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Coal Mine Underground Positioning Algorithm based  
on RSSI Model Correction and Node Cooperation

To address the issues of environmental complexity and low positioning accuracy faced by coal mine 
underground positioning systems, an improved localisation algorithm based on Received Signal Strength 
Indication (RSSI) model correction and node collaboration, namely, the RSSI-MCNC (RSSI Model 
Correction and Node Collaboration) algorithm, is proposed. First, this algorithm employs Kalman filter 
technology to optimise the collected RSSI values, improving signal stability and range model accuracy. 
Second, more precise ranging results are achieved by dynamically adjusting the RSSI model parameters 
to adapt to changes in mining environments. In the localisation stage, the localised unknown nodes are 
used as cooperative nodes to position other unknown nodes and solve the objective function through 
the improved weighted centroid algorithm and gradient descent method, precisely locating the unknown 
nodes. The simulation results indicate that the RSSI-MCNC algorithm can significantly improve the 
positioning coverage and accuracy of fixed anchor nodes and the random distribution of unknown nodes 
in mine roadways, especially in the case of limited anchor nodes. This is significant for improving the 
safety of mine personnel and equipment.

Keywords:	 Coal mine underground; model correction; node collaboration; Kalman filter; Objective 
function

1.	I ntroduction

China has many coal mines and is developing smart mines. The controllability of safe pro-
duction is directly related to the level of national industrial information and the secure develop-
ment and utilisation of resources [1]. With technological advancements, coal mine underground 
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positioning equipment is evolving towards higher accuracy and lower power consumption. Coal 
mine underground positioning technology is primarily applied in personnel tracking, material 
tracking, emergency rescue, and more. Through precise positioning, real-time monitoring and 
management of personnel and materials underground can be achieved, improving the safety and 
efficiency of coal mine production. Currently, several coal mines have successfully implemented 
underground positioning systems, which have achieved favourable results in practical applica-
tions, providing robust support for safe coal mine production [2]. For instance, the combination 
of Ultra-Wideband (UWB) technology and machine vision technology enables transmission rates 
of up to hundreds of Mbps, improving equipment accuracy. 

Furthermore, the integration of technologies such as artificial intelligence will further propel 
the development of underground coal mine positioning technology [3]. RFID positioning technol-
ogy is a regional positioning technology that achieves regional positioning of targets by setting up 
RFID positioning substations at mine entrances, roadway exits, and more. ZigBee-based position-
ing technology realizes target positioning by constructing a communication network and using the 
RSSI ranging principle. Inertial navigation technology is an autonomous navigation technology 
that continuously determines the position, attitude, and speed of the carrier in real time. In ad-
dition to the above mainstream positioning technologies, several other positioning technologies 
are also being applied in coal mine underground positioning, such as laser scanning positioning, 
ultrasonic positioning, and infrared positioning. Each of these positioning technologies has its 
advantages and disadvantages, suitable for different application scenarios and requirements [4]. 
However, the underground environment of coal mines in China is complex, and the acquisition 
of personnel, equipment, and location information still needs to be improved in the absence of 
reliable and stable deployment of full-coverage nodes in the existing positioning system. There-
fore, it is important to build a new type of mine sensor node collaborative positioning algorithm 
with high precision and coverage for mine information collection, safety production, post-disaster 
search and rescue, and personnel flow information acquisition.

The particularity of mining environments is mainly manifested in the narrow space, sig-
nificant multipath effect, high density of coal dust, high-power mechanical and electrical equip-
ment, and distribution of various gases, making it extremely difficult to build a transmission 
loss model that conforms to the mining environment [5]. The improvement in the accuracy of 
underground target positioning mainly depends on optimising the algorithm process or combining 
other methods on the ground. Range-based algorithms are mainly used for underground target 
locations, including those based on RSSI [6], signal angle of arrival (AOA) [7], time of arrival 
(TOA) [8], and time difference of arrival (TDOA) [9], etc. These algorithms are influenced by 
various factors in the mine, which decreases positioning accuracy. The RSSI positioning method 
is widely popular because it does not require additional hardware and has a low power consump-
tion [10]. Due to the uniqueness of coal mine environments, the underground signal attenuation 
model is different from that of the ground, resulting in the low accuracy of the range-based RSSI 
positioning algorithm. An algorithm based on the signal’s angle of arrival requires high-precision 
angle measurements. If the angle measurement is inaccurate, the positioning result may differ 
from the actual coordinates. The algorithm based on the TDOA requires the cooperation of 
a high-precision time synchronisation algorithm, and the impact of the measurement time error 
on the positioning result can be described as thousands of miles [11].

