
WARSAW UNIVERSITY OF TECHNOLOGY Index 351733

FACULTY OF CIVIL ENGINEERING
COMMITTEE FOR CIVIL AND WATER ENGINEERING

POLISH ACADEMY OF SCIENCES ISSN 1230-2945

DOI: 10.24425/ace.2025.153332

ARCHIVES OF CIVIL ENGINEERING

Vol. LXXI ISSUE 1 2025
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Research paper

Validation of microplane coupled damage-plasticity model
with gradient regularization (MCDPMwGR) on prestressed

and non-prestressed concrete beams.

Damian Kowalski1, Roman Gąćkowski2, Jacek Selejdak3

Abstract: The paper aims validation of a microplane coupled damage-plasticity model with gradient
regularization (MCDPMwGR) by simulating concrete behavior in reinforced concrete beams, both prestressed
and non-prestressed. It uses experimental data from available papers. Tendons were modelled in a discrete
form using one-dimensional finite elements. Prestress force was inflicted by a temperature drop. Contact
issues were taken into account, i.e., friction and pressure at the interface between the cable and the duct wall.
In the course of the work, it was found that it is possible to obtain satisfactory accuracy of results with the
model in use. The adverse effects, present in other models were not observed. These are, among others,
overestimate of ultimate load and excessive influence of tensile strength on the ultimate load value. We
can observe such effects in plastic models (e.g., Menetrey–Willam or Drucker–Prager model) as well as
non-coupled damage models (e.g., damage evolution model, microplane elastic model). Accurate P − −∆

(load-deflection) curves, matching with experimental data, were achieved. It is worth mentioning that the
best curve fitting for beams made out of the same concrete was obtained using the same parameter values.
This is true also when comparing prestressed and non-prestressed beams. It suggests significant potential of
damage-plasticity model in predicting the true behavior of concrete. Yet, there are still some issues that
need further analysis. They concern mainly influence of simplifications made during modelling prestressed
beams on final results.
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1. Introduction
With the advent of the era of numerical methods and the widespread use of computers, the

possibilities of designing extremely complex structures have opened up for us. Optimization
also took a prominent place in this process. However, it was paid for by the necessity of high
specialization in the applied calculation methods. The multitude of available computational
models and parameters, describing the behavior of materials, makes it necessary to perform
a number of analyzes in order to find the optimal method of calculating various types of
structures.

Searching of parameters values, which assure obtaining accurate P − ∆ (load-deflection)
curve, is, in fact, an optimization task, in which an objective function will be defined as
a minimization of sum of differences between a force obtained in experimental and numerical
analysis over the whole range of deflections. An equivalent to this, is an area between
experimentally and numerically generated curves, calculated according to Eq. (1.1).

(1.1) C =

umax∫
0

|Fnum − Fexp |du = min

where: Fnum – value of the force from numerical analysis, Fexp – force value measured during
experiment, u – displacement of middle bottom of the beam.

Due to lack of smoothness of the P − ∆ curve, the above integral could be determined only
in finite number of discrete displacements. Therefore, only approximate fit can be achieved.
The forces were subtracted in points of experimentally measured displacement, i.e. the forces
associated with first crack, reinforcing steel yield, a maximum force and a force associated
with the largest displacement.

Main motivation for this work was that authors could not find any publications on validation
of microplane coupled damage-plasticity model with gradient regularization (MCDPMwGR)
for numerical simulation of reinforced concrete beams, both prestressed and non-prestressed.
Therefore, the aim of this paper was to validate that model. This was achieved by finding the
results of the above stated optimization task. Experimental data used as a basis for the research
and experiments themselves, were described in papers [1–3]. The test setup is shown in Fig. 1.

Fig. 1. Scheme of test set-up of beams B1 to B9
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Figure 2 presents basic dimensions and boundary conditions of sample beams. As for
prestressed beams, they included bonded and unbonded types of tendons. All the beams were
subjected to 4-point bending. In this type of test, a middle part of the beam, located between
the loads, is subjected to constant bending moment. Moreover, there is no shear along this
section of the beam.

