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Processing and analysis of trolleybus traction 
data using LINQ technology 

Andrzej Wilk1*, Mikołaj Bartłomiejczyk1, Jacek Skibicki1, Leszek Jarzębowicz1, Dariusz R. Karkosiński1, 
Łukasz Hupka1, Jan Hupka2, Paweł Kaczmarek3, Natalia Karkosińska-Brzozowska4 

Abstract. The paper presents the processing and analysis of the recorded trolleybus data using the LINQ (Language Integrated 

Query) software technology. The trolleybus data acquisition system collects a huge amount of electromechanical data in real 

time during the vehicle operation. These data are used for the analysis in post-processing mode. In this paper, the data processing 

has been performed to assess the technical condition of trolleybus batteries. Selected standard query operators of the LINQ 

technology have been implemented in the Windows Presentation Foundation (WPF) application to process the data and to 

determine the charge and energy stored in the battery. The LINQ technology has been proven to be useful for analysing large 

amounts of data recorded from trolleybuses. 
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1. INTRODUCTION 

Data acquisition systems in modern trolleybuses record several 

dozen parameters in real time according with multi-objective 

planning of electric bus systems in cities with trolleybus 

infrastructure networks [1]. From the energy efficiency point of 

view of an electric vehicle (EV), the essential data package 

recorded from a trolleybus equipped with a battery contains the 

following parameters: 

• Time – full date/time pattern, 

• Vehicle ID – usually integer number, 

• Input drive energy [kWh], 

• Energy recovered from drive [kWh], 

• Input vehicle energy [kWh], 

• Energy recovered from vehicle [kWh], 

• Battery mode – vehicle fed from battery (bool variable), 

• Catenary mode – vehicle fed from catenary (bool 

variable), 

• Distance travelled [km], 

• Internal and external temperature, 

• Velocity [km/h], 

• Latitude and Longitude, 

• On/Off passenger space heating, 

• Battery charge status (SOC) [%], 

• Catenary voltage [V] and catenary current [A], 

• Battery voltage [V] and battery current [A], 

• Min and Max battery temperature. 

The way of data sampling depends on the energy management 

system installed in the electric vehicle [2]. Two methods are 

typically used to sample data from electric vehicles. In the first 

method a constant distance step is used, while the second one 

makes use of a constant time step when the vehicle is stopped 

and a varying speed-dependent time step when the vehicle is in 

motion. 

The amount of the recorded data per one hour or per one day 

depends on a number of factors, including: data resolution 

(analogue signals), data sampling, and data recording format 

(binary or text). For the recorded data listed in the first 

paragraph of this chapter and the variable time step, the amount 

of data is equal to about 10 MB per one day while the text 

format is taken into account. The data used in this work for 

processing and analysing were obtained from a company 

providing public transport services in northern Poland. The 

data, arranged in tables, are saved in files with a specific 

signature and archived on dedicated servers, thus creating the 

database resources. 

Data processing can be performed using several dedicated 

software programmes. The Structured Query Language (SQL) 

is commonly used for this purpose. It is a relatively simple 

language, designed specifically for accessing, processing, and 

modifying information in relational databases. SQL (invented 

in 1974) is still a universal language of data, used in practically 

all technologies that process data and create complex reports. 

Other programming tools of processing and analysing database 

resources have been developed as well. One such programming 

tool is the Language Integrated Query (LINQ). Compared to 
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SQL, LINQ is simpler, more productive, and higher-level 

[3–5]. However, there are no papers describing in detail the 

application of LINQ technology in the processing and analysis 

of traction data from an electric vehicle. 

Chapter II briefly presents the LINQ technology and the types 

of query operators used to process records from the trolleybus 

data table. In Chapter III, selected data regarding one-day 

trolleybus operation are shown and discussed, while Chapter IV 

presents selected query expressions to perform filtering, 

ordering, grouping, and selecting operations on trolleybus data 

sources. These queries are intended to provide results that 

describe the current health of the traction battery. 

The novelty of this work is demonstrating the suitability of 

LINQ technology for formulating a query interface for 

processing database tables including trolleybus recorded data 

with a minimum of programming code. 

