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The time-varying mesh stiffness (TVMS) and static transmission error (STE) are the main dynamic 
load excitation forms in the shearer cutting section gearbox (SCSG). The gearbox comprises two-stage 
planetary gear sets and multi-stage parallel gear sets. The structure of the multi-stage transmission and its 
rich internal dynamic excitation result in unique and complex dynamic behavior. In this paper, a coupled 
mechatronic integration dynamic model for SCSG and motor is developed, in which the multi-stage 
coupling excitation effects caused by gear mesh stiffness and static transmission error are fully simu-
lated, thereby clarifying the interaction mechanism between the motor and transmission system. Based 
on the simulation model, the dynamic load characteristics of the SCSG are studied. The results show that 
load-sharing performance is improved with the increases of drum torque in the planetary gear sets (PGSs), 
which indicates that the load-sharing performance of the planetary gears can be effectively guaranteed 
in the process of increasing the coal mining rate. Through the combination of numerical simulation and 
experimental research, it is verified that the simulated signals are consistent with the experimental data for 
motor current. Meanwhile, relying on the proposed mechatronics model, extensive vibration information 
of the gearbox can be identified through the stator current signal. These results reference the vibration 
response analysis and signal monitoring of complex transmission systems.

Keywords:	 Longwall shearer; Planetary gear sets; Mechatronics model; Static transmission error;  
Dynamic characteristics; Load sharing performance

1.	I ntroduction

Coal is one of the main sources of energy. The double-drum shearers are mechanised equip-
ment suitable for longwall coal mining. Its continuous and efficient working characteristics make 
it a broad application market and prospect in coal mining. The shearer-cutting section is the direct 
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operation mechanism of coal mining, and it is in harsh conditions of heavy load and impact for a 
long time. The research on its dynamic characteristics is of great significance to the working life of 
shearers and the efficiency of coal mining. Shearer cutting section gearbox (SCSG) is a complex 
transmission system consisting of two-stage planetary gear sets (PGSs) and multi-stage parallel 
gear sets. Time-varying mesh stiffness (TVMS) and static transmission error (STE) are typical 
forms of internal excitation in gear transmission systems. During the meshing transmission 
process between the planet and sun, as well as the planet and ring, complex dynamic behaviours 
will be generated because of these excitation effects in the PGSs. At the same time, each stage 
meshing transmission of gear pairs in parallel gear sets would also produce vibration and noise 
with different amplitudes due to these internal excitations. When these dynamic responses are 
coupled and superimposed among various stages of the transmission system, extremely complex 
multi-source coupled dynamic behaviours are formed inside the SCSG.

Nomenclature

cjpn	 –	 mesh damping between central gears and planets (j = r, s)
cjx, cjy	 –	 bearing damping of central members (j = c, r, s) 
cp	 –	 bearing damping of planets 
cju	 –	 torsional damping of central members (j = c, r, s)
cISl	 –	 coupling damping of intermediate shafts at each stage (l = 1, 2, 3)
cHS	 –	 coupling damping of high-speed shaft
ci,i+1	 –	 mesh damping of parallel gear pairs
crox, croy	 –	 bearing damping of the rotor
Cb, Cm(t)	 –	 bearing damping matrix and mesh damping matrix of the system
ei,i +1	 –	 static transmission error of parallel gear pairs
ejpn	 –	 static transmission error between central gears and planets (j = r, s)
fn1, fn2	 –	 mesh frequency of the first and second stage parallel gear sets
fm3, fm4	 –	 mesh frequency of the third and fourth stage planetary gear sets
fe	 –	 power supply frequency
F(t)	 –	 internal excitation vector of the system
Gi	 –	 multistage parallel gear (i = 1, 2, …, 8)
GBi	 –	 bearings for multi-tage parallel gear (i = 1, 2, …, 8)
Ij	 –	 moment of inertia for central members and planets (j = c, r, s, p)
Iro	 –	 rotor inertia
I(t)	 –	 stator and rotor current vector
kjpn	 –	 mesh stiffness between central gears and planets (j = r, s)
kjx, kjy	 –	 bearing stiffness of central members (j = c, r, s)
kp	 –	 bearing stiffness of planets
kju	 –	 torsional stiffness of central members (j = c, r, s)
ki,i +1	 –	 mesh stiffness of parallel gear pairs
krox, kroy	 –	 bearing stiffness of the rotor
kHS	 –	 coupling stiffness of high-speed shaft
kISl	 –	 coupling stiffness of the intermediate shafts at each stage (l = 1, 2, 3)
Ki,i +1	 –	 meshing stiffness matrix of parallel gear sets
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Kb, Km(t)	 –	 bearing stiffness matrix and meshing stiffness matrix of the system
KIS1, KIS2, KIS3	 –	 coupling stiffness matrix between each stage transmission system
Lst, Lro	 –	 synchronous inductance of stator and rotor
Lm	 –	 magnetizing inductance
mj	 –	 mass of central members and planets (j = c, r, s, p)
mro	 –	 rotor mass
M	 –	 mass matrix of the system
np	 –	 motor pole pairs
N	 –	 number of planet gears
q	 –	 generalized displacement vector of the system
rj	 –	 base radius of central members and planets (j = c, r, s, p)
Rst, Rro	 –	 stator and rotor resistance
Tj	 –	 external torque acting on the centre gear (j = r, s)
Te	 –	 electromagnetic torque
T	 –	 external torque vector of the system
U(t)	 –	 stator supply voltage vector
vq	 –	 traction speed of the shearer
αj	 –	 pressure angle of central gears (j = r, s)
ω	 –	 synchronous angular velocity of the rotor
ωro	 –	 mechanical angular velocity of the rotor
ψn	 –	 position angle of the nth planet
ψi, i+1	 –	 angle between the mesh line and y axis for parallel gear pairs

