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Uncertainty and Stochasticity in Modelling of Microstructure Evolution  
During Hot Rolling of Steels

Advanced numerical models, which predict heterogeneity of microstructural features, are needed to design modern steels 
with heterogeneous microstructures. Models based on stochastic internal variables meet this requirement. Our stochastic model 
accounts for the random character of the recrystallization and transfers this randomness into equations describing the evolution of 
the dislocation populations and the grain size during the hot deformation of steels. The idea of the internal variable model, with the 
dislocation density and the grain size being stochastic variables, is described in the paper. The material parameters, which influence 
accuracy and reliability of the model, were identified. They compose shear modulus, lattice friction stress and the mean free pass 
for dislocations. Numerical test showing influence of these parameters on the identification of the model coefficients were per-
formed and a hint how these parameters should be selected is given. Compression loads and histograms of the grain size measured 
in the experimental compression tests were used to identify the coefficients in the model. The model was applied to simulations 
of the industrial process of the hot strip rolling. It was shown that the model can be used to both predictions of the microstructural 
heterogeneity caused by the stochastic character of microstructure evolution and to the evaluation of the uncertainty of phase 
composition in the final product. The latter is due to the uncertainty of the boundary conditions.
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Introduction

Continuous development of the industry is associated with 
the search for new construction materials that combine high 
strength with good formability and a high strength-to-density 
ratio. Steels have met these requirements for many decades. 
Historically, the grain refinement was the main strengthening 
mechanism for steels investigated during the second half of the 
20th century, when High Strength Low Alloyed (HSLA) steels 
were developed [1]. By controlling the precipitation and its influ-
ence on the recrystallization, an improvement of the strength and 
workability was obtained [2]. Different strengthening mechanism 
was used in the Advanced High Strength Steels (AHSS), which 
were developed in the last decades of the 20th century. These 
steels are composed of soft ferrite matrix with hard islands of 
bainite, martensite and retained austenite. The AHSSs benefit 
from the best features of the phases they are made of [3,4]. 
Among AHSSs, Dual Phase (DP) and Complex Phase (CP) 
steels are the two most widely used in car body applications [5]. 

The correlation between mechanical properties and microstruc-
ture of these steels has been extensively studied. In general, DP 
steels combine high strength with large total elongation, but 
their local formability is low, what is caused by sharp gradients 
of properties at interfaces. Multiphase CP steels with smoother 
gradients are much better in stretch applications. It has been 
shown that the microstructural heterogeneity exists in multiphase 
steels and directly influences local mechanical properties [3], but 
the exact correlation between microstructural heterogeneity and 
mechanical properties of CP steels is yet difficult to quantify. 
Advanced numerical models are needed to gain knowledge on 
distributions of microstructural features and to design thermal-
mechanical cycles allowing to obtain moderate gradients of 
properties. These models should predict distributions of vari-
ous microstructural parameters instead of their average values. 
Beyond this, since optimization is the prospective application of 
these models, they must be characterized by low computing costs. 

Beyond predictions of the microstructure heterogeneity, 
a problem of the uncertainty of predictions is also important [6]. 
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Knowledge of the possible spread of the predicted target values, 
such as microstructural parameters, is needed for a reliable pro-
cess design. In production, the spread of product properties is 
due to uncertainties in the processing conditions and the material 
composition. 

Thus, the objectives of the work were twofold. The first 
objective was to apply the fast mean-field stochastic model with 
extended predictive capabilities to simulation of the hot forming 
and cooling of steels. As it was shown in [7], the description of 
the heterogeneous microstructure of metals and alloys using 
internal stochastic variables allows for building the mean-field 
model with the capability to predict gradients of product prop-
erties. The same stochastic model can also be used to evaluate 
the uncertainty of the predictions of microstructural parameters 
when the uncertainty of the boundary conditions (temperatures) 
is known. This was the second objective of the paper.

1. Model

The internal variable stochastic model for hot deformation 
was proposed in our earlier publication [8]. The model was 
identified based on the experimental data [7]. In publication [9] 
the model was applied to simulations of multistep hot forming 
processes. The details of the model are presented in [8] and only 
main equations are repeated below for the completeness of the 
publication.