Fig. 2. Schemes of the analyzed beams

There are plenty of advanced software, both commercial and freeware. Abaqus seems to
be one of the most poular amongst reinforced concrete structures researchers [4–6]. Yet, the
new promising concrete model was recently implemented in Ansys program. Therefore the
simulations were carried out using Ansys 2021 R2 edition. All the methods and parameters
settings used during the research, are described in the following section.
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2. Materials and methods

2.1. Concrete model

Precise modelling of concrete material is a difficult task, mainly due to complete difference
in behavior of this material under compressive and tensile stresses. Moreover, unreinforced
concrete is subject to brittle failure, which tends it to be described by means of the fracture
mechanics [7]. The presence of reinforcement alleviates this restriction as a result of the
increased ductility of the steel-concrete composite.

Concrete is also subject to rheological phenomena, which becomes particularly important
in prestressed structures, as it affects the efficiency of prestressing [8].

In order to enable numerical simulations of concrete structures to be highly accurate in
predicting the real behavior of structures, a number of advanced theoretical models of concrete
were developed. There is a group of plastic models with strain softening effect included.
Drucker–Prager [9, 10] and Menetrey–Willam [11,12] can be mentioned here. Another type
of models, that could be distinguished, describes material damage as a stiffness degradation
related to stress or strain level. Examples of such formulation are damage evolution law [13]
or elastic microplane model [14]. Due to omitting some essential features of brittle-plastic
material, none of the above group gives satisfactory accuracy of results when it comes to
concrete structures analysis. An ultimate load is significantly overestimated, furthermore,
an influence of tensile strength on the ultimate load is considerable. Since tensile strength
is usually determined as a derivative of compressive strength, the models listed above are
impractical in experiment simulations field. Testing tensile strength is cumbersome and the
results strongly depend on a way of proceeding the tests, therefore it is seldom performed.

Another group of material models worth mentioning is a group using fractional calculus in
their constitutive relation [15,16]. Generally, a non-integer order of derivative is used to express
rate dependent plastic strains (viscosity) in visco-plastic formulations. Yet, the experiments
analysed in this paper are quasi-static, therefore this group of material models seems to be too
sophisticated to make use of them in this case.

The accuracy issues described above were solved in microplane coupled damage-plasticity
model with implicit gradient regularization [17,18]. It links the two salient aspects of concrete
behavior: stiffness degradation with an increase of stresses and plastic strains persistence.
Consequently, the accuracy of the obtained load-deflection dependency, is excellent. Moreover,
the gradient regularization reduces solution sensitivity to finite element mesh.

The analyses were based on modified Drucker–Prager (D-P) model, already implemented in
Ansys software, as Microplane Coupled Damage Plasticity Model with Gradient Regularization
(MCDPMwGR). No additional changes were made to the originally defined model. A classic
D-P is an elasto-plastic model, in which yield surface is defined in main stresses coordinate
system (Fig. 3a). It accounts for differences in compression and tension strengths and an
increase in strength of concrete, confined by compressive forces. In the modified D-P, the 3
yield surfaces (2 conical and one planar) were substituted by smooth surface, composed of one
conical subsurface and 2 spherical surfaces, connected tangentially to the former (Fig. 3b).
Thus, convergence problem in discontinuity regions of yield surface was eliminated.
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(a) (b)
Fig. 3. Yield surface in classic Drucker–Prager model (a) and a cross-section through the yield surface of

the modified Drucker–Prager model (b)

Elastic modulus (Ecm) of beams tested in [1] was taken the same as in the paper, i.e. for
beam BP-1a – 36.8 GPa and for beam BP-2a – 36.4 GPa, whereas for beams described in [3]
(beams B1 to B9), due to lack of data, the Young’s modulus was calculated according to [8].
The uniaxial tensile strength ( fut ) was assumed an optimization parameter. Poisson ratio
(ν) of uncracked concrete has been adopted from source papers, i.e., 0.15 for beams BP-1a
and BP-2a [1] and 0.2 for beams B1-B9 [3]. Biaxial compressive strength ( fbc) was taken,
following [19, 20], as 1.15 of uniaxial compressive strength:

(2.1) fbc = 1.15 fuc

where: fuc – uniaxial compressive strength of concrete.
For the σC

V parameter (i.e., intersection point abscissa between compression cap and
Drucker–Prager yield function), an approximate formula has been used:

