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Modeling of Mineral Efficiency in Geothermal Hot Waters  
with Data Envelopment Analysis 

The Biga Peninsula is an important region of geothermal resources, heat mining in Western Anatolia. 
In this study, the modelling of mineral efficiency in hot waters was made with data envelopment analysis 
for the first time. Gold, silver, and lithium in the geothermal hot water were defined as the outputs, whereas 
physical properties of the geothermal resource such as temperature, pH level, electrical conductivity, 
and salinity were defined as the inputs. The output-oriented Charnes, Cooper, and Rhodes data envelop-
ment analysis model, which measures the total efficiency, and the output-oriented Banker, Charnes, and 
Cooper data envelopment analysis model, which measures technical efficiency, were used in the study. 
A total of 50 models were created –25 with the first model and 25 with the second model – to analyse 21 
geothermal resources in the Biga Peninsula. As a result of the analysis of the models, nine geothermal 
resources were found to have a relative efficiency of 100%. The average technical efficiency score in the 
Banker, Charnes, and Cooper model was 70%, whereas the average total efficiency score in the Charnes, 
Cooper, and Rhodes model was 68.5%. It was found that data envelopment analysis can be used to model 
geothermal resources in mineral operations.
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1.	I ntroduction

1.1.	A im and area

Heat energy stored underground is referred to as geothermal energy. Gaining and using geo-
thermal resources is a heat mining activity. Producing hot water, transferring geothermal heat to 
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the surface from underground by pumping air or water into the underground, and obtaining ions, 
minerals, and compounds from geothermal waters are fundamentally heat mining operations. 
Turkey is 5th in the world in terms of both geothermal fluid reserves and geothermal energy us-
age [12]. The study area is located at the Biga Peninsula, in the Northwest of Western Turkey. The 
Biga Peninsula has attracted human attention since ancient times, and the peninsula has highly 
unusual geological and historical features. The Biga Peninsula has four distinct tectonic zones 
and covers an area of approximately 10,000 km2. Unconformably overlain igneous, metamorphic, 
sedimentary rocks contain many faults. The ancient city of Troy is on the Peninsula.

Underground water dissolves rock and becomes rich in minerals. Geothermal waters have 
long been used for therapy. Besides traditional uses, copper sulfate was produced from a geo-
thermal hot water resource between 1985 and 2000 in the Biga Peninsula. Metallic minerals and 
critical elements, in particular, are becoming more and more valuable [13,18]. Obtaining elements 
from geothermal water resources, and the associated research on the economic value of these 
elements, is thus becoming more and more important [8,15].

1.2.	 Methodology

Today, the importance of simulation and modeling is increasing in both engineering fields 
and economy or management fields. The purpose of most of these studies is efficiency, produc-
tivity, optimization, and sustainability. Charnes et al. used the data envelopment analysis (DEA) 
method, which they developed to measure the efficiency of public schools in the USA, for the 
first time [3]. DEA is a non-parametric linear program technique. The method measures relative 
efficiency in operations with multiple inputs and multiple outputs. Each operation unit calculating 
relative efficiency is called a decision-making unit (DMU). DEA measures the highest possible 
efficiency score according to inputs and outputs, and it determines the relative efficiency value 
of DMUs according to this score [11].

One of the most important advantages of this method is the ability to determine boundary 
values for a relatively efficient resource. This way, input and/or output values required for an inef-
ficient DMU to become efficient can be determined. This feature guides managers and investors in 
terms of input and/or output boundaries for inefficient units. The DEA is a non-parametric method 
that can eliminate problems encountered in efficiency analysis. Multiple inputs and outputs can 
be simultaneously assessed with the DEA method. Unlike parametric methods, it is possible to 
make an assessment without estimating an analytic production function with this method. In ad-
dition, inputs and outputs are independent of measurement or assessment units. For this reason, 
a DMU or multiple DMUs can be assessed simultaneously for a business or establishment [11]. 
This is an important and distinguishing advantage of the DEA,

Today, software programs such as DEA Excel Solver, DEA-Solver Pro, Warwick DEA, 
and Frontier Analyst and Efficiency Measurement System (EMS) have facilitated the analysis 
of efficiency models. The DEA is widely used in efficiency assessment in many fields such as 
engineering, energy sources, economics, banking, aviation, and health care [10,16]. Some studies 
are on the energy efficiency of geothermal resources [2,6,20]. To the best of our knowledge, there 
are no studies on the mineral efficiency of geothermal resources in the literature.