Based on the special environment of underground coal mines, scholars have proposed vari-
ous improved algorithms to improve positioning accuracy. Zhang [12] proposed an RSSI-based 
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Gaussian filtering weighted centroid positioning algorithm, which uses the reciprocal distance 
product between two circles as the weight coefficient to weigh the nodes to improve localisation 
accuracy. Gao et al. [13] proposed a node cooperation underground precise positioning algorithm, 
providing a weighted non-convex positioning model from unknown nodes to reference nodes, 
and using the Canonical Duality algorithm to find the global optimal solution. This algorithm 
can only improve the accuracy in the positioning stage, but not improve the RSSI ranging model 
when the mining environment changes. Zhao et al. [14] proposed a node auxiliary localisation 
algorithm for interval-segmented sight distance in coal mines. This algorithm uses the segmented 
threshold to select the interval for unknown nodes and treats the located unknown nodes as virtual 
reference nodes for other unknown nodes to improve localisation accuracy. However, the located 
unknown nodes are treated as reference nodes for auxiliary localisation, causing an accumulation 
of errors. Combined with the whale optimisation algorithm and the Taylor series, Li et al. [15] 
introduced the underground TDOA positioning algorithm. They use TDOA to establish the fitness 
function to obtain initial positioning and then use the positioning result as the initial value of the 
Taylor series algorithm for further iterative refinement to achieve higher positioning accuracy. 
However, the TDOA localisation algorithm requires signals received by the nodes to follow 
strict time synchronisation, which requires high hardware. Jin et al. [16] introduced the concept 
of a minimum condition outlier node, selecting three anchor nodes nearest to the unknown node 
for localisation. It can improve the localisation accuracy compared to the trilateral localisation 
method. However, when the environment changes, the accuracy of the RSSI ranging model is 
affected, and the node information is not fully used for positioning.

The algorithm proposed can improve the localisation accuracy from the following five as-
pects: Kalman filtering, RSSI ranging model parameter correction, improved weighted centroid 
localisation algorithm, cooperative node participation in localisation, and gradient descent method 
refinement. It can improve the localisation coverage and accuracy of mining roadways without 
increasing additional hardware overhead.

2.	 Proposed methods

2.1.	RSSI  Ranging Model

In a complex underground coal mining environment, the principle of RSSI ranging is to use 
a logarithmic path loss model to convert the loss into distance, and then calculate the position 
coordinates of the tested node based on this distance [17-19].

The RSSI propagation model is calculated as follows:
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where RSSI(d) represents the RSSI value when the transmitted and received signals travel through 
the distance of d; RSSI (d0) represents the RSSI value when the transmitted and received signal 
travel through a distance of d0, usually taken as d0 = 1m; n is the Path loss factor, and ξn is the 
Gaussian random noise.

The actual mining environment is complex. To further cope with environmental interference 
in mines, the RSSI ranging model usually adopts the simplified log-normal distribution model:
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Assuming d0 = 1m, RSSI (d0) uses a constant A express; RSSI(d) stands for the Received 

Signal Strength Indicator, and RSSI  expression. Formula (2) can be simplified as follows:

	 10 lgRSSI A n d   	 (3)

Further refinement of the available estimated distances is as follows:
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The main factors affecting the accuracy of the RSSI ranging model are A and n. My laneway 
is a typical dense multipath frequency-selective fading channel, and the propagation loss in the 
lane is significantly affected by these two parameters. The environment of a coal mine has its 
particularity: once the environment changes, even if the distance is the same, the path loss will 
be different in different environments, leading to a change in the two parameters A and n. There-
fore, if the fixed RSSI model parameters are used to describe the entire coal mine underground 
environment, a certain deviation will affect the accuracy of the ranging model. To improve the 
positioning accuracy, the parameters of the RSSI model must be modified dynamically to adapt 
to changes in the underground environment.