Subscripts
c, r, s	 –	 carrier, ring, sun
p	 –	 planet
n	 –	 planet number
u	 –	 equivalent torsion direction
st, ro	 –	 stator and rotor of the motor
d, q	 –	 synchronous rotation coordinate axis
i,i+1	 –	 parallel gear pair number (i = 1, 2, 4, 5, 6, 7)
x, y	 –	 horizontal and vertical translation directions
ζ, η	 –	 translation direction of planets in the following coordinate system

The PGSs are the main reduction mechanism in the SCSG. Because of the compact structure 
and numerous components, the modelling method and dynamic behaviour of the PGSs are wor-
thy of special attention and research. For the study of the relationship between error excitation 
and the dynamic behaviour of PGSs, Kahraman [1,2] developed a three-dimensional universal 
model to simulate the dynamic behaviour of a single-stage helical planetary gear set, and derived 
a periodic excitation function based on mesh stiffness and static transmission error (STE), these 
parameters are assumed to be known from static elastic analysis. This model has important refer-
ence values for dynamic excitation mode study, load-sharing behaviour and the influence of the 
meshing phase on the system. Inalpolat and Kahraman [3,4] proposed a nonlinear time-varying 
dynamic model that includes periodic TVMS and pitch correlation to predict the modulation 
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sidebands of PGSs. They account for amplitude modulation (AM) caused by the rotation of the 
planet carrier to simulate the acceleration spectrum at a fixed position in the planetary gearbox 
housing. They continued to systematically research the impact of manufacturing errors on the 
dynamic characteristics, gear stress, and planetary load-sharing behaviour in the PGSs.

The mesh stiffness of PGSs varies with the number of contact tooth pairs in gear rotation. 
Bahk and Parker [5] studied the nonlinear dynamic behaviour of planetary gears in the range 
of meaningful meshing frequency by numerical and analytical methods, to solve the stability 
boundary problem of PGSs caused by time-varying meshing stiffness excitation. Sheng et al. 
[6] proposed a nonlinear transverse and torsional coupling dynamic model for PGSs that consid-
ers the effects of eccentricity error, static transmission error (STE), and time-varying meshing 
stiffness (TVMS). This study expands the current understanding of the dynamic load-sharing 
behaviour for planetary gear systems and provides a reference for the design of PGSs. Cao et 
al. [7] pointed out that the presence of gear eccentricity error would change the centre distance 
and mesh position of the gear pair, which would directly affect the mesh stiffness. Based on this, 
the dynamic model of PGSs was developed with sun or planet eccentricity. In this study, a new 
idea is proposed regarding the interaction mechanism between error and stiffness excitation of 
PGSs. If the planets are not in the same relative mesh position at any time, the uneven load dis-
tribution between the planets will be affected by the mesh stiffness. Pedrero et al. [8] established 
the conditions for the uneven load distribution between the planets due to mesh stiffness and 
proposed a calculation method considering the corresponding influencing factors. These studies 
all show that the TVMS excitations of PGSs have an important effect on the dynamic behaviour 
of each planet, such as load-sharing behaviour and dynamic force level, etc.

The study of multi-stage PGSs is based on the single-stage dynamic model. The literature 
[9,10] considered the influence of axial deformation, gyroscopic effect, TVMS and inter-stage 
coupling of components, and a lumped mass model was established for two-stage PGSs. The 
vibration modes and load-sharing characteristics of multistage PGSs are analyzed. The litera-
ture [11,12] proposed a coupled bent-torsional vibration model of multi-stage PGSs and studied 
the effects of eccentricity error, tooth thickness error, pitch error and carrier assembly error on 
the dynamic characteristics and load-sharing performance. Hammami et al. [13,14] developed 
a dynamic model for back-to-back two-stage PGSs and analysed the influence of the mesh stiff-
ness and load variation on the load-sharing performance of the PGSs during starting, braking and 
shifting. Subsequently, Mbarek et al. [15] conducted a comparative analysis of experimental and 
operational modes for the back-back two-stage PGSs. In this study, both experimental and opera-
tional modal analyses are effectively applied to the multi-stage PGSs, revealing the essence of its 
dynamic characteristics during variable speed conditions. The above research analysed the coupling 
dynamic modelling method, internal excitation form and load-sharing performance of multi-stage 
PGSs, which provides a reference for the study of the dynamic behaviour of SCSG in this paper.

The power source for the SCSG is the asynchronous motor drive. The study of the dynamic 
behaviour of motor and multistage gear coupling systems is of great significance for clarifying 
the interaction between mechanical and electrical systems and exploring the influence of mo-
tors on mechanical transmission systems. From the perspective of optimising system dynamic 
force, a dynamic model of an electromechanical drive system, including a vector control unit, 
was established by Mężyk [16,17]. Then Świtoński and Mężyk [18] conducted parameter selec-
tion through sensitivity analysis for optimising the dynamic properties of the electromechanical 
drive system. On this basis, Mężyk et al. [19] proposed a new concept of SCSG, which directly 
connects an electronically controlled permanent magnet motor with a cutter head mechanical 
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system. An electromechanical model was established to determine electrical parameters in the 
cutting process, and the interaction between electrical and mechanical subsystems was explored. 
Based on the electromechanical model, Bai and Qin et al. [20,21] fully considered the effects of 
external excitations, such as voltage transient and internal excitations and time-varying meshing 
stiffness and damping. The study found that voltage transients can have a significant impact on 
the dynamic characteristics of electromechanical systems, and thus proposed reasonable sugges-
tions to improve their stability. They also studied the electromechanical coupling problem caused 
by the interaction between the motor and gear system. They predicted an effective method for 
detecting asymmetric voltage sag conditions through frequency analysis of the electromechanical 
system. The research on electromechanical systems mainly focuses on the interaction relationship 
between mechanical and electrical systems, and the impact of motors on transmission systems. 
Furthermore, outstanding achievements have been made in selecting design parameters, optimis-
ing dynamic performance and improving the stability of the electromechanical coupling system.