The data used in this study were obtained from a project related to geothermal resources 
and analysis conducted by the Turkish Ministry of Development [9]. Gold (Au), silver (Ag), and 
lithium (Li) precious metals and critical elements with technological and economic values were 
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selected as output parameters. Physical properties of the geothermal resource such as temperature, 
pH level, electrical conductivity (EC), and salinity were defined as the inputs. EMS 1.3 software 
was used and DMUs were calculated in the study [17].

2.	 Materials and methods

2.1.	 Materials

Gold and silver are minerals that can be found together in geothermal resources [4]. Lithium 
is commonly found in geothermal fluids and used in the determination of certain characteristics 
of the fluid in question [14]. Prices of gold, silver, and lithium are 93.41 $/g, 1024.52 $/kg, and 
74,506 $/ton, respectively [7].

Twenty-one geothermal water springs in the Biga Peninsula were selected DMUs in this 
study (Fig. 1). Au, Ag, and Li values were investigated as outputs. Outputs were examined under 
5 groups: i) Au, Ag, and Li, ii) Au and Ag, iii) Au, iv) Ag and v) Li. Temperatures, pH levels, EC 
values, and salinity values of geothermal resources were defined as the inputs. Efficiency was 
defined as the ability to produce the maximum output with consumed inputs. In the efficiency 
analysis, 5 groups mentioned above were investigated using 25 models.

Fifty active geothermal hot water resources from which samples could be taken in the Biga 
Peninsula were analyzed. Groups were determined according to the elements in the fluid their 
present-day values, and the chemical and physical properties of the geothermal springs. The main 
purpose there is to get maximum benefit. Input and output values of geothermal resources are 
given in TABLE 1. TABLE 2 shows the groups analyzed.

Fig. 1. The Biga Peninsula and geothermal hot water springs (modified after Karaca et al. [9])
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Table 1

nput and output values, ppb (modified after Karaca et al. [9])

Spring
Inputs Outputs

Temp., °C pH EC, µS/cm Salinity, ‰ Ag Au Li
1 33 7.75 1,181 0.4 0.37 <0.05 99.4
2 28.1 7.26 1,968 0.8 <0.05 <0.05 598.1
3 23 6.92 763 0.1 <0.05 <0.05 2.6
4 23.9 6.98 771 0.1 <0.05 <0.05 2.1
5 34.8 9 1,086 0.3 <0.05 <0.05 123.6
6 34.5 8.9 1,048 0.3 <0.05 <0.05 122.6
7 32.7 8.75 1,798 0.7 <0.05 <0.05 502.6
8 30.5 7.5 1,613 0.5 <0.05 <0.05 423.5
9 29.6 7.09 2,510 1.2 <0.05 <0.05 712

10 29.7 7.14 2,510 1.2 0.2 <0.05 709.2
11 47.9 6.84 2,500 1.2 <0.05 0.21 945.4
12 54.7 7.88 998 0.3 <0.05 <0.05 77.3
13 81 7.7 980 0.3 <0.05 0.07 91.1
14 36.2 7.18 712 0.1 <0.05 <0.05 39.9
15 41.1 6.9 919 0.2 <0.05 <0.05 182.6
16 38.9 7.03 942 0.2 <0.05 <0.05 192.3
17 35.9 6.33 490 0 <0.05 <0.05 65.4
18 46.9 8.21 1,709 0.7 <0.05 <0.05 141.6
19 50.5 7.84 1573 0.6 <0.05 <0.05 134.7
20 52.6 9.03 607 0 <0.05 <0.05 94.7
21 51.8 9.05 605 0 <0.05 0.12 97