1.1. Main equations

The hot deformation model is based on the fundamental 
works of Kocks, Estrin and Mecking (so called KEM model) 
[10,11]. The KEM model follows the Taylor theory [12] and as-
sumes that evolution of the dislocation population determines the 
flow stress during the plastic deformation. The mean free path for 
dislocations l is the main parameter which controls hardening. 
This path is a distance travelled by a dislocation segment before 
it is locked by interaction with the microstructure. In his primary 
work Taylor made following assumptions: i) the mean free path 
of mobile dislocations does not depend on strain and temperature, 
ii) no dynamic recovery takes place, iii) the grown-in disloca-
tion density ρ0 can be neglected, iv) the plastic deformation is 
homogeneous. By proceeding from these assumptions, when 
the dislocation line moves, it produces a shear strain dε. The 
stored density has then statistically increased with the storage 
rate dρ/dε = 1/bl, where b is the module of the Burgers vector. 
This definition is only valid in differential form, as dislocation 
lines multiply when they move.

The Taylor’s theory was further developed by Bergström 
[13] (see also review in [14]), who introduced softening due to 
dynamic recovery, which, in accordance with the law of natu-
ral decay, is proportional to the total dislocation density, ρ(ε). 
The rate at which dislocations are re-mobilized or annihilated 
is therefore proportional to the product A2ρ(ε), where A2 is the 

strain-independent material constant representing the remobili-
zation dynamic recovery coefficient. It was also assumed that 
the recovery process is mainly based on re-mobilization, at least 
for metals with high stacking fault energy (SFE) and many glide 
systems, e.g. soft steel. 

Since the flow stress during plastic deformation is governed 
by the evolution of dislocations populations, a competition of 
storage and annihilation of dislocations, which superimpose in 
an additive manner, controls a hardening. If in accordance with 
Taylor the rate by which dislocations are generated is propor-
tional to 1/(bl), then the rate by which the dislocation density 
increases is written as:

 ρ' = (A1 – A2 ρ)ε·	 (1)

Coefficients A1 and A2 responsible for hardening and re-
covery are:
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where: b – Burgers vector, l – mean free path for dislocations, 
T – temperature in K, a3 – activation energy for self-diffusion, 
which is a state variable, a8 – coefficient.

Eq. (1) is the simplest form of the model based on the evo-
lution of dislocation populations. Advanced models have been 
developed during last few decades. Various types of dislocations 
were considered [15] and various mechanisms of the recovery 
were introduced [16]. However, since the solution of the evolu-
tion equation for the stochastic variables is time-consuming, 
we decided to build the model based on the simple Eq. (1) and 
we focused on the analysis of the influence of various material 
parameters on the accuracy and the reliability of the model. This 
part is described in the Section 2.2.

In the deterministic solution of the evolution equation, 
the recrystallization is introduced following publication [17]. 
The idea of the numerical implementation of the model is de-
scribed in [18] and the mathematical background is discussed 
in [19]. In publication [8] the critical time for the dynamic 
recrystallization was substituted by a random character of the 
recrystallization. Thus, the evolution of the dislocation density 
is governed by the following equation written in the incremen- 
tal form: 
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where: t – time, ε· – strain rate, a7 – coefficient, which accounts 
for the effect of the strain rate on the dynamic recovery. 

The parameter ξ(ti), accounts for a random character of 
the recrystallization and its distribution is described by the 
conditions:
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In Eq. (4), p (ti) is a function that bounds together the prob-
ability that the material point recrystallizes in a current time step 
and the present state of the material:
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where: D – grain size in mm, τ – energy per unit dislocation 
length, X – recrystallized volume fraction, a4, a5, a6, a17 – coef-
ficients.

Comparing to the model in [8,9], multiplication by the 
term (1 – X(ti–1)) was added in the Eq. (5). It means that non-
Poissonian probability of the nucleation was applied. In this 
approach, progress of the recrystallization involves a decrease 
of that probability. Recrystallized volume fraction X(ti–1) is cal-
culated from the number of points, for which parameter ξ(t) in 
the time [0 – ti–1] was zero:

 
 1 X

i
NX t
N  	 (6)

where: NX – number of points for which in previous time steps 
parameter ξ (ti) was zero, what means that recrystallization oc-
curred for this point, N – number of the Monte Carlo points.