In summary, scholars have carried out a lot of in-depth research on planetary gear dynam-
ics and the mechatronics model of motor gearbox, which provides a reference for the dynamic 
analysis of the multi-stage gear transmission system of SCSG. At present, little attention is paid to 
the influence of internal dynamic excitations such as TVMS and STE, so it is difficult to compre-
hensively obtain complex vibration information inside the SCSG. This paper intends to develop 
a coupled dynamic model with two-stage planetary gear sets and multi-stage parallel gear sets in 
the SCSG. The dynamic model will simulate the multi-stage coupling excitation effects caused 
by the TVMS and STE. It will also explore the interaction mechanisms between the motor and 
the transmission system. Additionally, using the electromechanical coupling model, the study 
will identify vibration information within the SCSG through motor current signature analysis.

2.	C oupled dynamic model of the SCSG

This paper takes the cutting section of the shearer as the research object, as shown in Fig. 1, 
which is a complex electromechanical system composed of the motor, multi-stage parallel gear 
sets and two-stage PGSs. This section mainly establishes the lumped mass model of planetary 
gear sets, parallel gear sets and the dynamic model of asynchronous motor, where the dynamic 

Fig. 1. Three dimensional model of the shearer cutting section 
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model of PGSs proposed by Lin and Parker [22] is adopted, the lumped mass model of multi-stage 
parallel gear sets is adopted from Zhang et al. [23], and the asynchronous motor model is estab-
lished based on the equivalent motor model proposed by Kron [24]. Finally, a coupled dynamic 
model of the SCSG is developed through the connection relationship between different stages.

The simplified dynamic model of the SCSG is shown in Fig. 2, which is divided into input-
stage motor, first-stage parallel gear set, second-stage parallel gear set, third-stage planetary gear 
set, fourth-stage planetary gear set and output-stage drum. In Fig. 2, the gear (G1) of the first-stage 
parallel gear set is connected to the motor rotor through an input shaft, which is defined as the 
high-speed shaft (HSS). The gear (G3) of the first-stage parallel gear set is connected to the gear 
(G4) of the second-stage parallel gear set, and the connecting shaft is called the first intermedi-
ate speed shaft (ISS1). The gear (G8) of the second-stage parallel gear set and the sun (S3) of the 
third-stage PGS are coupled through the second intermediate speed shaft (ISS2). The third-stage 
carrier (C3) is connected to the fourth-stage sun gear (S4) through the third intermediate speed 
shaft (ISS3). The cutting drum of the shearer is connected to the fourth-stage carrier (C4), and 
the output shaft is defined as the low-speed shaft (LSS).

Fig. 2. Dynamic model of the shearer cutting section gearbox (SCSG)

2.1.	D ynamic model of multi-stage gear transmission system

The multi-stage gear transmission system of the shearer cutting section includes multi-stage 
parallel gear sets and two-stage planetary gear sets. The dynamic model of single-stage PGS is 
illustrated in Fig. 3, which was built based on the literature [4,22]. 

The principal coordinate system (Oxj yj, j = c, r, s) and the follow-up coordinate system 
(Onζnηn) are established, respectively. The origin O of the principal coordinate is located in the 
geometric center of the central members, and the axis xj (j = c, r, s) is located at point O and 
center point of the first planet gear. The follow-up coordinate system is fixed with the carrier 
and rotates at the same angular velocity, in which its origin is located at the theoretical center 
of the nth planet gear. In this model, the planetary system is simplified into different lumped 
mass points, the mesh action between gears is simulated by spring-damping along the direction 
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of the meshing line, and the bearings are modeled by linear spring and damping. The rotational 
coordinates are uj = θj rj, j = c, r, s, 1, 2, …, N, where θj is the component rotation angle, rj is the 
base circle radius for the sun, ring and planet, and the radius of the circle passing through the 
planet centers for the carrier.

The dynamic model of the parallel gear sets is shown in Fig. 4, and it is consistent with the 
model proposed by Zhang et al. [23]. In which kix, kiy and kjx, kjy represent the bearing stiffness of 
parallel gear sets in x and y directions, cix, ciy and cjx, cjy represent the bearing damping of parallel 
gear sets in x and y directions. kiu, kju and ciu, cju represent the torsional stiffness and damping 
of parallel gear sets. As shown in Fig. 4, the mesh stiffness and bearing stiffness are simulated 
by the spring-damping system. The translational displacements are expressed as x, y, and the 
torsional displacement is defined as u = rθ. ri, rj represent the base circle radius for the gear set.

The dynamic mesh force of the gear pair in the PGS can be defined as:

	 ( ) ( ) ( )jpn jpn jpn jpn jpnF t c t k t    	 (1a)

Where δjpn(t) is the relative displacement along the line of action for the gear pair, given as follows:
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Fig. 3. Dynamic model of single-stage PGS
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The differential equation of motion for the central gears can be expressed as:

	 1
( ) ( )sin ( ) ( ) 0
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m x t F t k x t c x t

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      	 (2b)

	
2

1
( ) ( ) ( ) ( ) ( )

N

j j j jpn ju j ju j j j
n

I r u t F t k u t c u t T r

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In these equations, when j = s (external s – pn gear pair), λ = 1; when j = r (internal r – pn gear 
pair), λ = –1. ψjn = ψn – αj, where αj denotes the pressure angle of the gear, Tj denotes the external 
torque acting on the center gear.