Table 2

Input and output groups for models

Inputs
Output groups

I II III IV V
pH

temperature
salinity

EC
pH, temperature, salinity, EC

Au, Ag, Li Au, Ag Au Ag Li

2.2.	D ata envelopment analysis (DEA)

In this paper, the DEA method and Charnes, Cooper, and Rhodes (CCR) and Banker, 
Charnes, and Cooper (BCC) output-oriented models were used [1,5]. These models can be 
input-oriented, output-oriented, or disoriented. The disoriented model is selected for maximum 
output with minimum input. In the input-oriented model, outputs stay the same while inputs are 
reduced proportionally. In the output-oriented model, inputs stay the same while outputs increase 
proportionally. The models can be established as primal or dual [1,5].
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The DEA determines efficient and inefficient DMUs [11]. The efficiency score is between 
0 and 1. If the score is 1, then the DMUs is efficient. Relatively efficient resources constitute the 
reference set. New input and output values can be calculated for DMUs which are inefficient 
according to values in the reference set. The DEA compares each DMU with efficient DMUs. 
Efficient DMUs form the efficiency boundary. The efficiency of any DMU is measured accord-
ing to this boundary. The method calculates DMUs above the efficiency boundary as relatively 
efficient. These DMUs constitute the reference set. A DMU below the efficiency boundary 
is a relatively inefficient unit [1, 5].

The efficiency score of a DMU is defined as the weighted sum of outputs divided by the 
weighted sum of inputs. Here;
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vj > 0,  j = 1, ..., m,	 ui > 0,  i = 1, ..., n 

	 vj	 –	weight assigned to input j. by decision-making unit s, 
	 ui	 –	weight assigned to output i. by decision-making unit s,
	 Yis	 –	output i. produced by decision-making unit s,
	 Yik	 –	output i. produced by decision-making unit k,
	 Xjs	 –	 input j. used by decision-making unit s,
	 Xjk	 –	 input j. used by decision-making unit k.

EMS 1.3 software was used to analyze the models and relative total efficiencies and relative 
technical efficiencies of 21 natural geothermal resources in the Biga Peninsula were calculated 
according to Au, Ag, and Li outputs.

The data for each DMU was assumed to be positive. In the models, m number of inputs and 
n numbers outputs were selected. For each DMU, X input data matrix and Y output data matrix;
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m = 4, n = 3, t = 21, X1t – temperature, X2t – pH, X3t – EC, X4t – salinity, 
Y1t – Ag, Y2t – Au, Y3t – Li

The minimum number of DMUs required for m number of inputs and n number of outputs 
is m + n + 1 [19]. In this study, the analysis of output-oriented CCR and BCC models in Group 1 
was given in detail. Due to the volume of the study, only efficient geothermal resources were 
included in the groups. The output-oriented model matrices for temperature, pH level, salinity, 
EC inputs, and Au, Ag, and Li outputs in group 1 are given below;
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Matrices are the same for both models. However, each model has a different linear equa-
tion. The difference between the BCC model and the CCR model is the addition of the convexity 
constraint to the duality of the CCR model [5]. Convexity constraint;
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2.2.1. CCR Output-Oriented Model

The CCR model assumes constant returns to scale and is focused on maximizing the outputs 
for a given set of inputs. In the output-oriented version of DEA, the goal is to determine the 
maximum proportional increase in output that can be achieved without increasing the inputs, 
while maintaining efficiency relative to other DMUs.