In Eq. (4), coefficient γ represents a migrating grain bound-
ary area per unit volume as a function of the recrystallized 
fraction. Following [17], we assumed that γ depends on the 
distribution of ξ (ti–1) in the previous step, see [8]. The model 
was extended in work [9] by including the interpass times and 
the static phenomena in the simulations.

The Eq. (1) was solved using Monte Carlo method. Many 
trajectories were calculated for the randomly generated values of 
ρ(t0) and D(t0). The results were aggregated into histograms at 
consecutive time steps ti. We start with the grain size D(t0) ≡ D0, 
which is a random variable described by the Weibull distribution. 
Based on the measured grain size distributions shown in [7] the 
shape parameter equal to 10 was assumed. The scale parameter 
D–0 was established as the average grain size measured after 
preheating before deformation. When during the calculation, the 
random parameter ξ (ti) = 0, the considered point recrystallizes 
and its new grain size D(ti) is drawn from the Gauss distribu-
tion with the standard deviation being an optimization variable 
a22 in the model. The expected value of the grain size is either 
dynamically (for ε· > 0) or statically (for ε· = 0) recrystallized 
grain size. See [9] for the description, how histograms of the 
austenite grain size are calculated. 

Beyond the histograms of the selected parameters, the 
model calculates the average dislocation density ρav and further 
the flow stress σp, as follows:
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where: σ0 – the stress due to lattice friction, M – Taylor factor, 
G – shear modulus, b – a module of the Burgers vector, Np – num-

ber of points in the Monte Carlo solution, ρi – dislocation density 
for the Monte Carlo point i, a23 – coefficient.

Calculations of the flow stress will be used in the next sec-
tion to determine the loads in the compression tests and, further, 
will be a part of the objective function in the identification of 
the coefficients in the model.

2. Identification, validation and numerical tests  
of the model

2.1. Objective function

The whole stochastic model contains 25 coefficients, which 
are grouped in the vector a. These coefficients were identified 
based on the experimental data. The experiments composed 
compression tests for asymmetrical samples performed at various 
temperatures and strain rates [20]. The material was unalloyed, 
low-carbon, welded structural steel S355J2 containing 0.12%C 
and 1.3%Mn. Inverse analysis was used to find the coefficients 
in the model. Compression loads and histograms of the austenite 
grain size were measured in the experiments. Inverse analysis 
was transferred into the optimization task and coefficients a were 
determined by searching for the minimum of the following 
objective function:

     ( ) ( ), ,c m c md Hd y Hy  a a a �	 (8)

where: yc (a) – average dislocation density calculated for 
the model coefficients a, ym – dislocation density calculated 
for the measured loads in the experimental tests, d – metric 
in the output space Y. 

The first term in Eq. (8) is the Root Mean Squared Error 
(RMSE) between measured and calculated dislocation density. 
Measurement of the dislocation density in situ during hot forming 
is not possible. Therefore, dislocation density was determined 
indirectly from the measurements of the compression loads. 
However, the loads measured in the experiments are influenced 
by the friction between the die and the sample, the barrelling 
of the sample and the deformation heating. Inverse analysis al-
lows to eliminate these effects and to calculate the flow stress 
as a function of the temperature and the strain rate, see [21]. 
Following this, Eq. (7) was used to calculate the dislocation 
density and to compare it with the predictions of the stochastic 
model. The second term in Eq. (8) represents the distance be-
tween the measured and calculated histograms of the grain size. 
The Bhattacharyya metric was used to calculate this distance, 
see [8] for details.

2.2. Numerical tests

Let us now discuss and analyse those parameters in the 
stochastic model, selection of which is important for the reli-
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ability of the inverse analysis. The mean free path for disloca-
tions l is the main parameter, which may significantly influence 
the identification of the model. As it is seen in Eq. (2), l controls 
the rate of the increase of the dislocation density due to harden-
ing. Very little is presently known about the way the mean free 
path l depends on dislocation interactions, stress, and specimen 
orientation. The most important contribution to the mean free 
paths arises from the interactions of the moving dislocations with 
“forest” dislocations (that is, dislocations of other systems that 
pierce their slip plane) and their subsequent storage. As it has 
been mentioned, the Taylor’s theory [12] and primary work of 
Bergström [13] assume that the mean free path l is strain and 
temperature independent. 