The differential equation of motion for planet gears can be written as:

	 ζ ζ( ) ( )sin ( )sin ( ) ( ) 0pn n spn s rpn r p pn p pnm t F t F t k t c t           	 (3a)

	 ( ) ( )cos ( ) cos ( ) ( ) 0pn n spn s rpn r p pn p pnm t F t F t k t c t           	 (3b)

Fig. 4. Dynamic model of parallel gear set
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2 2( ( ) ) ( ) ( ) ( ) 0pn pn pn spn rpnI r u t F t F t    	 (3c)

Where δpnζ (t) and δpnη(t) are the relative displacements between the carrier and the nth planet 
in the follow-up coordinate system, given as follows:

	 ( ) ( ) cos ( )sin ( )pnζ c n c n nt x t y t t       	 (3d)

	 ( ) ( )sin ( )cos ( ) ( )pnη c n c n n ct x t y t t u t         	 (3e)

The differential equation of the motion for the carrier can be expressed as:
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2

1 1
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N N

c c c p pn p pn cu c cu c
n n

I r u t k t c t k u t c u t  
 
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The motion equations for the parallel gear sets can be written similarly Reference [23].

2.2.	 Mathematical model of the motors

Park [24] proposed a two-phase equivalent motor model from the perspective of coordinate 
transformation, which greatly reduced the difficulty of solving the dynamic problem of asyn-
chronous motors. The coordinate transformation method proposed by Park [24] is applied to 
transform the mathematical model for asynchronous motors in three-phase stationary coordinates 
into two-phase synchronous rotating coordinates.

The basic equations of the dynamic model for asynchronous motors are voltage balance 
equations and rotor motion differential equations. The voltage equation with current as the state 
variable is described as [24]:

	
 ( ) ( ) ( )dt t t

dt
 U AI B I  	 (5)

Where U(t ) = [udst, uqst, 0, 0]T denotes the stator supply voltage vector, I(t) = [idst, iqst, idro, iqro]T 
denotes the stator and rotor current vector.

The coefficient matrices A and B in formula (5) can be expressed as:

	

0
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0 0
0 0

0 0
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m ro
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L L
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L L
L L

 
 
 
 
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 

B  	 (6b)

The electromagnetic torque equation for the motor can be written as:

	 ( )e p m stq rod std roqT n L i i i i   	 (7)

As shown in Fig. 2, the motor rotor (ro) is connected to the gear (G1) in a parallel gear set 
through HSS. The coupling stiffness and coupling damping are defined as kHS and cHS respectively, 
so the differential equation of motion for the rotor can be expressed as:

	

1 1

1 1

2
1 1

( ) ( ) 0
( ) ( ) 0

( / ) ( ) ( )
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 	 (8)

2.3.	A ssembly of the stages for the SCSG

According to the position of the coupling shaft in the gearbox, the inter-stage assembly 
method in References [25,26] is adopted to assemble various structures for the SCSG. The cou-
pling stiffness matrix of intermediate shafts can be uniformly defined as:
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(9)

The first-stage gear (G3) is coupled with the second-stage gear (G4) through ISS1, so the 
assembly of the two stages stiffness matrix can be expressed as:
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 	 (10)

The second-stage gear (G8) is coupled with the third-stage sun through ISS2, so the assembly 
of two stages stiffness matrix can be expressed as:
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The third-stage carrier is coupled with the fourth-stage sun through ISS3, so the assembly 
of the two stages stiffness matrix can be expressed as:
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In formulas (10)-(12), KIS1, KIS2 and KIS3 represent the coupling stiffness matrices among 
different stages, and their specific forms are defined by formula (9). The mesh stiffness matrices 
for the parallel gear sets adopted in formulas (10) and (11) can be obtained by Reference [27,28]. 
The matrices used in formula (12) can be found in Reference [22].

After inter-stage assembly, the motion differential equation of the system can be expressed as:

	 ( ) ( ( )) ( ) ( ( )) ( ) + ( )b m b mt t t t t t     Mq C C q K K q T F  	 (13)

Where the bearing stiffness matrix Kb, bearing damping matrix Cb, and mesh damping matrix 
Cm(t) can be found in Reference [28]. The mesh stiffness matrix Km(t) of the system is obtained 
by the assembly of inter-stage stiffness matrices. 

The generalised displacement vector, external torque vector and transmission error excita-
tion vector of the system can be defined as:
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In which
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The STE excitation of the reduction gear in the parallel gear set can be expressed as:
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The STE excitation of the idler in the parallel gear set can be expressed as:
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Where i denotes the number of the idler gears in the parallel gear set, i = 2, 5, 6, 7.

In these formulas, the TVMS for planetary gear set can be expanded in the form of Fourier 
series [29]:
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Where k–spn and k–rpn  represent the mean value of gear mesh stiffness, k̂spl and k̂rpl represent the 
harmonic amplitudes, L represents the number of expanded harmonic, ωm and Tm represent the 
mesh frequency and mesh cycle, respectively. γsn and γrn represent the mesh phase differences. 
ϕspl and ϕrpl  represent the initial phase angles of the lth harmonic.

In these formulas, the STE for planetary gear set can also be expanded in the form of Fourier 
series [1]:
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Where esp0 and erp0 denote the mean values of STE, êspl and êrpl denote the harmonic amplitudes 
of STE.

3.	D ynamic load excitations analysis in the system

The solutions of internal and external excitations are the basis for the system’s dynamic 
response analysis in the SCSG. The external excitations mainly include the cutting torque of the 
drum and the electromagnetic torque of the motor in the coal-breaking process of the shearer. The 
motor torque has been obtained from formula (7), and the cutting torque of the drum is mainly 
discussed in this section. The internal excitations of the cutting section transmission system 
mainly include two types: stiffness excitation and error excitation.
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3.1.	E xternal excitation of the system

The cutting heads used in longwall shearers are equipped with cutting picks. The cutting 
process of the picks requires generating sufficient force to overcome the resistance of coal and 
rock, which are dependent on the depth of cut, design parameters and cutting tool angles. Know-
ing the values of the forces that act on a single pick enables the reduction of these forces at the 
beginning of the shaft on which the cutting head is mounted. The forces reduced at the shaft of 
the cutting drum could be used as an external load excitation for the gearbox [30,31].