The CCR DEA model calculates the total efficiency. Total efficiency is the multiplication 
of technical efficiency and scale efficiency. Technical efficiency is defined as the determination 
of optimal inputs and outputs for an investment or preliminary work, while scale efficiency is 
defined as the determination of production conditions at the optimal scale. Each k number of 
DMUs produces n number of outputs for m number of different inputs. For DMUk; t. is DMU’s 
input amount j. (Xjt ≥ 0, t = 1, …, k) and t. is the output amount i. consumed by DMU (Yit ≥ 0). 
In this case, the output-oriented CCR model [19];
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Optimal values (v*, u*, q*) are calculated. Here, Zs represents the proportional increase in 
output. λts represents the weights assigned to each DMU in the reference set in the primal model. 
The goal is to calculate the maximum factor by which outputs can be increased, maintaining or 
improving the efficiency of the given DMU. In the dual model, vj represents the weight assigned 
to each output. The objective is to minimize the weighted sum of outputs while ensuring the suf-
ficient usage of inputs. While the Primal model focuses on maximizing outputs or minimizing 
inputs for a given DMU, the Dual model provides insight into the value of inputs and outputs 
needed to achieve this. If the DEA contains k number of DMUs, k numbers of models are cre-
ated. k numbers of optimization models are calculated to determine the relative efficiency of 
each DMU. By the duality theorem, the primal model is maximization and the dual of the primal 
model is minimization. The best value of the primal model (Zk) is equal to the best value of the 
dual model (qk*). If q* = 1, DMU is efficient according to the CCR model and there is a single 
optimal solution (v*, u*) if v* > 0, u* > 0. Otherwise, DMU is inefficient according to the output-
oriented CCR model [5].
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2.2.2.	BCC Output-Oriented Model

The BCC DEA model was developed by Banker, Charnes, and Cooper. The BCC calculates 
the technical efficiency. In the output-oriented version of the BCC model, the goal is also to 
maximize output, but with the flexibility of considering different returns to scale for each DMU. 
The output-oriented BCC model [1,5]; 
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Here in the primal model, λi are the weights assigned to each DMU in the reference set. 
The constraint convexity ensures that the model accounts for variable returns to scale, relaxing 
the assumption of constant returns to scale that is present in the CRR model. Zs represents the 
proportional increase in outputs for the evaluated DMU. The goal is to determine the maximum 
output that can be achieved without increasing the inputs. In the Dual model, we minimize the 
weighted sum of outputs while ensuring that the weighted sum of inputs meets a certain threshold. 
This function in the dual form formula aims to minimize the weighted sum of inputs minus the 
free variable vs. The second line means it guarantees that the efficiency ratio does not exceed 1. 
This constraint is a characteristic of the BCC model, which allows for variable returns to scale. 
The total sum of output weights is normalized to 1. The last line shows that sign constraints on 
variables. This output-oriented dual BCC model is widely used in Data Envelopment Analysis 
(DEA) to measure the efficiency of DMUs by determining how much they can proportionally 
increase their outputs while maintaining the same level of inputs.

3.	R esults and discussion

Mineral gaining from waters rich in minerals is an effective use of natural resources, as 
well as an ecological necessity. Minerals dissolved from rocks and carried to the earth by hot 
waters or other underground waters may either be an economic opportunity or a threat to ecology. 
Cooke & McPhail performed numerical simulations of gold, silver, and tellurium mineralization 
in geothermal fluids [4]. Navarro et al. modelled relations between minerals and elements using 
a multivariate analysis [14]. Raymond et al. investigated gold, silver, and arsenic transport in 
geothermal wells [15]. Kaasalainen and Stefánsson performed a statistical study on trace ele-
ments in geothermal waters [8].

3.1.	CCR  Output-Oriented Model Results

In Group 1, which had four inputs and three outputs, 9 out of 21 geothermal resources were 
found to be 100% efficient in the output-oriented CCR model. Fourteen resources had an efficiency 
score of over 75%, whereas 18 resources had an efficiency score of over 50%. Three resources 
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had an efficiency score between 30-50%. The overall efficiency score of geothermal resources 
was 68.5%. Considering the average relative efficiency score, 5 resources were above the aver-
age, whereas 7 were below the average. TABLE 3 presents the results of the output-oriented dual 
CCR DEA model for Group 1. The results in TABLE 3 help identify the most efficient springs 
and provide guidance on how underperforming springs can improve their efficiency by bench-
marking against the best-performing ones. Geothermal spring (GS)-1, GS-2, GS-3, GS-8, GS-9, 
GS-11, GS-17, GS-20, and GS-21 were found as calculated to be efficient in the output-oriented 
CCR model 11, 2, 4, 2, 1, 12, 2, 8, and 3 times respectively (TABLE 3).