2.2.	 Kalman filtering and RSSI ranging model improvement

The complexity of the underground coal mine environment poses a significant challenge 
to the transmission of radio signals, which is mainly manifested in the diffraction, attenuation, 
multipath effect, and scattering of signals. These complex transmission characteristics make the 
traditional RSSI ranging model inaccurate, affecting the positioning results. To enhance the ac-
curacy of the localization results, we focused on optimizing and correcting two key parameters, 
A and n, in the RSSI model.

2.2.1.	RSSI signal preprocessing

The accuracy of the RSSI ranging model is significantly affected by the variability of the 
underground environment in coal mines. In this environment, even unknown nodes at the same 
location can receive fluctuating RSSI signal values at different times. The instability of this signal 
is mainly caused by noise and interference from environmental factors. To improve the accuracy 
of results, the RSSI signal must be filtered to eliminate the influence of these abnormal signals. 
Kalman filtering [20-21] stands out for its excellent performance among the various filtering 
techniques. It can extract useful signals from noisy data and predict future states. The stability 
of the RSSI system can be significantly improved by applying the Kalman filter algorithm to 
preprocess the RSSI signal and optimise the RSSI ranging model.

The preprocessing steps using the Kalman filter algorithm include initialising the state 
estimation and covariance and then extracting the true trend of the signal step-by-step through a 
continuous time update and measurement update process. This process improves the accuracy of 
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a single measurement and enhances the robustness of the entire RSSI ranging model in the face 
of environmental change. A discrete mathematical positioning system model was established 
based on positioning information.

State equation is as follows:

	 ( ) ( 1) ( ) ( )x k Ax k Bu k w k     	 (5)

Observation equation is as follows:

	 ( ) ( ) ( )z k Hx k v k   	 (6)

The state matrix x(k) represents the filtered RSSI value; u(k) is the control matrix; z(k) is the 
observation matrix; A and B are system matrices; H represents the observation matrix; w(k) and 
v(k) are the process noise and measurement noise at time k; the covariance matrices Q represents 
process noise, and R represents measurement noise.

Time Update:
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Status Update:
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P(k | k – 1) is the covariance of x(k | k – 1), and P(k  – 1 | k – 1) is the covariance of 
x(k  – 1 | k – 1). Kg represents the Kalman gain; Kalman filtering updates the model parameters 
in two steps: time update and state update. From the above formulas, the optimal estimate of the 
previous moment plus the external control variable prediction can obtain a new optimal state 
estimate x(k | k) for the current moment. This can be iterated continuously with the new P(k | k) 
at a subsequent time, and measurement updates can be made for the next moment.

Based on the above theory, the Kalman filter algorithm is used to process RSSI data. Assuming 
that the mine environment is harsh; the path loss factor n is 4, and the signal strength (A) at 1m 
from the transmitting node is –50 dBm. There is a Gaussian random noise with a variance of 7 and 
a mean of 0, and the unknown node starts the positioning process by sending a data packet to the 
anchor node. The unknown node is placed one meter away from the anchor node and receives 
data packets from the anchor node every 6 s for 10 min. The mean of RSSI is used as the initial 
state estimation, and the variance of RSSI is used as the initial estimation error covariance. The 
process noise covariance is 0.1, and the measurement noise covariance is the variance of RSSI. 
As shown in Fig. 1, the original RSSI signal is highly affected by environmental interference, 
with an error of up to 14.54% at 1m. After applying Kalman filtering, the maximum error is 
reduced to 2.93%, significantly reducing the interference of environmental factors. From Fig. 1, 
Kalman filtering cannot only improve the performance when d = 1 meter, but also mitigate the 
interference in the positioning environment when d = 5 meters, d = 10 meters, and d = 20 meters.
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d = 1 m	 d = 5 m