(2.2) σC
V ≈ −

2
3

fbc

where: fbc – biaxial compressive strength of concrete.
The basic concrete characteristics are set together in Table 1.
Some model parameters were assumed constant, since their influence, confirmed in

sensitivity analysis proceeded by authors, is negligible. These are the following parameters
and their value used through all analyses:

– Over-nonlocal averaging parameter: m = 2, 5,
– Tension damage threshold: γt0 = 0,
– Compression damage threshold: γc0 = 0,
– Tension cap hardening constant: RT = 1,
– Ratio between the major and minor axes of the cap: R = 1,
– Hardening material constant: D = 0.
Concrete matrix has been modelled by means of 8-node hexahedron shaped solid finite

elements, having 3 degrees of freedom in each node. Size of elements ranging between 20 and
80 millimeters. Gradient regularization method used here [17, 18] required a definition of 2
additional degrees of freedom in each node. Sample cross-section through prestressed beam



246 D. KOWALSKI, R. GĄĆKOWSKI, J. SELEJDAK

Table 1. Basic concrete parameters

Sample
Young’s
modulus,
Ecm, GPa

Uniaxial
compressive
strength,
fuc, MPa

Biaxial
compressive
strength,
fbc, MPa

Poisson’s
ratio, ν

Intersection point abscissa
between compression cap
and Drucker–Prager yield

function, σC
V,MPa

BP-1a 36.8 81.2 93.4 0.15 –62.3
BP-2a 36.4 78.8 90.6 0.15 –60.4
B1 39.78 72 82.8 0.2 –55.2
B2 40.27 75 86.25 0.2 –57.5
B3 40.43 76 87.4 0.2 –58.3
B4 43.23 95 109.25 0.2 –72.8
B5 43.50 97 111.55 0.2 –74.4
B6 43.09 94 108.1 0.2 –72.1
B7 34.08 43 49.45 0.2 –33.0
B8 39.78 72 82.8 0.2 –55.2
B9 43.23 95 109.25 0.2 –72.8

with unbonded tendon is shown in Fig. 4. Due to symmetry, only half of the beam (cut in the
middle of its length) is modelled. In case of prestressed structures, it is sensible to simplify the
model this way only when the prestress force is applied at both ends. Otherwise, there is no
symmetry in real tendon behavior.

Fig. 4. Cross-section through model of prestressed concrete beam with unbonded tendons (a) and passive
reinforcement model (b)
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2.2. Prestressing tendons model

Prestressing tendons were modelled by means of 1-dimensional, 2-node finite elements,
with 7 degrees of freedom per node, i.e., 3 translational, 3 rotational and 1 torsional. They are
based on Timoshenko’s theory, which includes shear deformations. The tendons are anchored
at the ends of the beams, in steel plates, which, in turn, are permanently connected with the
adjacent concrete (see Fig. 4a).

A bilinear model of material, elasto-plastic, with kinematic hardening, was adopted. In
this model, the first segment of the σ-ε (stress-strain) curve stays in the elastic range, and the
remaining ones represent this relationship after yielding. The kinematic strengthening reflects
the increase in the yield point due to plasticity in tension, while reducing it at the same time
under compression (Bauschinger effect).

The yield point of the tendons ( fyk), according to [3], is 1674 MPa. The modulus of
elasticity in the elastic strains range, was assumed to be 195 GPa. It is worth mentioning that in
the triaxial stress / strain state, this modulus refers to the values of reduced stresses and strains.
The stiffness modulus after yielding was obtained from:

(2.3) ET =
fut − fyk
εuk − εyk

where: ET – modulus of plastic strain of reinforcement steel, fut – uniaxial tensile strength of
reinforcement, fyk – characteristic yield strength of reinforcement, εuk – characteristic strain
of reinforcement or prestressing steel at maximum load, εyk – strain of reinforcing steel at
which the steel reaches the yield strength.

The prestress in the cables was given in the form of a temperature drop, according to the
formula:

(2.4) ∆t = −
F

αE A

where: ∆t – temperature drop in the cables during prestressing, F – prestressing force, α –
thermal expansion coefficient, E – Young’s modulus, A – cable cross-sectional area.