In his further works Bergström assumed that the mean free 
path l decreases with progress of plastic deformation [14]. Such 
a behaviour is mathematically described as follows:
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After integration we obtain:
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where: ε – strain, l0, l1 – initial and final values of l, respectively.
The Bergström approach is well described in [14]. In that 

publication, initial and final values of the mean free path l are 
determined by fitting to the experimental results. Decrease 
of the mean free path with increasing strain was observed by 
many researchers and they introduced relations either l ~ ε–0.5 
or l ~ ρ–0.5, see e.g. [22]. In a majority of the published works 
the latter is considered:
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In some papers the effect of the grain size is introduced and 
the mean free path is calculated as [23]:
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In a majority of publications, Eq. (12) is used directly with 
c = 0.5. However, Some researchers substituted power –0.5 
by a variable c (l ~ ρ–c), which during deformation decreases 
from 0.5 to 0 [24,25]. This is based on the assumption that with 
increasing dislocation density, the cells retain their shape but 
decrease in size. For larger strains the cell diameter becomes 
constant: c = 0. So, c is a parameter between 0 and 0.5 with a fit 
coefficient c1, according to the following equation:

 c = 0.5exp(–c1ε)	 (13)

The same effect was obtained in publication [26] by adding 
a minimum size of the cell lmin to Eq. (12): 
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Neither Eq. (13) nor Eq. (14) were investigated in our 
project. More complex models of the mean free path l were 
proposed in [27,28]. 

As far as the effect of the temperature is considered, σ in 
Eq. (7) contains shear modulus, which is the temperature depend-
ent, see discussion below. Although other parameters in the hard-
ening part are assumed a-thermal, there are few publications in 
which the mean free path of dislocations is equal to the subgrain 
size which, in turn, depends on the Zener-Hollomon parameter 
Z. It introduces temperature dependence into the hardening term. 
In our earlier publication [8] we used the following equation:

 l = a1Z –a2	 (15)

In Eqs. (11)-(15) a1 and a2 are the coefficients, which are 
determined using inverse analysis. Values of these coefficients 
are different for different equations describing l. 

It is seen from referenced research that the present knowl-
edge about the mean free path of dislocations is limited and de-
termination of coefficients in equations by fitting to experimental 
data is a common approach [14]. In our project we considered 
four models of the mean free path of dislocation and we identified 
coefficients in the whole stochastic model by the inverse analysis 
for the results of compression tests. The identification of the 
model was performed for the following equations describing the 
mean free path: i) The mean free path is an optimization variable 
l = a1, ii) Eq. (11), iii) Eq. (12), iv) Eq. (15). The final values of 
the objective function (8) after identification are presented in 
Fig. 1. It is seen that these values do not differ noticeably, what 
means the inverse analysis is capable to find coefficients of the 
stochastic model, which give good results for different models 
of the mean free path of dislocations. In all further simulations 
in this paper Eq. (12) was used.

Fig. 1. The final values of the objective function (8) after model 
identification for different equations describing the mean free path for 
dislocations

The lattice friction stress σ0 in Eq. (7) is another parameter, 
which is not defined precisely in the models published by various 
researchers. Generally, in discussions on the lattice friction stress 
a reference to the Hall-Petch (HP law) is made. In our solution 
we assumed that σ0 is identified in the inverse approach and it is 
coefficient a24 in the vector of the state variable.
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In Eq. (7), which is used to calculate the dislocation den-
sity from the measured flow stress, Taylor factor M = 3.1 and 
a module of the Burgers vector b = 2.5×10–10 m are established 
values. Coefficient a23 is a state variable in the optimisation 
procedure and it is determined by searching for the minimum of 
the objective function (8). In means that the shear modulus is an 
important parameter, which controls the inverse analysis and can 
be a source of the errors. The knowledge of the relation of this 
modulus on the temperature is necessary to compare measured 
flow stress with that calculated by the model. Thus, the shear 
modulus is another parameters, which strongly influence the 
inverse analysis and a proper selection of this modulus is crucial 
for the accuracy of the identification procedure. 