2. BIG DATA APPLICATIONS in BATERY MANAGEMENT 
SYSTEMS 

Many case studies of Big Data (BD) applications in Battery 

Management Systems (BMS), including intelligent BMS 

systems and complex battery modeling, have been already 

published. Battery life estimation is usually determined using 

different battery degradation models. These models can be 

classified into three main groups as described in [6–8]: 

1) Model-based approach (MBA), 2) Data-driven approach 

(DDA), and 3) Hybrid approach (HA). 

Model-Based Approaches are developed taking into account 

electrochemical phenomena and they use a combination of 

algebraic and/or differential equations or an empirical 

equations. The following techniques are used in MBA: 

equivalent circuit models [9, 10], electrochemical models 

[11], and empirical models [12]. 

Data-Driven Approaches are developed taking into account a 

lot of data gathered in the laboratory through large-scale 

testing under various aging conditions. The DDA approach 

(usually known as black-box models) uses statistical theories 

[13] or machine learning techniques [14] to develop a model 

from measured data.  

Hybrid Approaches are developed based on combination of 

MBA and DDA models [15, 16]. Advantage of this 

combination is better performance and accuracy. 

Various concepts for data analysis by the EV Battery 

Management System (BMS) are presented and tested [17–19]. 

The most advanced concepts are based on a layered structure 

of BMS: Data sources layer, Data acquisition layer, and Data 

analytics layer. 

The data sources are usually Big Data collections stored in 

databases. These sources include structured data such as 

traditional databases  (SQL, mySQL, MongoDB etc.) as 

documents based database, semi-structured data such as BMS 

monitoring logs and unstructured data. 

The data acquisition layer is responsible for collecting data 

from several sensors and measurement systems of EV and 

transmitting them using several communication protocols, 

taking into account the data format, size and sampling. 

The core task of Data Analytics is data processing and 

analysis. The data analytics layer includes batch processing 

using various Big Data analytics frameworks. Analytics 

Frameworks considered for implementation in BMS are: 

➢ Apache Hadoop [20] – an open source framework for 

distributed processing and Big Data storage built on 

Hadoop Distributed File System. 

➢ Apache MapReduce [21] – a distributed execution 

framework that simplifies data processing on large 

clusters by breaking tasks into parallel processing steps 

(invented by Google). It implements Map (input, filter 

and sort datasets) and Reduce (perform summary 

operation) approach. 

➢ Apache Spark [22] – a fast, open-source data-processing 

framework for machine learning and AI applications, 

supported by the largest open-source community in big 

data. Spark can be a standalone solution or run with 

Hadoop. It is used for real time data processing. 

The frameworks mentioned above have great potential in 

analyzing EV data, but there are further challenges to be 

addressed both now and in the future: 

➢ Expensive and complicated hardware and software 

infrastructure implementing the functions of the 

mentioned layered model – Big Data BMS using Cloud-

based Infrastructure. 

➢ BMS data protection to ensure user data privacy using 

encryption and provide cybersecurity. 

➢ System reliability in the event of missing or incorrect data 

and unreliability at some conditions. 

➢ Open source Big Data for BMSs are necessary for users, 

developers, researchers to effectively work on improving 

BMS to minimize battery degradation. 

LINQ technology can be implemented in each Framework 

implementing intelligent and accurate BMS. 

3. LINQ TECHNOLOGY – CAPABILITIES 

A query in LINQ technology is an expression that retrieves 

data from a data source. All LINQ query operations include a 

sequence of three distinct actions [23]: 

• Obtaining the data source, 

• Creating the query, 

• Executing the query. 

The data source is a set of tables formulated as: XML 

documents, SQL databases, .NET collections, and any other 

format when a LINQ provider is available. The query specifies 

what results to retrieve from the data tables or database sources. 

Query execution means that the data source is read, and the 

operation is performed once for more productive way. Table I 

classifies selected standard query operator methods 

implemented in LINQ technology according to their method of 

execution. 

Some of these operators (aggregation, conversion, grouping, 

and selection) were used in this work to process and analyse the 

trolleybus data. LINQ technology enables to extend the 

functionality of standard queries, which can be done by 

developing LINQ extension methods. In this work, some LINQ 

extension methods were developed to determine the time 

intervals of battery charging states and the amount of charge or 

energy delivered to the battery. All LINQ queries were 
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developed in the Windows Foundation Presentation application 

using C# language. 