Table 3

The output-oriented dual CCR DEA model results of Group 1

Spring Efficiency Score DMU Reference Set Dual Temp., °C pH EC
1 *
2 *
3 *
4 0.96 1, 3, 11, 20 0, 0.97, 0, 0.03 0 0 8.51
5 0.56 1, 3, 11, 20 0.14, 0.24, 0.18, 0.30 0 2.28 96.82
6 0.57 1, 3, 11, 20 0.14, 0.27, 0.18, 0.29 0 2.15 52.91
7 0.90 1, 2, 8, 11 0.02, 0.19, 0.48, 0.25 0 1.88 0
8 *
9 *
10 0.99 2, 9, 11 0, 0.99, 0.01 0 0.05 0
11 *
12 0.47 1, 3, 11, 20 0.18, 0.17, 0.56, 0.02 9.62 0 0
13 0.64 1, 11, 20, 21 0.10, 0.19, 0.59, 0.03 35.81 0 0
14 0.68 1, 3, 11, 20 0.09, 0.28, 0.03, 0.48 0 0 25.96
15 0.85 1, 11, 17 0.01, 0.16, 0.9 0 0 57.56
16 0.89 1, 8, 11, 17 0.01, 0.15, 0.10, 0.81 0 0 37.79
17 *
18 0.34 1, 11, 20, 21 0.28, 0.48, 0.27, 0.01 0 0.23 0
19 0.37 1, 11, 20 0.26, 0.41, 0.33 4.64 0 31.07
20 *
21 *

* Efficient geothermal water resource

In the output-oriented CCR model, it is possible to calculate a new boundary value for an 
input that prevented the resource from being efficient. This feature is the most important advantage 
of the model. To make an inefficient resource efficient, the new boundary value of the input is 
calculated by summing up the values of the inputs of each resource in the reference set and the 
multiplication of dual values of the resources in question. Accordingly, to make GS-5 efficient, 
the new boundary values of inputs were calculated as follows in Group 1.

•	 pH boundary value; 7.75×0.14 + 6.92×0.24 + 6.84×0.18 + 9.03×0.3 = 6.69

Moreover, it is possible to calculate the change ratio necessary for an efficient boundary 
value. It is very important for the mineral economy to calculate the current boundary value and 
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the boundary value required for efficiency. This is one of the most important advantages of the 
DEA for mining activities.

 input-new input
Input change ratio =

input
 

pH change ratio for GS-5 to be efficient;  9 6.686
0.257

9


  

In this case, the pH level should be 25.7% higher for GS-5 to be efficient. If the new input 
boundary values calculated above occur, GS-5 will be relatively more efficient for Au, Ag, and 
Li. Similar calculations can be performed for other groups in TABLE 2 as well. It is possible to 
calculate inputs that will make an inefficient resource efficient. Similarly, the change ratio for 
an inefficient geothermal resource in the group can be calculated. These calculations were not 
performed to restrict the volume of the paper.

When outputs were selected as Au and Ag for the CCR model, GS-1, GS-3, GS-11, GS-17, 
GS-20, and GS-21 were efficient (TABLE 4). When the output was only Au, GS-11, GS-20, and 
GS-21 were efficient, when the output was only Ag, GS-17, GS-20, and GS-21 were efficient 
and when the output was only Li GS-2, GS-8, GS-9, GS-11, GS-17, and GS-20 were efficient. 
TABLE 4 shows that the geothermal hot water resources in 5 groups are found to be efficient as 
a result of the analysis of the output-oriented CCR model.

Table 4

Efficient geothermal resources according to the results of the analysis of the CCR model

Outputs Temp., °C pH EC, µS/cm Salinity, ‰ All inputs
Au, Ag, Li 1, 9, 11 1, 11 1, 11, 21 17, 21 1, 2, 3, 8, 9, 11, 17, 20, 21

Au, Ag 1, 3, 11, 17, 20 1, 11 1, 21 17, 21 1, 3, 11, 17, 20, 21
Au 11 11 21 21 11, 20, 21
Ag 1 1 1 17, 20, 21 1, 17
Li 9 11 11 21 2, 8, 9, 11, 17, 20