The prestressing force is taken directly from experiments, where it was given after losses. It
should be emphasized that the prestress losses were not modelled explicitly. Therefore effects
such as non-uniform distribution of losses, were not taken into account. Important part of
prestress losses in post-tensioned elements is caused by the anchorage slip. These losses may
concentrate in the neighborhood of anchorages due to channel track deflection. This is the
potential source of discrepancies.

The beams with unbonded tendons were assumed to fill a channel of diameter 4 mm
greater than the tendon diameter. Frictional contact type was applied at the interface between 1-
dimensional tendon representation (Edge) and surface of the channel (Face). CONTAC175 and
TARGE170 elements were utilized to simulate contact conditions. A static friction coefficient
became an optimization parameter. Table 2 shows the properties of prestress, as presented in
the original papers [1–3]. The prestressing force was measured at the anchorage.
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Table 2. Steel parameters

Sample

Yield
strength of
steel passive
reinforce-
ment,

fyk, MPa

Tangent
modulus of
passive /

prestressing
reinforcement,

ET, GPa

Type of
longitudinal
reinforce-
ment

Tendons
cross-

sectional
area,

A, mm2

Elongation
after

friction
losses, ∆L,

mm

Measured
prestressing

force,
F, kN

BP-1a 420 1.96 / – P – – –

BP-2a 437 2.66 / – P – – –

B1 470 1.93 / – P – – –

B2 470 1.93 / 4.47 P + BT 99 22.22 100

B3 470 – / 4.47 BT 140 22.06 140

B4 470 1.93 / – P – – –

B5 470 1.93 / 4.47 P + BT 99 22.58 102

B6 470 – / 4.47 BT 140 22.15 142

B7 470 1.93 / 4.47 P + UT 99 23.02 104

B8 470 1.93 / 4.47 P + UT 99 22.3 101

B9 470 1.93 / 4.47 P + UT 99 22.93 104

where: P – passive reinforcement, BT – bonded tendons, UT – unbonded tendons.

2.3. Non-prestressed reinforcement model

Model of passive reinforcement used 1-dimensional, 2-node finite elements, with 1 degree
of freedom per node, accounting for longitudinal stiffness only. Material model was assumed
analogously to prestressed steel – bilinear with kinematic hardening. Young’s modulus was
taken as 205 GPa, and Poisson ratio – same as for tendons – 0.3. A yield strength is shown in
Table 2. Perfect bond between passive reinforcement and concrete matrix was assumed. It was
implemented by direct node merge. According to other studies [21], bond-slip characteristics
of reinforced concrete have little effect on the load-deflection characteristics.

2.4. Other model properties

Calculations were performed using the full Newton-Raphson method, in which the
stiffness matrix is updated at every equilibrium iteration. In addition, it generated and used
unsymmetrical matrices. Non-linear stabilization of the stiffness matrix was also utilized to
ease the process convergence. Force convergence limit was set to 5 × 10−5 N and a moment
convergence was set to 0.05 N·mm. A detailed analysis of reinforced concrete structures
required the formulation of large displacements. Moreover, in order to perform the calculations
efficiently, a non-symmetric solver was used, which copes well with difficulties related with
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numerical process convergence during the analysis of brittle materials. Quasi-static approach
also helped obtaining convergence. Its assumptions are true for systems changing slowly.
Furthermore, a more stable numerical process was obtained by using the tangential elastic
matrix of the material instead of the consistent matrix. The calculations were controlled by
means of displacement increase.

Analyses were carried on workstation with 32 core CPU, able to work with frequency up
to 4.5 GHz, having 64 GB of Random Access Memory and Solid-State Disc with sequential
read / write top speed reaching 14 and 10.4 GB/s.

2.5. Optimization procedure

Firstly, the model parameters, which influence the results, were identified. Then, broad
ranges of values for these parameters were assumed. Each range was divided into many equal
subsets, from which one representative value was taken. Each combination of these values
was used to calculate one instance of the model. This allowed narrowing these ranges down to
extent, for which convergence was obtained and a final beam deflection was achieved. Next,
the new ranges were divided into finer sections with their new representative values. Then the
analyses were executed again for each combination of these values. For each analysis, a sum of
differences between the force yielded in the experiment and as a result of calculations, was
determined. Since exact values of the force from experiment are known in specific points,
only these values were taken into account. These are the forces associated with first crack,
reinforcing steel yield, a maximum force and a force associated with the largest displacement.
At last, a set of parameters associated with the smallest sum was chosen as the optimal set.