d = 10 m	 d = 20 m

Fig. 1. Comparison of RSSI Signal before and After Kalman Filtering

2.2.2.	Parameter Optimization of RSSI Ranging Model

To ensure that the ranging model accurately reflects the wireless signal propagation char-
acteristics of the mining environment, the RSSI value processed by the Kalman filter is used to 
optimise the key parameters A and n of the ranging model. This optimisation helps to reduce the 
interference of environmental factors on the ranging results. It is assumed that within a certain area, 
unknown nodes periodically transmit data signal packets to nearby anchor nodes. After receiving 
the broadcast signal, the anchor nodes simultaneously provide feedback on the estimated distance 
information between themselves and the unknown node, as well as the RSSI value processed 
by the Kalman filter algorithm. Given that the RSSI measurements are significantly influenced 
by the distance factors, a shorter distance between an anchor node and an unknown node implies 
less interference and higher measurement accuracy. Selecting the three anchor nodes closest 
to the unknown node as reference benchmarks during the positioning process is recommended. 
The three reference nodes directly participate in subsequent positioning calculations using their 
spatial location information. The parameters A and n can be determined using formula (3).

Assuming that the three closest anchor nodes within the communication range of the unknown 
node P are labeled as O1(x1, y1), O2(x2, y2), and O3(x3, y3), the anchor node O1 can receive the 



51

largest RSSI from P. The distances between the anchor node O1 and the other anchor nodes can 
be calculated using Eq. (9).
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Through setting the RSSI values from the anchor node O1 to other anchor nodes as 

 1,2 1,3,RSSI RSSI  , A and n within this region can be solved by establishing a system of Eq. (10):
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Finally, to solve the system of equations in Eq. (10), we obtain the values of Â and n̂ within 
this region. The values of Â and n̂ are then used as optimised model parameters to correct the 
ranging model. Substituting these into Eq. (4), we obtain:
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2.3.	 Construction of cooperative localisation model based  
on improved weighted centroid

2.3.1.	Cooperative Nodes Participate in the Localisation Process

In this special environment, the traditional positioning method may not meet the accuracy 
requirements due to the limited number of positioning base stations. Therefore, fully utilising 
unknown nodes is the key to improving positioning accuracy. An adaptive node cooperative 
localisation method is proposed: traversing the whole network, obtaining the RSSI between all 
unknown nodes and anchor nodes, set an RSSI threshold value, randomly select the unknown 
nodes that receive more than three anchor nodes and have signal strength exceeds the RSSI 
threshold as candidate nodes, and determine the position of unknown nodes. Then, the unknown 
node is substituted into the positioning process to be an auxiliary positioning anchor node. The 
mean value of the position estimation error of the anchor node is recorded as the error of the 
unknown node, and the positioning range is continuously expanded. In this manner, every node in 
the network may participate in the localisation process to provide more localisation information, 
enhance the robustness of the localisation system, and improve the overall localisation accuracy.

Assuming N unknown nodes and M anchor nodes in the sensor network deployed in the 
underground tunnel, with the received signal strength indicator threshold as RSSIT, let the coor-
dinates of the anchor node i be Oi (xi, yi) and the coordinates of the unknown node j be Pj(xj, yj). 
The selection of an unknown node for priority localisation must satisfy:
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According to Eq. (12), the unknown nodes to be localised are prioritised and selected, and 
the coordinates of these unknown nodes can be obtained by calculation. However, deploying 
underground anchor nodes is rare, and when the received signal indication strength threshold 
is set, some unknown nodes may not be located. Although the located unknown nodes can be 
regarded as anchor nodes through node cooperation, the location results of the unknown nodes 
have errors. If they are used directly as anchor nodes without selection in subsequent localisation, 
it will lead to error accumulation and reduce the localis ation accuracy of the overall network. 
A positioned unknown node cannot be directly used as an anchor node. Therefore, it is crucial 
to select unknown nodes located as anchor nodes.

Assuming an unknown node P localizes its estimated coordinates (x, y) based on the three 
nearest anchor nodes O1(x1, y1), O2(x2, y2), and O3(x3, y3). Now taking the node P as a known node, 
one of the anchor nodes O1, O2, O3 is selected as an unknown node, for example, taking anchor 
node O1 as the unknown node. P1, O2, O3 are used as the anchor nodes to estimate the coordinates 
of O1 and obtain an estimated coordinate O1(x̂1, ŷ1) for node O1. The true coordinates (x1, y1) of 
node O1 are compared with the estimated coordinate (x̂1, y1) to determine the positional approxi-
mation error. The approximation error is denoted for anchor node O1 as μ̃1 = (x1 – x̂1)2 + (y1 – ŷ1)2. 
Similarly, the positional approximation errors can be calculated for the other two anchor nodes, 
that is O2, O3. If there are M anchor nodes, the average of positional approximation errors of the 
anchor node represents the approximation error of the unknown node P.
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According to Eq. (13), a smaller approximation error μ̃  indicates a higher positioning ac-
curacy for an unknown node.