Many papers dealing with the relation of the shear modu-
lus on the temperature were published and large spread of the 
published data can be observed. First experiments aiming at the 
evaluation of the elastic moduli ware performed more than a hun-
dred years ago [29]. Typically, the method for measuring elastic 
modulus at temperature is from the stress–strain relation obtained 
from a tensile test. The accuracy of this technique is limited by 
rate of loading, deformation effects such as creep and the stress 
level at which the elastic properties are determined. Further, the 
complexity of the experimental arrangement leads to difficulties 
in measuring the strain on the material [30]. An alternative is the 
impulse excitation technique (IET), which is a non-destructive, 
easy and fast method for characterization of elastic and acoustic 
properties of materials [31]. Therefore, in our analysis we focused 
only on the recent publications, assuming that better equipment 
was used to measure the modulus. Reported values of the shear 
modulus in the temperatures 900-1000°C (final stage of the hot 
forming of steels) vary from 7700-4000 MPa [32] to as large as 
20000-16000 MPa. Authors of [33] investigated the steel S355J2, 
which is a subject of measurements in the present work, and they 
reported even lower values of 5500-3650 MPa. Some researchers 
measured shear modulus in the temperatures below 800°C and ex-
trapolation of their results to higher temperatures is uncertain [34]. 
For example, in the paper [30] G was measured in the tempera-
tures up to 723°C, but the extrapolation to the temperature range 
900-1000°C gives as large values as 59200-56500 MPa. Several 
publications show that in the temperatures above 800°C drop of the 
shear modulus with an increase of the temperature is smaller and 
the curve is less steep. A thorough review of various measurements 
of the shear modulus is presented in the NIST report [35]. Selected 
results of calculations of the shear modulus based on various 
publications are also presented in Fig. 2. Maximum and minimum 
values reported in [35] are marked with dashed line in this figure. 
Having all these data in mind, we have proposed approxima-
tion of the G(T) relationship by the function proposed in [32]:
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where: T – temperature in °C, D – grain size, G – shear modulus, 
G0 – shear modulus in the room temperature, which for the in-
vestigated steel is 80200 MPa, b1, b2, b3, c1, c2, c3 – coefficients.

Coefficients b1, b2, b3, c1, c2 and c3 appearing in Eq. (16) 
were determined in [32] by approximation of the experimental 
data for a variety of steels and they are given in Table 1. 
The authors of [32] focused on the behaviour of steels in the 
conditions of the fire and the majority of the investigated steels 
was in the quenched condition. In the present work, to make 
the results closer to the conditions of hot deformation, coef-
ficient c2 was slightly modified. This modification does not 
allow to drop G(T) to very low values above 1000°C and, in 
consequence, changes of the shear modulus in the temperature 
range 900-1100°C were closer to that reported in [35] for typical 
construction steels. A plot of the function (16) is presented in 
Fig. 2 by a thick black line.

Table 1
Coefficients in Eq. (16) for the investigated steel

b1 b2, °C b3, °C c1 c2, °C c3, °C
0.1871 –12.96 132 0.9199 181.6 770

Fig. 2. Selected examples of calculations of the shear modulus based 
on various publications

Recapitulating, identification of the model was performed 
assuming that: 
•	E q. (12) describes the mean free path for dislocations.
•	 The lattice friction stress σ0 in Eq. (7) is identified in the 

inverse approach and it is a23 in the vector of the state vari-
ables

•	 The shear modulus is a function of the temperature and it is 
described by Eq. (16).

2.3. Verification of the model

The model with the coefficients determined by searching for 
the minimum of the objective function (8) was verified. A full set 
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of the results of the comparison between measured and calculated 
histograms of the austenite grain size is shown in [20]. Good 
agreement between measurements and predictions was obtained 
for grain size distributions right after deformation (dynamic 
recrystallization) and at different times after the deformation 
(static recrystallization). The Bhattacharyya metric, which was 
selected in [20] as a measure of the distance between the two 
histograms, did not exceed 0.1, which is a very good result for 
the comparison of the microstructures. 

Analysis of the measured compression loads have shown 
that the effect of the austenite grain size prior to deformation is 
negligible [20]. Results of the comparison of the measured and 
calculated flow stress are shown in Fig. 3. The measured flow 
stress was obtained by the inverse analysis [21] for the loads, 
which were measured in the compression tests. The calculated 
flow stress was obtained from Eq. (7) for an average dislocation 
density predicted by the stochastic model. It is seen that accept-
able agreement between measured and calculated parameters 
was obtained. Recapitulating, the verification confirmed model’s 
good predictive capabilities. It was assumed that the model will 
give realistic results of simulations of the industrial process 
described in Chapter 3.