According to the coal-breaking mechanism, reference [32] proposed an average cutting force 
model during the process of breaking coal and rock with picks which are installed on a spiral 
drum. The picks’ geometric parameters, the coal-breaking properties and the shearer traction 
speed are fully covered by the cutting resistance model. The cutting force Zi of a single pick can 
be expressed as [32]:

	    0.5
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 	 (22)

Where: Ap is the average cutting impedance of the coal seam (Ap = 280 ~ 560 N/mm), β is the 
installation angle of the pick, bp is the working part width of the pick (bp = 10 ~ 30 mm), B is the 
hardness coefficient of coal seam, hi is the cutting thickness of coal seam, kφ is the shape factor 
of front edge surface (kφ = 0.85 ~ 0.9), ky is the energy consumption coefficient of cutting angle 
(ky = 0.9 ~ 1.34), koT is the mineral pressure coefficient (koT = 0.4 ~ 0.8).

The torque of the spiral drum could be obtained by the superposition of different pick forces. 
The force analysis of the spiral drum is shown in Fig. 5, in which αi denotes the position angle 
of the i-th pick, hmax denotes the maximum cutting thickness of a single pick, d is the diameter 
of the drum.

Fig. 5. Force analysis of spiral drum
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The number of picks on the same line of the drum is defined as m, and then the cutting depth 
of the drum is m ‧hmax for each circle. The total cutting depth s (unit: cm) of the shearer drum 
after t minutes satisfies the following relations:

	 max100qs v t h m n t        	 (23)

Where: vq represents the traction speed of the shearer, m/min; n denotes the rotation speed of 
the drum, r/min.

From the geometric relationship in Fig. 5, it can be concluded that:
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The drum torque Tout can be expressed as:
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3.2.	I nternal excitation of the system

Two types of internal excitations, time-varying mesh stiffness (TVMS) and static transmis-
sion error (STE) are mainly considered in the SCSG, which are solved in multi-stage parallel 
gear sets and two-stage planetary gear sets, respectively. The parameters for the first and second 
stages of parallel gear sets are illustrated in TABLE 1, and the design parameters for the third 
and fourth stages of planetary gear sets are listed in TABLE 2.

Table 1

Parameters of first and second stages parallel gear sets

Gear symbol G1 G2 G3 G4 G5 G6 G7 G8

Number of teeth 28 39 40 27 33 33 33 40
Module /(mm) 8 8 8 10 10 10 10 10

Pressure angle (°) 20
Mass/(kg) 13.5 27.1 28.4 25.1 35.1 35.1 35.1 52.4

Moment of inertia /(kg·m2) 0.085 0.16 0.38 0.22 0.52 0.52 0.52 1.04
Bearing stiffness /(N/m) 109 109 109 2×109 2×109 2×109 2×109 2×109

Table 2

Parameters of third and fourth stages PGSs

Number 
of teeth

Module 
(mm)

Pressure 
angle (°)

Mass
(kg)

Moment of 
inertia (kg·m2)

Torsional 
stiffness (N/m)

Bearing 
stiffness (N/m)

Stage 3 4 3 4 3 4 3 4 3 4 3 4 3 4
Sun 18 18 7 11

20
5 10 0.04 0.06 0 0 109 2×109

Planet 32 24 7 11 12 29 0.07 0.23 0 0 109 2×109

Ring 82 66 7 11 33 108 1.36 7.11 109 2×109 109 2×109

Carrier — — — — — — 96 406 1.03 15.9 0 0 109 2×109
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3.2.1.	Dynamic excitation of multi-stage parallel gear sets

The TVMSs of multi-stage parallel gear sets are expanded by the Fourier series, and the 
results are illustrated in Fig. 6. Similarly, the STEs of parallel gear sets in the SCSG are shown 
in Fig. 7. According to the manufacturing and assembly accuracy class for the SCSG, the mean 
errors in the first-stage parallel gear sets are ē12 = 6 μm and ē23 = 7 μm, and the mean errors in 
the second-stage parallel gear sets are ē45 = 7 μm, ē56 = 8 μm, ē67 = 8.5 μm and ē78 = 10 μm.

Fig. 6. The TVMS of multi-stage parallel gear sets, (a) the first-stage parallel gear sets,  
(b) the second-stage parallel gear sets

Fig. 7. The STE of multi-stage parallel gear sets, (a) the first-stage parallel gear sets,  
(b) the second-stage parallel gear sets

3.2.2.	Dynamic excitation of two-stage PGSs

The relevant parameters of two-stage PGSs are shown in TABLE 1, and the number of planet 
gears is N (3) = N (4) = 4. Since the planets are uniformly distributed around the sun, the initial 
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position angles of the planets are ψ1 = 0, ψ2 = π/2, ψ3 = π, ψ4 = 3π/2, respectively. γsi is defined 
as the phase difference between the i th planet-sun mesh pair relative to the first planet-sun mesh 
pair, taken as γs1 = 0, and γri is defined as the phase difference between the ith planet-ring mesh 
pair relative to the first planet-ring mesh pair.

The mesh phase condition is determined by Reference [29], so the mesh phase difference 
between planet-sun and planet-ring in the third-stage PGS can be expressed as:
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The mesh phase condition for the fourth-stage PGS can be expressed as
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The TVMS for the third-stage PGS which is calculated based on the design parameters, phase 
values is illustrated in Fig. 8, and the TVMS for the fourth-stage PGS is illustrated in Fig. 9. If the 
mesh phase between planet-1 and sun is 0, then the mesh phases between planet-2, planet-3, planet-4 
and sun lag planet-1 and sun by 1/2, 0, and 1/2 mesh cycles, respectively. The mesh phases between 
planet-2, planet-3, planet-4 and ring are 1/2, 0, and 1/2 mesh cycles ahead of planet-1 and sun.