3.2. BCC Output-Oriented Model Results

In Group 1, which had four inputs and three outputs, 9 out of 21 geothermal resources were 
found to be 100% efficient in the output-oriented BCC model. Moreover, these 9 resources were 
100% efficient in the CCR model. The BCC efficiency scores were relatively higher. This was 
an expected result. Higher output values were calculated in the BCC model, which measures 
technical efficiency. In the output-oriented BCC model, 14 resources had an efficiency score of 
over 75%, whereas 18 resources had an efficiency score of over 50%. Three resources had an 
efficiency score between 30-50%. Considering the average relative efficiency score, 6 resources 
were above the average, whereas 6 were below the average. GS-1, GS-2, GS-3, GS-8, GS-9, 
GS-11, GS-17, GS-20, and GS-21 were found as calculated to be efficient in the output-oriented 
CCR models 11, 1, 4, 2, 1, 12, 9, 10, and 4 times respectively. The average efficiency score was 
70% in the output-oriented BCC model. This score was 68.5% in the CCR model. It is important 
that technical efficiency is higher than total efficiency. Production and industrial investments 
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require technical efficiency. In this context, the BCC model was found to be more appropriate 
compared to the CCR model for investments in obtaining minerals from geothermal resources. 
TABLE 5 shows the results of efficient and inefficient geothermal resources for the output-oriented  
BCC model.

Table 5

The output-oriented dual BCC DEA model results of Group 1

Spring Efficiency Score DMU Reference Set Dual Temp., °C pH EC
1 *
2 *
3 *
4 0.96 1, 3, 11, 17, 20 0, 0.97, 0, 0, 0.03 0 0 8.40
5 0.58 1, 3, 11, 17, 20 0.14, 0.24, 0.18, 0.30, 0.11 0 1.90 38.76
6 0.59 1, 3, 11, 17, 20, 21 0.14, 0.27, 0.18, 0.29, 0.11, 0 0 1.80 0
7 0.91 1, 2, 8, 11, 17 0.01, 0.48, 0.24, 0.16, 0.11 0 1.59 0
8 *
9 *
10 0.99 9, 11 0.99, 0.01 0 0.05 0.05
11 *
12 0.49 1, 11, 17, 20, 21 0.16, 0.17, 0.21, 0.42, 0.03 9.59 0 0
13 0.67 1, 11, 17, 21, 20, 21 0.07, 0.19, 0.3, 0.39, 0, 0.04 35.83 0 0
14 0.74 1, 3, 11, 17, 20, 21 0.05, 0.28, 0.04, 0.41, 0.22, 0 0 0 0
15 0.86 1, 11, 17, 20 0.02, 0.16, 0.65, 0.17 0.55 0 73.78
16 0.90 1, 8, 11, 17 0.02, 0.16, 0.10, 0.57 0 0 52.36
17 *
18 0.35 1, 11, 20 0.28, 0.49, 0.23 2.1 0.61 13.75
19 0.37 1, 11, 20 0.26, 0.41, 0.33 4.91 0.05 34.22
20 *
21 *

* Efficient geothermal water resource

As in the CCR model, it is possible to calculate boundary values necessary for inefficient 
resources to be efficient in the BCC model as well. The reference set values are used here. Simi-
larly, new limit values for GS-5, found to be inefficient as a result of the analysis of the BCC 
model, can be calculated as follows.

•	 pH boundary value; 7.75×0.14 + 6.92×0.24 + 6.84×0.18 + 9.03×0.3 + 6.33×0.11 = 7.38

As in the CCR model, it is possible to calculate the change ratio necessary for inefficient 
DMUs in the BCC model as well.

pH change ratio for GS-5 to be efficient;  9 7.3823
0.1797

9


  

In this case, the pH level should be 17.97% higher for GS-5 to be efficient. TABLE 6 shows 
the geothermal hot water resources in new limit values for GS-5, found to be inefficient as a re-
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sult of the analysis of the CCR and BCC models, and the change ratio necessary for inefficient 
DMUs in the CCR and BCC models.