Fig. 3. Comparison of the measured and calculated flow stress

3. Case study

The hot strip mill composed of the reverse roughing mill, 
6-stand continuous finishing mill and 2-section laminar cooling 
was considered. Rolling of the steel strip measuring 1500×4 mm 
was simulated and the selected results for the finishing mill and 
the laminar cooling are presented below. The work roll radius 
was 450 mm in all stands and the distance between stands was 
5.8 m. The rolling schedule was 40 → 19.2 → 12.6 → 9.3 → 
6.9 → 5.2 → 4 mm. The strip velocity at the exit from the last 
stand was v6 = 6.8 m/s. Classical hot strip rolling with the end of 
the rolling temperature of about 940°C was simulated. After exit 
from the last stand the strip enters the laminar cooling system 
and phase transformations are simulated. Since the hot rolling 

model predicted full recrystallization at the temperature Ae3, the 
model for recrystallized material was applied to simulate phase 
transformations. The distributions of the grain size calculated 
by the hot rolling model were used as an input for simulations 
of phase transformations.

3.1. Heterogeneous microstructure

Monte Carlo solution with 20000 points was used to cal-
culate distributions of the dislocation density and the austenite 
grain size during rolling accounting for the random character of 
the recrystallization, following Eqs. (4) and (5). In-house finite 
element (FE) program [36] was used to calculate strains, strain 
rates, stresses and temperatures during rolling. The stochastic 
model describing evolution of dislocations and grain size was 
solved along the flow lines in the roll gap using current, local 
values of the strain rate and the temperature calculated by the FE 
program. Calculated strains in subsequent passes and changes 
of the average dislocation density during hot strip rolling and 
between the exit from the last stand and the beginning of the 
laminar cooling are presented in Fig. 4. It is seen, that due to 
large strains and high temperature, recrystallization is completed 
during intervals in the first three passes. Calculated histograms 
(10 bins each) of distributions of the dislocation density and 
the austenite grain size are shown in Fig. 5 for the passes 4, 
5 and 6. It is seen that there is no dynamic recrystallization in 
these passes, which is due to high strain rates and reasonably 
low temperature. The static recrystallization is completed after 
pass 4. Partial recrystallization was predicted between passes 5 
and 6, with about 50% of the SRX. Anyway, as it has been men-
tioned, the material was fully recrystallized at the beginning of 
the phase transformations.

Fig. 4. Calculated strains in subsequent passes and changes of the av-
erage dislocation density during hot strip rolling and between the exit 
from the last stand and the beginning of the laminar cooling
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3.2. Cooling and phase transformation model

A typical system of laminar cooling after hot strip rolling 
[37] was considered as an example of practical application of 
the model. The system is composed of two sections divided in 
4 zones. There are 40 boxes 1 m long in each section. The dis-
tance between the sections is 20 m. Cooling conditions, which 
compose water flux in various zones and the heat transfer coef-
ficient corresponding to this flux, are given in [37]. The finite 
element model of the laminar cooling and coiling processes 
is described in that paper, as well. Rolling velocity in the last 
stand v6, strip thickness h6, and finishing rolling temperature Tf 
have been considered as independent variables. The calculated 
histogram of the grain size at the beginning of phase transforma-
tions (Fig. 5b) was an input for simulations. Phase transformation 
model and coefficients in this model for the investigated steel 
are described in [20] and they are not repeated here because of 
the limited space. 

Simulations of the laminar cooling assuming determined 
boundary conditions and average grain size prior to transfor-

mation equal 29.6 mm (average for the histogram in Fig. 5b) 
predicted 76.3% of ferrite, 22.2% of pearlite and a negligible 
amount of the bainite.