Cooperative localisation involves considering a localised unknown node as a cooperative 
node to participate in the localisation process. As shown in Fig. 2, OPi is a collaborative node 
with IDi, whose position is determined by the anchor nodes. Under a communication radius of R, 
the unknown node P can only receive information from two anchor nodes, O3 and O4, which 
cannot complete localisation. Assuming that after traversing the network within the communica-
tion radius R of the unknown node P, there are three cooperative nodes OP1, OP2, and OP3. Their 
approximation errors are calculated by formula (13), and then arranged from small to large. As-
suming that μ̃OP1 < μ̃OP2 < μ̃OP3, The cooperative node with the minimum approximation error is 
adaptively selected according to the size of the approximation error of the cooperative node OP1 
as a location-unknown node P anchor node. 

During the positioning process, the localisation condition can be satisfied by using the posi-
tion data of two anchor nodes (O1, O3, and O4) and one cooperative node, and the positioning 
system can obtain the coordinates of the unknown node. Similarly, if only one anchor node is 
found within the communication radius of an unknown node after traversing the network, when 
traversing the underground wireless sensor network and detecting that the unknown node has only 
one anchor node within a specific communication radius, two cooperative nodes with relatively 
small approximation errors can be selected to make the positioning system satisfy the position-
ing conditions. Three cooperative nodes in the communication radius are selected if there is no 
anchor node around the unknown nodes. When the anchor and cooperative nodes around the 
unknown node are smaller than three, the unknown node cannot be positioned.
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anchor node cooperative nodes unknown node

R

R

Fig. 2. Collaborative nodes participating in positioning

Assuming that M anchor nodes are distributed within the communication radius of the 
unknown node P during the localization process, N cooperative nodes are utilised. Let the co-
ordinates of the unknown node i be (x1, y1), and the coordinates of the j th assisting localisation 
node be (xj, yj). The distance between P and assisting localisation node j is dpj, and the distance 
between P and the anchor node k (xk, yk) is denoted as dpk. A positioning model is established 
using the unknown nodes to solve the minimum objective function of the positioning model:
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In Eq. (14), if the anchor nodes are greater than 3, the objective function will become an 
overdetermined equation set. Therefore, in the position coordinate estimation stage, when the 
total number of anchor nodes and cooperative nodes required for the localisation of a target node 
is 3, the improved weighted centroid positioning algorithm will be used to solve the problem 
and enhance localisation efficiency quickly when anchor nodes are greater than 3. We use the 
improved weighted centroid localisation algorithm as the initial value of the localisation result 
and then solve the optimal solution of the objective function through the gradient descent method.

2.3.2.	Improved weighted centroid localisation algorithm

Due to the special environment in the coal mine, there is a deviation between the RSSI value 
and the true value received by the signal, resulting in a circle with the distance from the unknown 
node to the anchor node of the received signal as the radius. The circle cannot intersect at one 
point but forms a region. A common strategy to solve this problem is to calculate the centroid of 
the overlapping area and consider it the estimated location of an unknown node [22]. To further 
enhance the positioning accuracy, the influence of anchor nodes during the positioning process is 
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dynamically adjusted through weighting. That is, the smaller the distance, the greater the weight. 
In Fig. 3, the distances from the three anchor nodes O1, O2, O3 to the unknown node P(x, y) are 
d1, d2, d3, respectively. A(x1, y1), B (x2, y2), C (x3, y3), is the intersection area of the three circles, 
and the coordinates of point A can be calculated using Eq. (15).