Table 6

Boundary values and change ratio for input values of the CCR and BCC models

Model pH Temp., °C EC Salinity

Boundary Value
CCR 6.69 34.54 980.56 0.3
BCC 7.38 38.49 1034.46 0.27

Change Ratio
CCR 25.7% 0.74% 9.7% 1.3%
BCC 17.97% –10.6% 4.74% 1.3%

GS-3, GS-11, GS-17, GS-20, and GS-21 were efficient for Au and GS-1, GS-3, GS-17, and 
GS-20 were efficient for Ag (TABLE 7). When Au and Ag were analyzed together, GS-1, GS-3, 
GS-11, GS-17, GS-20, and GS-21 were efficient. Here, GS-2, GS-3, GS-8, GS-9, GS-11, GS-17, 
and GS-20 were efficient for Li. TABLE 7 shows the geothermal hot water resources in 5 groups 
as found to be efficient because of the analysis of the output-oriented BCC model.

Table 7

Efficient geothermal resources according to the results of the analysis of the BCC model

Outputs Temp., °C pH EC, µS/cm Salinity, ‰ All inputs
Au, Ag, Li 1, 2, 3, 9, 11 1, 11, 17 1, 11, 21, 17 1, 11, 17, 21 1, 2, 3, 8, 9, 11, 20, 17, 21

Au, Ag 1, 3, 11 1, 11, 17 1, 11, 17, 21 1, 11, 17, 21 1, 3, 11, 17, 20, 21
Au 3, 11 11, 17 11, 17, 21 11, 21 3, 11, 17, 20, 21
Ag 1, 3 1, 17 1, 17 1, 17, 20, 21 1, 3, 17, 20
Li 2, 3, 9, 11 11, 17 11, 17 11, 21 2, 3, 8, 9, 11, 17, 20

3.3.	D iscussion

According to the CCR DEA and the BCC DEA models, 9 out of 21 geothermal hot water 
resources were calculated as 100% efficient for Au, Ag, and Li. The resources that are 100% 
efficient for both models are the same resources. In both models, the same 6 resources are ef-
ficient for Au and Ag, and the same 6 resources are efficient for Li as well. However, some of 
the efficient sources for Au and Ag, and Li are different. According to the CCR DEA and the 
BCC DEA models, 3 and 5 resources are efficient for Au, respectively. The 3 resources are the 
same for them. For Ag, 3 resources are efficient in the CCR DEA model, while 4 resources are 
efficient in the BCC DEA model, and the 2 resources are the same.

Technical efficiencies of geothermal hot water resources were found to be higher compared 
to their total efficiencies. The average technical efficiency score in the BCC model was 70%, 
whereas the average total efficiency score in the CCR model was 68.5%. In addition, the number 
of reference sets of groups in the BCC model was higher compared to the CCR model (Fig. 2). 
The results here are very important because production and industrial investments require techni-
cal efficiency. Because technical efficiency is necessary for cost efficiency, quality, performance, 
competitive advantage, resource utilization, development, and innovation. In this context, the 
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BCC model was found to be more appropriate compared to the CCR model for investments in 
obtaining minerals from geothermal resources, therefore the output-oriented BCC model should 
be preferred.
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Fig. 2. Comparison of efficiency scores of CCR DEA and BCC DEA models

4.	C onclusion

This study modeled the total and technical efficiencies of geothermal hot water resources 
based on mineral content using DEA for the first time. Inputs included temperature, pH level, 
electrical conductivity, and salinity, while outputs were Au, Ag, and Li values.

Using the CCR (total efficiency) and BCC (technical efficiency) DEA models, 9 out of 21 
geothermal hot water resources were found to be 100% efficient for Au, Ag, and Li. The same 
resources were efficient in both models. However, technical efficiencies were generally higher 
than total efficiencies, with average scores of 70% in the BCC DEA model and 68.5% in the CCR 
DEA model. The BCC DEA model also had more reference sets compared to the CCR DEA model.

These results highlight the importance of technical efficiency for production and industrial 
investments. Investors should consider the input conditions when extracting minerals like gold 
from geothermal water. By adjusting input limits, they can determine the economic feasibility. 
Thus, the BCC DEA model is more suitable for mineral extraction investments from geothermal 
resources. Overall, DEA models are useful for optimizing geothermal resource utilization.
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