6.1. Bead dimensions

The bead profile is defined by two major dimensions i.e., 
bead width and bead height (Fig. 1). These dimensions decide 
the quality and the accuracy of the product built. But several 
parameters contribute to the outcome of the bead profile. Hence, 
it is difficult to predict the exact dimensions that will be obtained. 
To develop the ML model, we used the dataset from the research 
paper published by Ding et al. in the year 2015 [29].

Fig. 1. Schematic of weld bead geometry

In the experiments conducted by them, the varying deposi-
tion attributes are wire feed, travel speed, and stick-out length. 
Minimum and maximum values for wire feed rates are varies 
from 5 m/min-7 m/min, travel speed varies from 0.35 m/min-
0.7 m/min, and stick out length varies from 9 mm-15 mm. Bead 
width and height are measured and considered as output values. 
A few of the experimental values obtained from the research 
paper are shown in the TABLE 2.

2.6.2. Melting efficiency

Accurate prediction of the melting efficiency is essential as 
it signifies the efficiency of the whole process. To manifest the 
same, an ML model is developed using the dataset available in 
the research paper published by Barrionuevo et al. [26]. In this 
study, wire feed rate, travel speed, diameter of the wire, and 
power employed as a deposition parameter for the fabrication 
of mild steel products by cold metal transfer. For this dataset, 
wire diameter varies from 0.8 mm-1.2 mm, wire feed speed 
ranging from 28 mm/s-222.5 mm/s, travel speed varies from 
1.66 mm/s-25 mm/s, and power from 531.2 W-3266.5 W. A set 
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of 75 experiments were conducted and the results were recorded. 
A few of the data points are shown in TABLE 3. All the steps 
involved (data pre-processing, hyperparameter tuning of model 
parameters, and model fitting) in the development of machine 
learning models were accomplished by utilizing scikit-learn 
library available in python programming language.

3. Results and discussions

The data was pre-processed and checked for any non-
permissible values. The outliers were checked using the boxplot. 
The boxplot of various input parameters viz. The wire feed, travel 
speed, and stick-out length based on the experiments of Ding 
et al. are shown in Fig. 2.

Once data munging was completed, basic intuitions were 
built using graphs showing variations in output parameters with 
the input variables and a correlation matrix. Wire feed and stick-
out length do not have a noticeable control over the height of 
the bead as observed in Figs. 3a and 3c, respectively. Also, it is 
observed from Fig. 3b that travel speed has a significant impact on 
the height of the deposited bead layer. In Fig. 4, bead width was 
plotted against various input variables. Wire feed and travel speed 
contribute significantly towards determining the width of the bead 
profile deposited as observed in Figs. 4a and 4b, respectively. 
It was observed that the stick-out length does not have any impact 
on the width of the bead as it is less correlated (0.046) (Fig. 5). 

These intuitions can be further strengthened by studying the 
correlation matrix plotted in Fig. 5. Observing the fourth row 
of the correlation matrix, we can note the different correlation 

Table 2
Sample of welding process input parameters and the responses 

obtained [29]

Parameters Responses
Wire feed  
(m/min)

Travel speed 
(m/min)

Stick out 
(mm)

Height 
(mm)

Width 
(mm)

5 0.35 9 3.43 6.74
5 0.46 11 2.96 5.97

5.7 0.58 15 2.57 6.19
5.7 0.7 13 2.21 5.7
6.4 0.35 13 3.42 8.53
6.4 0.46 15 2.91 7.53
7 0.35 15 3.21 9.22
7 0.7 9 2.29 7.28
6 0.5 12 2.75 7.04

6.5 0.6 10 2.5 7.27
5.5 0.4 11 2.94 7.34
5.8 0.48 11 2.56 7.12
6.2 0.52 10 2.49 7.45
6.2 0.7 11 2.17 6.65

Fig. 2. Boxplot of the process parameters viz. Wire feed (a), Travel speed (b), and Stick out length (c) are involved in predicting the bead dimensions

Fig. 3. Variation of the height of bead geometry with (a) wire feed (a), (b) travel speed, and (c) stick-out length

Table 3
Dataset sample from Barrionuevo et al. [26]

Wire Diameter 
(mm)

Wire Feed 
(mm/s)

Travel speed 
(mm/s)

Power 
(KW)

Melting 
Efficiency

0.8 39.33 5 531.22 0.396
0.8 48.33 6.66 693.84 0.414
0.8 122.5 14.99 1727.29 0.482
0.8 137.17 16.67 1921.5 0.474
0.8 42 3.33 550.86 0.376
0.8 112.67 7.51 1714.14 0.422
1 89 6.67 2064.77 0.467
1 57 3.33 1407.78 0.394
1 71.17 4.17 1788.14 0.412
1 90.5 5 2068.2 0.453
1 100.33 5.83 2323.55 0.466