Similarly, the STE for two-stage PGSs is expanded in the Fourier series based on formula (21). 
On the premise of ensuring solution accuracy, the STE is only expanded to the third item by 
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considering the complexity of solving the system’s dynamic response. The phase conditions for 
STE in the PGSs are the same as in TVMS. Therefore, only the STE for external s – p1 gear pair 
and internal r – p1 gear pair are shown in Fig. 10, while the STE for external and internal gear 
pairs of planet-2, planet-3, and planet-4 are only different in phase. According to the manufac-
turing and assembly accuracy class for the SCSG, the mean errors in the third-stage PGS are 
taken as esp0

(2) = 7 μm and erp0
(2) = 8 μm, and the mean errors in the fourth-stage PGS are taken 

as esp0
(1) = 10 μm and erp0

(1) = 12 μm.

4. Numerical simulation

The Numerical integration function of MATLAB is used to acquire the dynamic time response 
of the mechanical and electrical system in the SCSG, that is, the variable step size Runge-Kutta 
method is adopted to solve the kinematic differential formula (13) of the coupled system. The 

Fig. 8. The TVMS of the third-stage PGS, (a) sequential phase mesh of planet-sun,  
(b) sequential phase mesh of planet-ring

Fig. 9. The TVMS of the fourth-stage PGS, (a) sequential phase mesh of planet-sun,  
(b) sequential phase mesh of planet-ring
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design parameters of the SCSG have been listed in TABLE 1 and TABLE 2, and the system 
parameters of the motor are listed in TABLE 3. The output speed of the drum is 30 r/min, and 
the traction speed of the shearer is 3 m/min. 

Table 3

System parameters of asynchronous motor

Nameplate parameters Circuit parameters
Rated power supply frequency 50 Hz Rst 0.7754 Ω

Rated supply voltage 3300 V Rro 0.7979 Ω
Rated power 500 kW Lm 0.3351 H
Rated speed 1470 rpm Lst 0.3399 H

Rated current 109 A Lro 0.3399 H

According to the working conditions of the shearer, the mesh frequencies of the transmis-
sion system at all stages and the power supply frequency can be found in TABLE 4, fn1 and fn2 
denote mesh frequencies of the first and second stages parallel gear sets, fc3 and fc4 denote rotation 
frequencies of the third and fourth stages planetary carriers, and fe represents the power supply 
frequency.

Table 4

Mesh frequency and power supply frequency for electromechanical transmission system (unit: Hz)

Title Mesh frequency and rotation frequency Supply frequency
Symbol fn1 fn2 fm3 fm4 fc3 fc4 fe
Value 686 465.8 180 30 2.33 0.5 50

The mesh frequencies fm3 and fm4 for the third and fourth stages of planetary gear sets can 
be expressed as:

	    3 3 3 3 3 360 /m s s r r sf n z z z z     	 (28a)

Fig. 10. The STE of two-stage PGSs, (a) the third stage PGS, (b) the fourth stage PGS
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	    4 4 4 4 4 460 /m s s r r sf n z z z z     	 (28b)

Where: ns3 and ns4 respectively indicate the speeds of the third and fourth stage suns, in unit r/
min. zs3, zs4 and zr3, zr4 represent the teeth numbers for the suns and planets, respectively.

4.1.	D ynamic response of the system

Two-stage planetary gear sets of the SCSG undertake the main deceleration task, and their 
internal dynamic responses are more complex. The vibration characteristics of two-stage planetary 
gear sets are mainly displayed. Fig. 11 shows the relationship between vibration displacement 
and time in the x and y directions for the third-stage planetary central members. From Fig. 11, it 
can be seen that the vibration displacement of each central member presents a periodic variation 
pattern, and its vibration period is 0.428 s, which is exactly consistent with the rotation period 
of the third stage carrier. The vibration amplitude of sun gear is more evident than other central 
components, and its peak in the x direction is 134% larger than that in the y direction. Therefore, 
more attention should be paid to the vibration in the x direction for the PGSs.

Fig. 11. Vibration displacement time history of sun, ring and carrier for the third stage PGSs: (a) vibration 
displacement in the y direction, (b) vibration displacement in the x direction

The relationship between vibration displacement and time can be observed from Fig. 12 
in the x and y directions for the fourth-stage PGSs. The vibration amplitude of the ring in the 
fourth-stage PGS is more obvious than other members. However, the vibration peak of the ring 
differs by only 13.6% in the x and y directions, indicating that the fluctuation amplitude of the 
fourth-stage PGS along all directions is more balanced than that of the third-stage PGS. This 
is mainly related to the coupling connection between the fourth-stage carrier and spiral drum, 
which undertakes a heavy load.
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Fig. 12. Vibration displacement and time relation of center components for the fourth-stage PGS in the x  
and y directions: (a) vibration displacement in the y direction, (b) vibration displacement in the x direction

4.2.	D ynamic meshing force analysis

The fourth-stage carrier of the SCSG is coupled with a spiral drum, and the dynamic load-
sharing behaviour of two-stage PGSs directly determines the service life of the SCSG. The time 
history curves of the dynamic meshing force between the planet and ring in two-stage PGSs are 
presented in Fig. 13. It can be seen from Fig. 13 that dynamic meshing forces exhibit periodic 
fluctuations in the PGSs, and the vibration period is the rotation period of the carrier. The dy-
namic force level of the fourth-stage PGS is higher, with a peak value of about 2.74 times that 
of the third stage. The load sharing of different gear pairs is not uniform in a planetary gear set.