TABLE 1.

Operator type Operator name 

Aggregation Aggregate, Average, Count, Max, Min, Sum 

Conversion ToArray, ToDictionary, ToList, ToLookup, 

ToSequence 

Equality EqualAll 

Generation Empty, Range, Repeat 

Grouping GroupBy, GroupJoin, Join 

Serialization OrderBy, ThenBy, Reverse 

Division Skip, SkipWhile, Take, TakeWhen 

Constraint Where 

Selection Select, SelectMany 

Fixing Concat, Distinct, Except, Intersect, Union 

4. SELECTED WAVEFORMS – ONE-DAY TROLLEYBUS 
OPERATION 

The presentation of waveforms for one-day trolleybus 

operation is justified due to the quasi-repeatable timetable. This 

chapter presents selected waveforms recorded by the data 

acquisition system of trolleybus number 3088 in the period 

from 2016 to 2022. 

The analysed trolleybus is equipped with lithium-ion modules 

with cell configuration 12S2P. The traction battery consists of 

two parallel-connected blocks, each with a 168S2P 

configuration. The nominal voltage and the nominal capacity of 

the battery are 613 V and 62 Ah, respectively, while the cut-off 

voltage and the charge voltage at 100% SOC are 420 V and 

689 V, respectively. 

Due to a large number of the waveforms obtained, they have 

been grouped and only selected data (representative for all 

recorded data) are presented here in the following order: 

• Input drive energy, regenerative drive energy, input vehicle 

energy, and regenerative vehicle energy recorded on 

2016/07/01 – Fig.1. 

• Battery mode of operation, catenary mode of operation, 

distance travelled by the vehicle, and velocity recorded on 

2016/07/01 – Fig.2. The battery and catenary modes are 

binary values, but for clarity, the catenary mode has been 

assigned the value of 110, while the battery mode the value 

of 90. 

• Battery status, battery voltage, and battery current recorded 

on 2016/07/01 – Fig.3. 

Comments and notes regarding these waveforms are as follows: 

• The energy consumed by this trolleybus per one day from 

the catenary is about 400 kWh. 

• The energy returned to the grid by this vehicle is about 

50 kWh per day. 

• The distance travelled by this vehicle is about 235 km. 

• The maximum speed is about 50 km/h. 

• The vehicle's drive system is energized alternately from the 

catenary system (“Catenary mode” – charge mode) and 

from the battery (“Battery mode” – discharge mode). The 

number of charging/discharging cycles per day in most 

cases is between 10 and 20. The discharge rate depends 

upon several factors such as trolleybus load, temperature 

gradient, surface inclination, terrain, vehicle speed, and also 

tire pressure [24]. 

• In the motoring operating mode of the drive system, the 

battery currents have negative values (energy is taken from 

the battery) and the extremum value is about −180 A. 

• The battery voltage drops significantly from 670 V to 600 V 

in the battery mode of operation. 

 

 

Fig.1. 

 

 

 

Fig.2. 

 

 

Fig.3. 
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5. LINQ QUERY EXPRESSIONS FOR DATA 
PROCESSING 

There are a number of methods to assess the technical condition 

of a traction battery [25–27]. The optimal operation of traction 

battery managed by an energy storage management system is 

usually predictive and based on the knowledge the SOC of the 

battery [28, 29]. 

In this work, the technical condition of the batteries is assessed 

based on the analysis of many years of data recorded every day 

of trolleybus operation – historical data. The main goal, however, 

is to test the usability of the LINQ technology in processing of 

traction data from a trolleybus. 

Taking into account the well-known fact that the dynamics of the 

battery charging state depends on the loss of capacity, the authors 

decided to particularly analyse the "Catenary mode" states of 

trolleybus operation. In this mode, the battery is charged with a 

current depending on the SOC value of the traction battery. It was 

assumed that the dynamics of the state of charge depends on the 

loss of battery capacity. 

The procedure for processing the trolleybus database using LINQ 

is as follows: 

• Opening a one-day data file and writing data to the 

memory collection. 