1.2 47.67 6.68 1737.51 0.41
1.2 55.17 8.33 1970.48 0.428
1.2 44.33 3.34 1688.92 0.372
1.2 57.33 4.17 1996.29 0.446
1.2 89.33 6.67 2887.92 0.5
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coefficients pertaining to the height of the bead profile. The cor-
relation coefficient of height corresponding to the travel speed is 

-0.95 depicting the idea that the travel speed affects the height 
of the bead inversely. The magnitude of the correlation coef-
ficients between height and the wire feed, and stick-out length 
are small, conveying the fact that they have a minimum effect 
on the output i.e., the height of the deposited layer. Similarly, 
the fifth row contains the correlation coefficients of width with 
varying process parameters. The width of the deposited layer 
has correlation coefficients that signify that the wire feed (0.69) 
affects the width in a quasi-linear manner whereas it decreases 
with the increasing travel speed (-0.64).

Similarly, the boxplot is visualized for all the process pa-
rameters used in determining the melting efficiency in Fig. 6. The 
wire diameter (Fig. 6a), wire feed (Fig. 6b), and power (Fig. 6d) 
have a typical graph generated as opposed to an unusual plot 
of travel speed. In Fig. 6c it can be seen that three data points 
lie beyond the third quartile line (Q3). Q3 denotes the median 
of the second half of the data. This is not a concern as we are 
aware of the fact that it is well within the limits and is not an 

Fig. 4. Variation of the width of bead geometry with (a) wire feed, (b) travel speed, and (c) stick-out length

Fig. 6. Boxplot of the process parameters: (a) wire diameter, (b) wire feed, (c) travel speed, and (d) power involved in predicting the melting 
efficiency

Fig. 7. Variation of melting efficiency with (a) wire diameter, (b) wire feed, (c) travel speed, and (d) power

Fig. 5. Correlation matrix denoting the relation between height and 
width of bead geometry and the input parameters



35

erroneous entry. It is a slight deviation that will not affect our 
model in any manner. 

Melting efficiency is plotted against the process parameters 
used viz. wire diameter, wire feed, travel speed, and power. The 
basic intuition drawn from the plots is that melting efficiency is 
affected by the process parameters like wire feed, travel speed, 
and power whereas it is fairly independent of the wire diameter. 
The melting efficiency is seen to be increasing almost linearly 
with wire feed, travel speed, and power.

The correlation matrix is developed for the melting effi-
ciency and its process parameters. The last row contains all the 
correlation coefficients with respect to melting efficiency. It aids 
in building the idea that wire diameter is not affecting the melting 
efficiency as its correlation coefficient is as low as –0.15. Also, 
the correlation coefficients of wire feed, travel speed, and power 
are 0.76, 0.76, and 0.83 respectively. It can be concluded that as 
the coefficients are approaching 1, the relationships are highly 
dependent i.e., melting efficiency is highly dependent on wire 
feed, travel speed, and power.

Fig. 8. Correlation matrix denoting the relation between melting ef-
ficiency and the input parameters

The data was then randomly split in the ratio of 4:1 into 
training and testing, respectively. Once the data is split, the 
training data is subjected to feature scaling. Various regression 
models were developed and their accuracies were examined. The 
regression models used were Linear Regression (LR), Support 
Vector Regression (SVR), Ridge Regression (RR), K-Nearest 
Neighbours (KNN), Random Forest Regression (RFR), and Extra 
Tree Regression (ETR). Hyperparameters utilized while fitting 
models are depicted in Table 5. The procedure for tuning the 
hyperparameter is gridsearchcv. The gridsearchcv considers 
all the possible permutations and combinations of parameters 
before optimizing the parameter values within the given range.

3.1. Prediction of bead dimensions

The R2 score and MSE of various models developed for 
predicting the height of a deposited bead with varying input 
parameters are shown in Fig. 9 and Fig. 10 respectively. 

Fig. 9. Scores obtained by different regressors predicting the height 
of the bead

Fig. 10. MSE obtained by different regressors predicting the height 
of the bead

It is observed that the LR model is performing the best to 
predict the height of the deposited bead layer. The R-squared 
score of the LR model is around 0.987 and its correspond-
ing MSE is as low as 0.0014. The other models like ETR and 
RFR have scores around 0.92 which are satisfactory. With 
a score of 0.987, the LR model is finalized to predict the bead 
height.

Figs. 11 and 12 show the R2 score and MSE of different re-
gressor models developed for predicting the width of a deposited 
bead with varying input parameters. SVR and LR are two of the 
best-performing models for predicting the width of the deposited 
bead layer. Their scores are 0.974 and 0.963 respectively. Their 
MSE values are 0.0257 and 0.0365 respectively. It is evident 
that SVM has an edge over LR in predicting the width of the 
bead profile. Non-linearity of the datasets was solved using the 
radial basis function as the kernel tricks by SVR model. Hence, 
it achieves the highest prediction accuracy on fitting of the bead 
width dimensions. SVR with an R-squared score of 0.974 is 
recommended for the task of predicting the width. 
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Fig. 11. Scores obtained by different regressors predicting the width 
of the bead

Fig. 12. MSE obtained by different regressors predicting the width of 
the bead

A few of the results are compared in TABLE 4. It can be 
seen that the models are working efficiently with very minimal 
deviation from the actual dimensions of height and width of the 
deposited bead layer.