3. Results
The optimization results are the model parameters values, given in Table 3. These values

minimize objective function, interpreted as the area between experimental and numerical P–∆
curve. Since the uniaxial tensile strength was not measured during experiments, it is treated as
an optimization parameter. Therefore, the optimal value of this parameter, just as the other
optimal parameter values, ensures the best fit of P–∆ curves.

Table 3. Optimal parameter values

Sample

Uniaxial
tensile

strength of
concrete,
fut, MPa

Nonlocal
interaction

range
parameter,

c, mm2

Tensile
damage
evolution
constant,

βt

Compressive
damage
evolution
constant,

βc

Static friction
coefficient
between

tendon and
concrete, µ

BP-1a 2 5 000 5 000 0 –

BP-2a 2 5 000 5 000 0 –

Continued on next page
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Table 3 – Continued from previous page

Sample

Uniaxial
tensile

strength of
concrete,
fut, MPa

Nonlocal
interaction

range
parameter,

c, mm2

Tensile
damage
evolution
constant,

βt

Compressive
damage
evolution
constant,

βc

Static friction
coefficient
between

tendon and
concrete, µ

B1 3.5 28 000 20 000 1 000 –

B2 3.5 28 000 20 000 1 000 –

B3 3.5 28 000 20 000 1 000 –

B4 3.5 28 000 20 000 1 000 –

B5 3.5 28 000 20 000 1 000 –

B6 3.5 28 000 20 000 1 000 –

B7 2.5 28 000 250 0 10

B8 3.5 28 000 20 000 1 000 1.5

B9 3.5 28 000 20 000 1 000 6

Table 4 gathers values of forces and displacements for all tested beams. These values
correspond to the moment of first crack formation, steel yielding and reaching ultimate load.
Numerical model values were read based on stresses averaged over each finite element.

Table 4. Main experimental and numerical results

Sample Source of
results Pcr, kN

∆cr,
mm Py, kN ∆y, mm Pmax,

kN

∆ at
Pmax,
mm

∆max,
mm

BP-1a experiment – – – – 30 180 180

model 11.2 1.3 22 10.1 30.2 175 175

BP-2a experiment – – – – 105 111 111

model 15.4 1.35 78.8 14 102.8 143 143

B1 experiment 33 2.54 103 16.8 152 141 141

model 32 2.2 136.8 21.5 149.6 99 99

B2 experiment 64 3.15 79 19.1 148 122 151

model 49 1.4 124 29.4 146 109 158

Continued on next page
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Table 4 – Continued from previous page

Sample Source of
results Pcr, kN

∆cr,
mm Py, kN ∆y, mm Pmax,

kN

∆ at
Pmax,
mm

∆max,
mm

B3 experiment 70 3.57 83 19.9 135 63 63

model 69 1.9 104.4 15.4 139.5 111 156

B4 experiment 39 2.81 105 18.9 157 138 152

model 35 1.6 136 21 155 190 195

B5 experiment 67 3.56 81 19.8 153 112 121

model 63.6 2 80 9.4 150 121 121

B6 experiment 74 4.09 88 20.7 145 76 102

model 70.4 1.9 103.2 14.1 143 138 138

B7 experiment 47 4.07 115 29.2 141 76 91

model 29.4 1.2 103.6 19.7 140 67.6 99.6

B8 experiment 63 3.54 113 25.4 148 66 76

model 43.4 1.3 106.6 20 146 92 92

B9 experiment 65 3.6 121 24.8 155 53 70

model 56.8 1.7 119.2 19.1 150.4 91.5 91.5

where: Pcr – load corresponding to first crack formation, ∆cr – displacement corresponding
to first crack formation, Py – load and displacement corresponding to passive reinforcement
yielding, ∆y – displacement corresponding to passive reinforcement yielding, Pmax – ultimate
load,∆ at Pmax – displacement corresponding to ultimate load,∆max – maximum displacement.