Fig. 3. Centroid localisation algorithm
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Similarly, the coordinates of points B and C can also be calculated. To improve the position-
ing accuracy, a weight coefficient w is introduced to weight the corresponding anchor nodes. 
The greater the weight, the smaller the distance d. Therefore, an improved weighted centroid 
algorithm used to describe the weight is as follows:
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Then, the coordinates of unknown node P(x, y) are as follows:
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2.3.3.	Solution by gradient descent method

Gradient descent [23], as a classic optimisation technique, revolves around the core strategy 
of iteratively adjusting parameter values by moving in the opposite direction to the gradient of 
the objective function, aiming to gradually approach and reach the minimum point. To improve 
the positioning efficiency, when the number of anchor nodes required for the localisation of 
unknown nodes exceeds three, the weighted centroid localisation result is used as the initial 
parameter for the gradient descent method to iteratively solve the coordinates of the unknown 
nodes. The solution steps are as follows:

(1)	I nitialise the parameters θ(x̂, y) (parameter θ is the result of the weighted centroid 
localisation);

(2)	 Calculate the gradient of the current parameter ∇f (θ ) (∇f (θ ) = [∂f /x1, ∂f /x2, ..., ∂f /xn]);
(3)	U pdate the parameters θ = θ – α * ∇f (θ ), where θ is the parameter vector and α is the 

learning rate;
(4)	 Steps 2 and 3 are repeated until the convergence criteria are met.

2.4.	A lgorithm implementation

The process of the proposed algorithm includes several aspects: In the initial stage, the un-
known nodes actively capture and collect signal information emitted by the surrounding anchor 
nodes, particularly by recording the RSSI value each time they receive a signal. This process is 
continuously repeated N times to ensure the adequacy and stability of the data. After traversing 
the entire network, the Kalman Filter algorithm is applied to filter the collected RSSI value se-
quences. The goal is to eliminate noise interference and enhance the reliability of RSSI values. 
In the ranging phase, the area is dynamically divided based on the information received from 
the anchor nodes by the unknown nodes. By estimating the RSSI ranging model parameters A 
and n, we can obtain a regional signal transmission model that is closer to the actual mining 
environment. In the positioning stage, first, under the condition of setting the RSSI threshold, 
when it is determined that there are more than three anchor nodes, the coordinates of unknown 
nodes that can receive information from three or more anchor nodes can be obtained using an 
improved weighted centroid positioning algorithm. After that, iterative refinement is performed 
through a gradient descent method. If an unknown node can only receive signals from fewer 
than three anchor nodes, the located unknown nodes are considered cooperative nodes dur-
ing the positioning process to ensure that there are at least three positioning reference points. 
Subsequently, an improved and optimised weighted centroid localisation algorithm is used to 
accurately calculate the coordinate position of the unknown nodes. The flowchart of the entire 
algorithm is shown in Fig. 4.
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Fig. 4. Flowchart for the implementation of the positioning algorithm

3.	R esults and Analysis

3.1.	S imulation environment

To validate the positioning performance of the proposed algorithm (RSSI-MCNC), MAT-
LAB software is used to establish a simulation experimental platform, and compared with [12] 
and [13]. Assuming the roadway is 100 m long and 5 m wide, the number of deployed anchor 
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nodes is 6, and the unknown nodes are 20, each with a communication range of 30 m. The RSSI 
threshold is –110 dBm; the path loss factor n is 4; the signal strength A 1 m away from the trans-
mitting node is –50 dBm, and the Gaussian noise variance of the channel is between 6 and 8. 
In the set, the positions of anchor nodes are fixed and unchanged. On the contrary, the unknown 
nodes are randomly distributed throughout the entire network area, forming a network topology, 
as shown in Fig. 5.

Fig. 5. Diagram of underground mine tunnel network topology 

The simulation time N is set as 100; the communication radius is R, and the localisation 
coverage [24] and the average localisation error [25] are selected as the positioning accuracy 
indicators. This is defined as follows:

1)	L ocalisation Coverage (LC) is a key metric that measures the correlation between the 
number of anchor nodes and proportion of unknown nodes that are successfully localised. 
This directly reflects the degree to which the deployment density of nodes influences 
the localisation capability of the overall network.