• Running the appropriate LINQ query for the memory 

collection to obtain a group of collections representing the 

data for the catenary mode only. Each collection has 

battery charging states (current flows into the battery) and 

non-charging states (current equal to zero). 

• Running the appropriate LINQ query for each item of the 

collection to select data for the charging state only 

(positive current flowing into the battery). 

• Performing the calculations to determine a set of 

parameters describing the amount of charge and energy 

delivered to the battery. In this work two criteria were 

taken into account for the determination of the delivered 

charge and energy: 

o SOC criterion – SOC ∈ <SOC1, SOC2>, 

o Voltage criterion – Ubatt ∈<U1 , U2>. 

• In the SOC criterion the charge and energy are determined 

in the SOC range between SOC1 and SOC2, while in the 

Voltage criterion they are determined in the Ubatt range 

between U1 and U2. 

• Saving the parameters as metadata to compare them with 

the same parameters determined in the next procedure. 

Windows Presentation Foundation software has been 

developed in the Microsoft Visual Studio Environment to 

implement the above procedure. 

In this work, the same operating temperature of the traction 

battery was not considered in the SOC criterion and the 

voltage criterion. The analysed trolleybus is equipped with a 

battery cooling system. The set of sensors measures the 

temperature at several points of the traction battery. However, 

the temperature acquisition to the database concerns only 

extreme values - minimum and maximum. The preferred 

working temperature range for Lithium-Ion battery, according 

to studies on their thermal efficiency, is between 25°C and 

40°C [30, 31]. The temperature waveforms shown in Fig.4 

and Fig.6 show that the maximum temperature exceeds 40°C, 

but this value, as already mentioned, does not apply to all 

battery cells. Accurate evaluation of the lithium-ion battery 

temperature is critical for the battery management system to 

prevent the battery from overheating [32]. 

5.1. Opening data files and writing them to memory 
collection. 

The table with the recorded one-day trolleybus data has one 

field (column) to identify each record uniquely. This column is 

time and is referred to as a primary key. On the other hand, the 

one-day trolleybus data may have weak relationships with 

subsequent one-day data - no foreign key to relate the records. 

In this situation, the authors propose to implement batch 

processing of data files, which means that one-day data files 

regarding the same trolleybus are automatically and 

sequentially opened, processed, analysed, and closed. 

The data saved in the memory collection is of List<T> type 

which supports the generic IEnumerable<T> interface. This 

means that the collection is a set of data that can have different 

types (numbers, strings, boolean, images, etc.). This also means 

that it can be queried with LINQ. In this work, such list 

collection is named as inputDataList. 

5.2. Processing data to obtain the group of collections 
representing data for the catenary mode only. 

As the first step of this processing, the arrays of times timesOn[] 

and timesOff[] are selected from the “Catenary mode” binary 

data included in the inputDataList. The timesOn[] array 

contains the start times, while the timesOff[] array the end times 

of the catenary. There is no query in the standard LINQ query 

library to obtain directly the timesOn[] and timesOff[] arrays for 

the catenary mode. However, LINQ technology allows the 

development of extended LINQ user methods. It is a new 

feature that has been added in C# 3.0 which allows the user to 

add new methods (functions) to the existing types without 

creating a new derived type, recompiling, or otherwise 

modifying the original type. The extension method named 

CatenaryIntervals() for the arrays timesOn[] and timesOff[] has 

been developed by the authors and query to this method is 

presented in Listing 1. 

 

Listing 1. 

List<TimeOnOff> catenaryOnOff = inputDataList.CatenaryIntervals(); 

 

The variable catenaryOnOff contains the arrays timesOn[] and 

timesOff[]. Once the catenary time intervals are known, a query 

can be defined to obtain the group of catenary mode collections 

as shown in Listing 2. 

 

Listing 2. 

var listCatenaryMode = inputDataList 

.Where(item => ((item.Time >= timeOn[i] && item.Time <= timeOff[i])); 

 

The result of this query is a data collection that meets the 

condition of data acquisition in catenary mode. A group of such 
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collections is shown in Fig.4 where the following waveforms 

are presented: 

• Battery status (SOC) as percentage value [%] – left Y axis, 

• Battery voltage [V] – right Y axis, 

• Battery current [A] – left Y axis, 

• Minimum battery temperature [°C] – left Y axis, 

• Maximum battery temperature [°C] – left Y axis. 