3.3. Heterogeneity of the microstructure  
and uncertainty of the predictions

In the following calculations, the grain size histogram 
shown in Fig. 5b was used as the input for simulations of the 
laminar cooling. Beyond this, the uncertainty of the boundary 
conditions was accounted for. The temperature at the entry to 
the cooling section was considered as the first source of the 
uncertainty. This was done in a qualitative manner only. Due 
to a lack of the satisfactory large data set necessary for the sta-
tistical analysis, a Gauss distribution of the entry temperature 
with the standard deviation of 10°C was assumed on the basis 
of measurements in one of the hot strip mills. The boundary 
conditions during cooling were considered as the second source 
of the uncertainty. These boundary conditions are represented 

a)

b)
Fig. 5. Calculated histograms for the dislocation density (a) and grain size (b) during and after the hot deformation calculated using the stochastic 
model
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by the heat transfer coefficient (HTC), which depends on the 
water flux in subsequent boxes of the laminar cooling, see [37] 
for details. Again, due to a lack of the satisfactory large data set, 
we assumed that the HTC during laminar cooling is given by 
the Gauss distribution:

 

 
 21 exp

22 22

HTC HTC
f HTC



    
  

	 (17)

where: H–T–C– – the expected value of the heat transfer coefficient 
calculated following the model in [37], σ – standard deviation, 
assumed 50 W/m2K. 

Since the input data for the phase transformation model 
were stochastic and the model itself is stochastic, the calculated 
ferrite grain size and phase composition were obtained in the 
form of histograms. 

Histogram of the ferrite grain size after cooling is shown 
in Fig. 6. This histogram was obtained assuming that boundary 
conditions were fixed (not disturbed). It means that this histo-
gram represents heterogeneity of the microstructure, which is 
due to the heterogeneity of the microstructure after hot rolling 
and to the stochastic character of the phase transformation  
model.

Fig. 6. Calculated histograms of the ferrite grain size after cooling

The histogram of the ferrite volume fraction after cooling is 
shown in Fig. 7. This distribution is due to the heterogeneity of 
the microstructure prior to transformation and to the uncertainty 
of the boundary conditions. Since properties of product depend 
on the phase composition of steel, the model can be further used 
to predict uncertainty of the properties due to uncertainty of the 
process parameters. It is seen in Fig. 7, however, that small stand-
ard deviation assumed in this paper for the entry temperature 
and for the heat transfer coefficient resulted in small variations 
of the phase composition. 

4. Conclusions

The stochastic model describing the evolution of the micro-
structure during hot strip rolling and laminar cooling is presented 
in the paper. Selection of proper parameters in the evolution of 
dislocations equation is crucial for the accuracy of simulations. 
Numerical tests were performed to evaluate the effect of the 
mean free path of dislocation, the lattice friction stress and shear 
modulus. The following conclusions were drawn:
•	I nverse calculations and identification of the model were 

performed for different equations describing the mean 
free path of dislocations. The final values of the objective 
function obtained for various equations were comparable. 
It means that inverse method is flexible. It allowed to fit the 
coefficients to various free path equations and good results 
were obtained. 

•	 Quantitative evaluation of the friction stress in Eq. (7) 
is difficult. Therefore, this stress was introduced as a state 
variable in the inverse analysis.

•	I dentification based on the inverse analysis for the compres-
sion tests yielded coefficients in the model, which give good 
agreement between measurements and predictions of both 
average values and distributions of selected parameters.
Remaining conclusions:

•	C apability to predict histograms of microstructural features 
instead of their average values is the main advantage of the 
model.

•	C apability to assess the effect of different material param-
eters (l, G, σ0) on the variability of the predicted micro-
structure of the final product.

•	 The model was applied to simulations of the industrial hot 
strip rolling. The results agree with our knowledge about 
this process, confirming the model’s capability to support 
the optimal rolling technology design.

•	 The deterministic simulation of the laminar cooling showed 
that the sequence of the fast/slow/fast cooling allows to 
obtain of a DP microstructure.

•	 The stochastic phase transformation model can account for 
the random character of the input (grain size) and boundary 
conditions (HTC). In consequence, the heterogeneity of the 
microstructure (ferrite grain size) and the uncertainty of the 
predictions of the phase composition could be evaluated.Fig. 7. Calculated histograms of the phase composition after cooling
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•	I n the hot deformation part, the model is completed and, 
when coupled with the finite element program, can be ap-
plied to any hot forming process. The phase transformations 
part is still a work in progress.
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