	

    100%
   

Number of Successfully Localised NodesLC
Total Number of Nodes

   	 (18)

2)	 The actual position of node p is Cp, while its estimated position Ĉp. We define the po-
sitioning error err and its average value ave_e as follows:
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In the formula, the total count of unknown nodes is M.
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3.2.	S imulation results

To analyse the influence of each optimisation on the localisation accuracy of the RSSI-MCNC 
algorithm, it is assumed that all unknown nodes can be located. Ten anchor nodes are deployed 
in the lane. The original RSSI centroid localisation algorithm is marked as RSSI; the Kalman 
filter is marked as K-RSSI; the improved ranging model is marked as MK-RSSI; the improved 
weighted centroid localisation algorithm is marked as WMK-RSSI, and DWMK-RSSI refers to 
the gradient descent method. As shown in Fig. 6, the algorithm optimisation strategies at each 
stage can improve the positioning accuracy of the algorithmic framework.

Fig. 6. Comparison of Location Errors for Various Optimis ation Contents in the RSSI-MCNC Algorithm

In the underground roadway, the more anchor nodes, the higher the localisation coverage rate, 
as shown in Fig. 7. Compared with Ref. [12], the localisation coverage rate of the algorithm can 

Fig. 7. Relationship between localisation coverage and the number of anchor nodes
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reach 100% when six anchor nodes are deployed at the same location. The localisation coverage 
rate of Ref. [12] only reached 78.5%.

As shown in Fig. 8, six anchor nodes are used on the roadway. In the first round, the algo-
rithm traverses the network and calculates the coordinates of the 15 unknown nodes that do not 
require cooperative nodes. In the second round, the coordinates of the remaining five unknown 
nodes are calculated with the assistance of the cooperative nodes. According to the experimental 
results, the average positioning error for the first round is 2.6727 m, whereas that for the second 
round increases to 3.3715 m.

Fig. 8. Localisation Results of the RSSI-MCNC Algorithm

A comparative analysis is conducted based on the average positioning errors from the two 
rounds. It can be observed that when cooperative nodes are introduced into the localisation, the 
average localisation error of the system increases. In Fig. 9, one of the critical determinants of 

Fig. 9. Relationship between average localisation error and the number of anchor nodes
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positioning accuracy is the number of anchor nodes. The average error in location estimation 
rises significantly as the number of anchor nodes progressively diminishes. This is because when 
the cooperative nodes participate in positioning, their positioning errors accumulate. Compared 
with the algorithm in Ref. [13], the RSSI-MCNC algorithm has a strong positioning accuracy 
when anchor nodes are scarce, and the mean error in location determination is diminished to 
1.55 meters. Further addition of anchor nodes results in a reduced effect on the improvement of 
the positioning accuracy.

To further verify the positioning accuracy, it is compared with Refs. [12] and [13]. To ensure 
that the localisation coverage of Ref. [12] reaches 100%, it is assumed that nine anchor nodes are 
placed in the roadway, and other simulation parameters remain unchanged. As shown in Fig. 10, 
the positioning accuracy of the RSSI-MCNC algorithm is improved by 28.98% compared with 
Ref. [12] and 31.81% compared with Ref. [13].

Fig. 10. Comparison of Localisation Errors

4.	 Conclusion

A coal mine underground positioning algorithm based on RSSI model modification and node 
cooperation (RSSI-MCNC) is proposed, aiming to improve the positioning accuracy and expand 
coverage in the demanding environments in underground operations of coal mines. By introducing 
Kalman filtering to optimise the RSSI values and dynamically adjust the model parameters, it is 
adapted to the environmental changes and improves the accuracy of the ranging model. In addition, 
using the localised nodes as cooperative nodes and combining the improved weighted centroid 
algorithm and gradient descent method, the algorithm can more precisely estimate the positions 
of unknown nodes during localisation. The experimental results demonstrate that compared with 
other algorithms, the RSSI-MCNC algorithm can significantly improve positioning coverage and 
accuracy in the case of fixed anchor nodes and random distribution of unknown nodes in the 
mining roadway. This algorithm can still leverage its powerful positioning capability, especially 
when anchor node resources are relatively scarce, demonstrating its unique accuracy advantage. 
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Therefore, this algorithm has crucial practical application value and promotion potential for 
improving the positioning and monitoring capabilities of mining personnel and equipment and 
ensuring safe production in mines.
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