 

 

Fig.4. 

 

 

 

Fig.5. 

 

A time window corresponding to a single collection taken from 

this group is shown in Fig.5. When the catenary mode is active 

(turn-on), the system checks the state of battery charge (SOC). 

If the SOC value is lower than 100%, the system starts the 

charging process. In this process, the battery current is quasi-

constant and has a value of approximately 60 A until the SOC 

reaches a value of approximately 90%. 

Then the battery current decreases quasi-linearly (from 60 A 

to 35 A) until the SOC value is close to 100%. When the SOC 

is very close to 100%, the charging process is stopped. The 

battery voltage increases quasi-linearly in this process. 

Typically, the charging state time is shorter than the catenary 

mode time. 

To calculate the charge and energy delivered to the battery 

during the charging process, only the data collected in the 

catenary mode with the condition that the battery current is 

greater than zero is required. 

5.3. Processing data to obtain the group of collections 
representing data for the catenary mode and battery 
current greater than zero. 

In this step, the listCatenaryMode collection calculated in 

subsection B is queried at the condition that the battery current 

is greater than zero. An appropriate LINQ query is shown in 

Listing 3. 

 

Listing 3.  

var listChargingStates = listCatenaryMode 

.Where(item => item.BatteryCurrent > 0); 

 

 

Fig.6. 

 

 

 

Fig.7. 
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The result of this query is a group of data collections that meet 

the condition of data acquisition in catenary mode at the battery 

current greater than zero – battery charging state. The 

waveforms of such collections are shown in Fig.6. These 

include: Battery status (SOC), Battery voltage, Battery current, 

Min battery temperature, and Max battery temperature. This 

group is named as “GroupCatenaryCharge”. 

 

 

Fig.8. 

 

The time windows for two different single collections taken 

from “GroupCatenaryCharge” are shown in Fig.7 and Fig.8. 

The difference between the waveforms presented in these two 

figures is the initial SOC value during the charging process, 

which is about 50% in Fig.7 and about 44% in Fig.8. The 

charging time in the second case is longer. 

5.4. Charge and energy delivered to the battery during 
the charging process. 

The charge Q and the energy W delivered to the battery have 

been determined for each collection from the 

“GroupCatenaryCharge”. This was done by numerical 

integration of the following formulas: 

 𝑄(𝑘) = ∫ 𝐼batt(𝑘)𝑑𝑡
𝑡2(𝑘)

𝑡1(𝑘)
 () 

 𝑊(𝑘) = ∫ 𝐼batt(𝑘)𝑈batt(𝑘)𝑑𝑡
𝑡2(𝑘)

𝑡1(𝑘)
 () 

where Ibatt(k), Ubatt(k) are, respectively, the battery current and 

battery voltage of the k-th collection, and t1(k), t2(k) are, 

respectively, the initial time and the final time of the charging 

process of the k-th collection. 

The trapezoidal formula taking into account a variable time step 

was implemented. It could be done by a relatively easy 

algorithm or a LINQ query using aggregate operators. 

The amount of charge Q and energy W, the initial and final 

battery state (percentage value), the initial and final battery 

voltage, and also the Date/Time data are saved in an appropriate 

metadata file related with the analysed vehicle. 

6. COMPARING CHARGE AND ENERGY DELIVERED TO 
THE BATTERY BASED ON HISTORICAL DATA 

This chapter presents charge Q and energy W delivered to the 

battery of trolleybus number 3088 recorded in the period from 

2016 to 2022. This comparison was made for both, the SOC 

criterion and the Voltage criterion. 

6.1. SOC criterion. 

In the SOC criterion, for each case in the historical data the initial 

SOC battery was chosen to be SOC1 = 71% and the final value 

was assumed as SOC2 = 100%. The current SOC value was 

calculated by the vehicle's energy management system. The 

results of Q and W calculations are presented in Fig.9 and Fig.10 

respectively. 

 

 

Fig.9. 
SOC ∈  

 

 

Fig.10. 
SOC ∈

 

The presented results show that as the operating time of the 

traction battery increases, the amount of charge and energy 

delivered to the battery in the charging process decreases while 

maintaining the same initial and final SOC of the battery. 