Fig. 13. Dynamic meshing force for planet-ring in two-stage PGSs: (a) meshing force Frn
(3) (n = 1, 2, …, N) 

for third-stage PGS, (b) meshing force Frn
(4) (n = 1, 2, …, N) for fourth-stage PGS
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To further explore the sources and categories of dynamic excitation in the SCSG, frequency 
analysis is conducted for dynamic meshing force in two-stage PGSs. Fig. 14 demonstrates the 
frequency response of meshing force Fr1

(4) in the fourth-stage PGS. 

Fig. 14. Frequency response of meshing force Fr1
(4) in the fourth-stage PGS

It can be seen from Fig. 14 that signal energy fluctuation of dynamic meshing force for 
planetary gear is mainly caused by the excitation related to the meshing frequencies. For example, 
when the excitation frequency is 30 Hz, it excites the harmonic energy peak of dynamic force, 
and 30 Hz exactly matches the meshing frequency fm4 for the fourth-stage PGS. Similarly, when 
the excitation frequencies are 60 Hz (2fm4), 90 Hz (3fm4), and 180 Hz (fm3), harmonic energies 
of dynamic forces are also excited to a large extent. This indicates that TVMS and STE of spur 
gears are the main excitation sources for vibration signal energy.

It can be concluded that excitation frequencies of dynamic forces in fourth-stage PGS mainly 
include meshing frequency fm4 and its harmonic components, as well as coupling frequencies 
of all stages. At the same time, the frequency modulation phenomenon is formed with meshing 
frequency fm4 as carrier frequency and rotation frequency fc4 as the sideband. The modulation 
frequencies comprise ifm4 ± fc4 (i = 3, 4, 5), jfm3 ± fc4 (j = 1, 2, 3), fn2 + fm4 ± fc4, etc. 

Excitation frequencies of the third stage PGS are more abundant than that of the fourth 
stage, as shown in Fig. 15. The inter-stage coupling effect is more obvious for third-stage PGS, 
and the signal energies excited by meshing frequencies fm3, fm4 and their harmonics are more 
prominent. From the local focus of the spectrum, there is a frequency modulation phenomenon in 
the third-stage PGS, which takes each stage meshing frequency as carrier frequency and rotation 
frequency fc3 as the sideband. This also illustrates the multi-source and coupling characteristics 
of the excitation sources for the signal energies in multi-stage PGSs.
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Fig. 15. Frequency response of meshing force Fr1
(3) in the third-stage PGS

At the same time, the uniformity of load distribution has a significant impact on the vibration 
stability and carrying capacity for planetary gear systems. Load sharing coefficient (LSC) is gener-
ally used to weigh the load distribution status between different meshing pairs in planetary gear 
transmission systems, load sharing coefficient of the n-th planetary gear can be defined as [33]:
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Where (Fspni)max and (Frpni)max represent the maximum values of external and internal meshing 
forces for the n-th (n = 1, 2,..., N) planet in the i-th meshing cycle. hspni and hrpni are the LSC of 
the n-th planet in the i-th meshing cycle.

Hsp and Hrp are the LSCs of PGS for external and internal meshing pairs, respectively, and 
can be defined as [33]:
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 	 (30)

Fig. 16 shows the LSC of gear pairs between different planets and rings in fourth-stage PGS. 
Planets with an initial phase difference of 180° have almost the same load-sharing characteristics, 



138

while planets with an initial phase difference of 90° have distinct load distribution to some extent. 
Static transmission error excitation equation is derived for multi-stage gear sets in this paper, 
the relationship between LSC and drum torque is established under different error excitation 
conditions, as shown in Fig. 17. It can be seen from Fig. 17 that Hrp decreases with the increase 
of load torque, indicating that load-sharing performance is improved when the load increases in 
the PGS. In addition, the STE will aggravate the vibration intensity between different planetary 
gear pairs, which will reduce the load sharing performance in the PGS.

Fig. 16. LSC of gear pairs between different planets and rings in fourth-stage PGS 

Fig. 17. Relationship between LSC and drum torque under different STE (the unit of erp is μm)
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Traction speed (vq) is the shearer’s horizontal movement speed parallel to the working coal 
wall. Traction speed is the important indicator that directly determines the mining efficiency 
of the shearer. If the traction speed is increased, the shearer needs to cut more coals and rocks at 
the same time, that is, the shearer cutting section will bear greater forces, which is also verified 
in formulas (22)-(24) within the force model of the shearer drum. To further reveal the influence 
mechanism between the mining rate and dynamic property of the SCSG, the distribution rule of 
LSC is presented in the fourth-stage PGS at different traction speeds, as shown in Fig. 18. It could 
be found that traction speed has a significant impact on the LSC of planetary gears. Hrp and Hsp 
both decrease with the increase in traction speed. An increasing torque would further enlarge 
the relative displacement of gear pairs, thereby reducing the proportion of transmission errors in 
the relative displacement. Consequently, the load-sharing performance of the planetary system 
is improved. This indicates that load-sharing performance can be effectively guaranteed in the 
process of increasing the coal mining rate.

Fig. 18. Distribution rule of LSC in the fourth-stage PGS at different traction speeds,  
(a) Hrp between ring and planet, (b) Hsp between sun and planet

5.	E xperimental verification and coupling characteristic analysis 
of electromechanical model

In this paper, a dynamic mechatronics model is proposed through coupling the shearer motor 
and multistage gear transmission system. The fluctuating current signals of the motor are tested 
under different mining conditions to verify the accuracy of the simulation model. Furthermore, 
the interaction mechanism is revealed between mechanical and electrical systems for the shearer 
cutting section.