Figure 5 shows comparison of load-deflection curves between experiment and optimal
numerical simulation. Beginning and end part of P–∆ curves of beam BP-1a fit accurately.
The difference arises in the section right after concrete cracking, where calculated curve is
placed below experimentally obtained. A maximum difference in load is 1.2 kN (that is 4.5%
of experimental value) and it corresponds to displacement of 53 mm. The charts associated
with BP-2a beam show biggest discrepancy at end section, that is in the ultimate load area.
This discrepancy reaches 4.7 kN (4.5% of experimental value) for ultimate displacement being
100 mm. The diversity of ordinates of B1 beam does not exceed 4.3 kN (3% of experimental
value). The top difference occurs at 84 mm displacement. B2 curves are virtually coincident
over the entire length. The biggest deviation was noticed at the end of curves, which is 133 mm.
It’s been 4.6 kN, making it 3% of the experimental value. The highest differences for other
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beams are: in B3 beam – 4.7 kN (3.5% of experimental load) at 61.5 mm; B4 – 17.2 kN (16.4%)
at 18.5 mm; B5 – 8 kN (5.4%) at 44 mm; B6 – 6.3 kN (4.6%) at maximum displacement, i.e.
101 mm; B7 – 4.3 kN (3.2%) also at top displacement, which is 91 mm; B8 – 3.5 kN (2.4%)
at 66 mm; B9 – 9.3 kN (6.7%) at top displacement = 69 mm.

Fig. 5. Comparison of numerical and experimental load-deflection curves of beams BP-1a (a), BP-2a (b),
B1 (c), B2 (d), B3 (e), B4 (f), B5 (g), B6 (h), B7 (i), B8 (j) and B9 (k)
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Figure 6 presents exemplary stress maps of reinforcement, corresponding to ultimate load.
Yielding of bottom bars of passive reinforcement (Fig. 6a and 6b) and prestressing tendon
(Fig. 6b) can be observed.

Fig. 6. Final stresses in passive reinforcement of B1 beam (a), B8 beam (b) and in prestressed tendon of
B8 beam (c)

4. Discussion

The differences between experimental and numerical curves do not exceed 5%, except one
case, where the difference was 16,5%. Exact values are provided in chapter 3. Taking account
of highly nonlinear concrete behavior and a variety of phenomena present in this material,
these differences may be classified as acceptable.

The obtained nonlocal parameter c value is very high. This parameter is associated with
nonlocal effects such as macro-crack, forming in concrete. With such a value of this parameter
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it is impossible to generate realistic cracks distribution. According to [22], nonlocal parameter
is directly associated with maximum aggregate size and can be approximated by formula:

(4.1) c � (2, 7d)2

where: d – aggregate size.
Another parameter requiring detailed analysis is friction coefficient between concrete and

tendons. Though existing of friction coefficient greater than 1 is not to be excluded in real
world, yet obtained values are much too high. If the tendons are covered with HDPE coat
then the friction coefficient according to [23] should stay within range 0.05–0.07. For tendons
without the coat, the friction coefficient between steel and concrete, according to table 5.1
of [8], should have a value between 0.19 and 0.65. The reason for this discrepancy could be
a simplification of using 1-dimensional finite elements to represent tendons. This approach
seems to be accurate enough only, if no contact-associated phenomena are to be analyzed.

Best curves fit was achieved for tensile strength lower than commonly taken [8]. For
instance, a concrete having compressive strength of 43 MPa, has, according to mentioned
standard, 4.13 MPa of tensile strength, while best curves fit is provided by 2.5 MPa. Concretes
with fuc equal 72 and 95 MPa and code tensile strength, respectively, 4.46 and 4.98 MPa,
will yield the most accurate results using 3.5 MPa value. It is worth noticing that all the
optimizations yielded lower tensile strength than the code values.

5. Conclusions
The aim of analyses covered by this paper was finding microplane coupled damage-

plasticity model with gradient regularization (MCDPMwGR) parameters, yielding best fit
of experimental and numerical load-deflection curves. The investigated parameters were
microplane damage-plasticity concrete model parameters as well as the tensile strength of
concrete and the friction coefficient between concrete and tendon in beams prestressed with
unbonded tendons.

The above task is an optimization problem, where the objective function can be defined as
minimization of sum of differences between a force obtained in experimental and numerical
analysis over the whole range of deflections. An equivalent to this, is an area between
experimentally and numerically generated curves.