6.2. Voltage criterion. 

In the Voltage criterion, for each case in the historical data the 

initial battery voltage was chosen to be U1 = 643 V and the final 
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value was assumed as U2 = 680 V. The results of Q and W 

calculations for the voltage criterion are presented in Fig.11 and 

Fig.12, respectively. 

 

 

Fig.11. 
U  ∈  

 

 

Fig.12. 
U ∈  

 

Like for the SOC criterion, the presented results show that as 

the operating time of the traction battery increases, the amount 

of charge and energy delivered to the battery in the charging 

process decreases while maintaining the same initial and final 

voltage of the battery. 

The next tasks that the authors intend to study include: 

• Developing/Refining a computer program for batch 

processing using LINQ on thousands of historical data 

stored in database tables. 

• Analysing important battery parameters with statistical 

analysis tools. 

• Determining prediction of traction battery parameter 

values. 

To reduce stress on the traction battery and thus further 

extending battery life a hybrid energy storage system can be 

implemented by integrating supercapacitors [33]. 

Supercapacitors allow to decrease the load on the battery during 

sudden power demands and short-term power requirements, 

which increases energy efficiency. 

7. FACTORS AFFECTING BATTERY DEGRADATION 

Battery degradation operating in trolleybus is the result of 

various electrochemical processes occurring inside the battery. 

The following degradation mechanisms are observed at the 

Li-ion battery anode [34]: 
➢ Solid Electrolyte Interphase/Interface (SEI) 

decomposition and growth [35]. 

➢ Blinder decomposition [36]. 

➢ Lithium plating [37]. 

➢ Corrosion of anode collector. 

➢ Electrode Particle Cracking (EPC). 

The following degradation mechanisms are observed at the 

Li-ion battery cathode [34]: 
➢ Blinder decomposition. 

➢ Solid Permeable Interface (SPI) growth. 

➢ Corrosion of cathode collector. 

➢ Electrode Particle Cracking. 

➢ Structure disordering. 

These degradation mechanisms cause undesirable phenomena 

in the Li-ion battery such as [38]: 

➢ Loss of Lithium Inventory (LLI), 

➢ Loss of active cathode and anode materials. 

➢ Loss of Electrolyte. 

The result of these undesirable phenomena is a reduction of 

the battery capacity and, consequently, a deterioration of 

battery State of Health (SoH) and Remaining Useful Life 

(RUL). A number of factors influence the mechanism of 

battery degradation. The most important working conditions 

that affect the anode domain are [34]: 

➢ High SOC – affects: SEI decomposition/growth; Blinder 

decomposition. 

➢ Low SOC – affects: Corrosion of current collector. 

➢ High temperature – affects: SEI decomposition/growth; 

Blinder decomposition; Electrode particle cracking. 

➢ Low temperature – affects: Lithium platting. 

➢ Time – affects: SEI decomposition/growth. 

➢ Current load – affects: SEI decomposition/growth; 

Corrosion of current collector. 

➢ High charging rate – affects: Lithium platting. 

The most important working conditions that affect the cathode 

domain are [34]: 

➢ High SOC – affects: Blinder decomposition; Solid 

permeable interface growth. 

➢ Low SOC – affects: Corrosion of current collector; 

Transition metal dissolution. 

➢ High temperature – affects: Blinder decomposition; Solid 

permeable interface growth. 

➢ Current load – affects: Corrosion of current collector; 

Electrode particle cracking; Structure disordering. 

The maximum SOC value of batteries in the tested trolleybuses 

was 100%. The maximum SOC value recommended by the Li-

ion battery manufacturer is about 80%. Hence, this factor had a 

significant impact on battery degradation in the tested 

trolleybuses. It should be noted, however, that after reaching 

SOC = 100%, the trolleybus immediately switched to battery 
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mode of operation, which caused the SOC value to decrease. 

The state of SOC = 100% was always very short. 

The minimum SOC value in the tested trolleybuses never 

dropped below 30%. Therefore, this factor had no impact on 

the battery degradation process. 