Table 4

Comparison between the model prediction vs actual dimensions

Sl 
no.

Actual height
(mm)

Predicted 
height
(mm)

Actual width
(mm)

Predicted 
width
(mm)

1 2.17 2.16 6.65 6.55
2 2.59 2.58 5.48 5.58
3 2.57 2.58 6.19 6.11
4 2.91 2.93 7.53 7.63
5 2.56 2.50 7.79 7.66
6 2.56 2.64 7.15

3.2. Prediction of melting efficiency

Various regression models were employed to arrive at the 
most accurate ML model that could predict the melting efficiency 
of the process with varying process parameters. The R2 scores of 
various ML regressor models developed can be seen in Fig. 13. 
Their respective MSE observed is shown in Fig. 14. Initially, 
it was seen that the ETR model is producing the best results 
with a score of 0.958. The next nearest best-performing model 
is RFR with a score of 0.931. The ETR model provides the best 
prediction for the melting efficiency as it consists of mean value 
as a predictor value from the multiple decision trees.

Fig. 13. Scores obtained by different regressors predicting the melting 
efficiency

Fig. 14. MSE obtained by different regressors predicting the melting 
efficiency

After identifying the top three regressors, each regressor 
is subjected to hyperparameter tuning to have the best-fitting 
model. The parameters like the number of estimators, criterion, 
splitter, etc. were tuned as per the given data set and a model was 
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developed which can most accurately make the predictions. After 
multiple iterations, it was deduced that the Extra Tree Regressor 
with the following hyperparameters produced the best results. 
TABLE 5 shows the best hyperparameters of ETR for predicting 
the melting efficiency.

Table 5

Best hyperparameters obtained for extra tree regressor (ETR)

Models Hyperparameters utilized for model Parameters

ETR

No. of estimators
Random state

Criterion
Minimum sample split
Minimum samples leaf

5
5

MSE
2
1

RFR

Criterion
Maximum depth

Number of estimators
Random state

MSE
7
50
11

SVR Kernel
C 

Rbf
100

KNN No of neighbours
Leaf size

5
30

A score of 0.974 was obtained with the above-mentioned 
hyperparameters which predict the melting efficiency of the pro-
cess with an MSE of 6.52×10–5. This ETR model is superimposed 
for accurate prediction of melting efficiency. From Fig. 15, it can 
be convincingly concluded that the developed ETR model fits 
the data obtained from research paper very accurately.

Fig. 15. Comparison between predicted and actual melting efficiency

4. Conclusions

For the fabrication of components by WAAM process, 
deposition attributes like travel speed, heat input, wire feed 
speed, and wire diameter play a paramount role in deciding the 
product dimensions and its functionality. These variants must be 
selected properly using proper design of experiments. However, 
conducting experiments at various levels of attributes and decid-
ing the optimal values by trial and error are time consuming and 
increases the overall production cost. Hence, in this study various 

ML models are trained on the experimental data available from 
the independent literature. Further, the best models are utilized 
for the prediction. A total of three ML Regression models are 
developed for accurately and efficiently predicting the height and 
width of the deposited bead profile, and the melting efficiency of 
the process. There are several input process parameters that vary 
to give diverse output values. Regressors like LR, SVR, RFR, 
Ridge, and DTR are used to arrive at the best possible model to 
achieve the target of predicting the physical dimensions of the 
bead and the melting efficiency of the process. LR is used to 
predict the height of the bead profile with a score of 0.987. SVR 
is employed to predict the width of the bead deposited having 
a score of 0.974. However, ETR produces the best results for 
predicting the melting efficiency of the process among all the 
regressors with a score of 0.958. Upon tuning the hyperparam-
eters, the final ETR model had a score of 0.974. The drawback 
with this model is that it is based on very limited data points 
and thus produces deviations from the actual values. This can 
be rectified by increasing the volume of data available for the 
model to learn, understand, and strengthen the understanding of 
the relationships between the output parameters and the input 
process parameters. It is not required to design all the deposition 
attributes, rather than, its influence on the output can be evalu-
ated by feature importance and further it is predicted based on 
their significance level on the output. The current work can be 
further extended to develop more efficient ML models on our 
experimental datasets as a digital twin that can predict both 
deposition parameters (inverse predictions of variants from the 
targeted melting efficiency and bead dimensions), and bead 
dimensions so that optimal parameters must be selected for the 
fabrication of structurally sound component by WAAM process. 
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