The target was reached numerically with satisfactory result, nevertheless optimal parameters
values obtained require further, more detailed analyses. High value of nonlocal parameter c
did not let achieving the realistic macrocracks distribution. On the other hand, lower values of
c parameter did not let the most accurate P − ∆ curves fit.

High values of c and βt parameters may indicate a salient influence of a method and
conditions of proceeding the experiments. The difference between values of these parameters
from one experiment set to another (made in different laboratory by different researchers)
seems to confirm that presumption.

Moreover, the best curves fit in prestressed beams with unbonded tendons, was possible to
yield using only high values of friction coefficient between the tendon and surrounding concrete.
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This could happen due to simplified tendons modelling, by means of 1-dimensional finite
elements and/or simplified prestress force modelling by uniform temperature drop along the
whole tendon. It does not take the non-uniform prestress losses distribution into account. This
way ofmodelling should therefore be deemed too simplified.Authors’ future plans cover research
of more accurate ways of tendons modelling, but this requires more computational power.

The adverse effects observed in pure plastic models (e.g., Menetrey–Willam, classic
Drucker–Prager) and pure damage models (e.g., damage evolution model, microplane elastic
model) are not noticed here. These are, among others, overestimate ultimate load and excessive
sensitivity of the ultimate load to uniaxial tensile strength of concrete.

Properly calibrated damage-plasticity concrete model allows for satisfactory accurate
simulation of concrete beams, passively reinforced and prestressed with bonded tendons. Due
to high values of obtained friction coefficient for beams prestressed with unbonded tendons,
this type of structures needs further investigation, since such values of this coefficient might be
a result of excessive simplification. There are some other issues to investigate aswell. Particularly,
the finite element mesh density influence on optimal model parameters, especially c and βt .
Also, justification of using simplified tendons modelling, using 1-dimensional finite elements.
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Walidacja modelu mikropłaszczyznowego sprzężonego
uszkodzeniowo-plastycznego z regularyzacją gradientową

(MCDPMwGR) na belkach betonowych sprężanych i niesprężanych

Słowa kluczowe: analiza nieliniowa, konstrukcje sprężone, modelmikropłaszczyznowy,modelowanie
betonu, obliczenia numeryczne, sprzężenie uszkodzeniowo-plastyczne

Streszczenie:

Celem pracy jest walidacjamodelumikropłaszczyznowego sprzężonego uszkodzeniowo-plastycznego
z regularyzacją gradientową (MCDPMwGR) poprzez symulację zachowania betonu w belkach żelbe-
towych, zarówno sprężonych, jak i niesprężonych. Wykorzystano dane eksperymentalne z dostępnych
publikacji. Cięgna zamodelowano w postaci dyskretnej, przy użyciu jednowymiarowych elementów
skończonych. Siła sprężająca była modelowana spadkiem temperatury. Uwzględniono kwestie styku,
czyli tarcia i docisku na styku kabla ze ścianą kanału. W toku prac stwierdzono, że przy zastosowanym
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modelu możliwe jest uzyskanie zadowalającej dokładności wyników. Nie zaobserwowano negatyw-
nych skutków występujących w innych modelach. Są to między innymi: przeszacowanie obciążenia
granicznego oraz nadmierny wpływ wytrzymałości na rozciąganie na wartość obciążenia niszczącego.
Efekty takie możemy zaobserwować w modelach plastycznych (np. model Menetreya–Willama czy
Druckera–Pragera) oraz w modelach uszkodzeniowych niesprzężonych (np. model ewolucji uszkodzeń,
model mikropłaszczyznowy sprężysty). Uzyskano dokładne krzywe P–∆ (odkształcenie obciążenia),
zgodne z danymi eksperymentalnymi. Warto wspomnieć, że najlepsze dopasowanie krzywej dla belek
wykonanych z tego samego betonu uzyskano przy zastosowaniu tych samych wartości parametrów.
Dotyczy to również porównania belek sprężonych i niesprężonych. Sugeruje to znaczny potencjał modelu
uszkodzeniowo-plastycznego w przewidywaniu prawdziwego zachowania betonu. Jednakże nadal istnieją
pewne kwestie wymagające dalszej analizy. Dotyczą one głównie wpływu uproszczeń dokonanych
podczas modelowania belek sprężonych na wyniki końcowe.
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