The traction test battery has several temperature sensors 

mounted inside the battery housing. Only the minimum (Tmin) 

and maximum (Tmax) temperatures from this set of sensors are 

recorded by the data acquisition system of the trolleybus 

BMS. In the summertime (when the outside temperature was 

around 30°C) the average values recorded by the battery 

sensors were �̅�min ≈ 40°C, �̅�max ≈ 55°C. It means that battery 

cells were not operated at the same temperature. The 

degradation rate or capacity loss of the battery operated above 

45°C is significant [39], hence we can assume that in the 

summertime the battery cell temperature had a significant 

impact on battery degradation in tested trolleybuses. 

In the wintertime (when the outside temperature was around 

0°C) the average values recorded by the battery sensors were 

�̅�min ≈ 24°C, �̅�max ≈ 33°C. This temperature has no 

significant effect on battery degradation. 

Charging current value at catenary mode of operation was 

about 60 A. The nominal capacity of the battery is C = 62 Ah, 

hence charging current rate is of 1C. At charging current rate 

of 1C battery End Of Life (EOL) is about 3000 

charging/discharging cycles [40]. Any value of charging 

current rate has an impact on the SoH and RUL of the battery, 

but at 1C rate it can be assumed that it is not the main factor. 

The maximum discharge current (battery mode of trolleybus 

operation) has been limited to 180 A. It means 3C discharging 

current rate. This factor had a significant impact on battery 

degradation. 

8. ASSESMENT of BATTERY SOH 

The graphs presented in Fig.9 and Fig.10 clearly indicate 

battery degradation, because all values of the charge or energy 

supplied to the battery are obtained with the same SOC range 

criterion. Simplified formula for calculating State of Health 

(SoH) from the charge capacity of battery is given by (3) 

𝑆𝑜𝐻Charge = (1 −
𝐶actual

𝐶rated
) 100%  (3) 

where: Crated – rated capacity, Cactual – actual capacity. 

If the actual capacity is not known, it can be estimated using 

a simplified formula (4) 

𝑆𝑜𝐻Charge = (1 −
∆𝐶actual

∆𝐶initial
) 100%  (4) 

where: ∆Cinitial – initial charge increase, ∆Cactual – actual 

charge increase at the same SOC range criterion. 

Using results from Fig.9 and simplified formula (4) SoHCharge 

is equal 65%. 

Simplified formula for calculating battery SoH from the 

energy is given by (5) 

𝑆𝑜𝐻Energy = (1 −
𝑊actual

𝑊rated
) 100%  (5) 

where: Wrated – rated battery energy, Wactual – actual energy. 

If the actual energy is not known, it can be estimated using a 

simplified formula (6) 

𝑆𝑜𝐻Energy = (1 −
∆𝑊actual

∆𝑊initial
) 100%  (6) 

where: ∆Winitial – initial energy increase, ∆Wactual – actual 

energy increase at the same SOC range criterion. 

Using results from Fig.10 and simplified formula (6) SoHEnergy 

is equal 65%. 

Similar values of SoH are obtained at voltage range criterion. 

Analyses are currently underway to determine the Remaining 

Useful Life (RUL) of the tested batteries. 

9. CONCLUSIONS 

The following conclusions were formulated on the basis of the 

processing and analysis of the data obtained from the trolleybus 

data acquisition system: 

• The size of the trolleybus per one-day data generated by 

the DAQ system is approximately equal to 10 kB when 

the data is stored in the text format as a database table. 

• The database tables have weak relationships with each 

other. The only unique primary key is time. 

• LINQ technology has proven to be very useful for data 

processing and analysing. An extended LINQ method is 

needed to query the time intervals of catenary mode. 

• Queries formulated for trolleybus database tables work 

efficiently and are characterized by a relatively small 

amount of code. 

• Battery mode and Catenary mode of trolleybus operation 

are easily detected by LINQ queries. The battery charging 

states are grouped into collections composing a dedicated 

group. 

• Each collection from this group can be separately 

analysed to determine the charge and energy delivered to 

the battery taking into account the SOC range or the 

voltage range during the charging process. 

• A comparative analysis of charge and energy delivered to 

the battery has shown that at the same conditions, the 

dynamics of the battery charging process changes as the 

operating time increases. It is possible to predict the 

technical condition of the battery based on historical data. 
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