5.1.	E xperimental verification of mechatronics integration model

The dynamic experiment for the shearer has been completed at the National Energy Min-
ing Equipment Experimental Center in Zhangjiakou City, China. The experimental system of 
fully mechanized mining equipment includes a double-drum shearer (Model MG500/1180 with 
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a cutting power of 500 kW), a hydraulic support (Model YZ9000/15/28D), and a scraper con-
veyor (Model SGZ1000/1050). The experimental system of fully mechanized mining equipment 
is shown in Fig. 19. The test conditions of the shearer are as follows: the cutting depth of the drum 
is 300 mm, and the rotation speed of the drum is 30 r/min. The traction speed vq is accelerated 
from 0 to 5 m/min and current signals are acquired in real time.

Fig. 19. Experimental system of fully mechanized mining equipment

The comparison results of motor current effective values under experimental and simula-
tion conditions in the accelerated cutting process of shearer are shown in Fig. 20. In the process 
of coal breaking, drum torque is affected by the hardness of coal rock, the pressure of coal wall 
and the randomness of coal falling particles, so the scatters of experimental data for current have 
a certain amount of fluctuation. It can be seen from Fig. 20 that the root mean square (RMS) 

Fig. 20. Comparison results of motor current effective values under experimental and simulation conditions 
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values of experimental data have a good consistency with the simulation analysis results, thus 
verifying the accuracy of the mechatronics model proposed in this paper.

5.2.	T he interaction of mechanical and electrical systems

The functional relationship between traction speed vq and drum torque Tout can be found 
in equations (22)-(25), drum torque will increase synchronously with traction speed. To study 
the effect of traction speed vq on the dynamic characteristics of the electromechanical coupling 
system, dynamic responses are solved at different traction speeds. 

Dynamic responses are solved by traction speed gradually changing from 0.5 m/min to 
3 m/min. Fig. 21 illustrates the time response for the stator current at different traction speeds, 
It can be seen that the stator current increases with the traction speed, indicating that when the 
shearer accelerates mining, the motor withstands larger mechanical torque, so it needs to output 
stronger current to balance this change. When internal excitation caused by STE is incorporated 
into the dynamic model, the stator current in the simulation results is significantly stronger than 
that errorless case in the model. Errors caused by manufacturing and assembly would change the 
relative displacement of the gear meshing pair, thereby increasing the dynamic meshing force for 
the meshing pair. Therefore, the gear error would make the transmission system produce a greater 
dynamic load. When the system load increases, the motor needs to output a larger current to maintain 
power matching. Therefore, the electromechanical simulation model incorporating the STE has 
better guidance for correctly evaluating motor current and preventing system overload operation.

Fig. 21. Time response of stator current under different traction speeds

Fig. 22 shows the time response of the ABC three-phase stator current when the traction 
speed vq is 3 m/min. Fig. 23 illustrates the spectrum of stator current signal after the Fast Fou-
rier Transform (FFT). Compared with the supply frequency fe, the mechanical vibration signal 
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belongs to the small amplitude frequency in the current spectrum, and it is difficult to observe 
the mechanical vibration signal in the current spectrum by using ordinary linear coordinates. 
Therefore, to highlight the role of mechanical system signals, the current spectrum is displayed 
in the logarithmic coordinate system.

Fig. 22. Time response of three-phase stator current when traction speed vq = 3 m/min

Fig. 23. The spectrum of three-phase stator current when traction speed vq = 3 m/min
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In Fig. 23, the spectrum peak of the stator current appears at supply frequency fe, and the 
frequency modulation (FM) phenomenon occurs with supply frequency as the carrier and me-
chanical vibration frequency as the sideband. 

The sideband components include: Mesh frequency sidebands (| fn1 ± fe |) for the first-stage 
parallel gear sets, mesh frequency sidebands (| fn2 ± fe |) for the second-stage parallel gear sets, 
mesh frequency sidebands (| jfm3 ± fe |, j = 1, 2) for the third-stage PGS, mesh frequency sidebands 
(| ifm4 ± fe |, i = 1, 3, 5, 7) for the fourth-stage PGS, related terms of inter-stage coupling frequen-
cies ( |( fm3 + fm4) ± fe |, | ( fn1 – fn2) – fe |, |( fn2 – fm3) + fe |, fn1 – fm3 – fe), etc. 

Due to space limitations, Fig. 23 only presents frequency components ranging from 0 to 
500 Hz. It can be found from the current spectrum that there is a lot of vibration information 
related to the mechanical system in asynchronous motor current signal, which indicates that the 
motor current signal can be used to monitor the complex vibration in the SCSG.

6.	C onclusion

Taking the SCSG as the research object, detailed studies have been carried out on system 
dynamic modelling, internal dynamic excitation analysis, electromechanical coupling dynamic 
characteristics analysis and mechatronics experiment verification. The main research contents 
and conclusions include:

(1)	 The translation-torsional coupling dynamic model is developed for two-stage planetary 
gear sets and multi-stage parallel gear sets. Through the connection relationship between 
the motor and transmission system, a coupling mechatronic model is established between 
the multi-stage gear system and the motor. The matrix assembly method with inter-stage 
coupling is efficient for the simulation of large and complex mechanical models.

(2)	 The frequency response and order analysis of dynamic meshing force for two stage 
PGSs show that there exists a meshing frequency modulation phenomenon in the PGS, 
which takes meshing frequencies fm3 and fm4 as carrier frequency and rotation frequen-
cies fc3 and fc4 as the sideband. The LSC of planetary gear sets gradually approaches 1 
with the drum torque increasing, which indicates that load-sharing performance can be 
effectively guaranteed in the process of increasing the coal mining rate.

(3)	 Current signals of the motor are tested at different mining rates and have a good agree-
ment with the simulation value, thus verifying the accuracy of the simulation model. 
Subsequently, motor current signature analysis is conducted by the mechatronics cou-
pling model. The peak of the current spectrum appears at supply frequency fe, and the 
frequency modulation (FM) phenomenon occurs with supply frequency as the carrier 
and mechanical vibration frequencies as the sidebands. These results indicate that stator 
currents can be used to monitor the vibration signal of the gearbox.
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