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Use of Boundary Distribution to Assess the Duration of  
a Stochastic Processes in Underground Mines

The content of the paper involves a method for analyzing stochastic processes using marginal dis-
tribution functions. 

In the introductory section, the scope of the work was defined, the subject of the research was speci-
fied, and an example stochastic process was adopted to illustrate the developed method. 

The procedure for determining conditional distribution functions and marginal distribution functions 
of the process duration for an undetermined workforce was characterized. 

The potential applications of the obtained results were described, and final conclusions were for-
mulated.
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1.	I ntroduction

The presence of multiple factors influencing the course of mining processes highlights the 
need for the application of non-standard methods for analyzing these processes.

Each process (undertaking) is carried out according to a defined technology (procedure), 
utilizing resources (machinery, personnel, etc.), with the aim of achieving a specific objective, 
often the minimization of process (undertaking) duration, which is evident from the perspective 
of process efficiency. Scheduling issues for projects, taking resource allocation into account and 
employing the criterion of minimizing the overall project completion time, are commonly ad-
dressed using various tools (e.g., Microsoft Project, Streamline, ERP, etc.) and are widely practiced.
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However, some processes exhibit specific characteristics arising from their conditions, 
which, in certain cases, can hinder the use of these tools. In this paper, a method for identifying 
the boundary distribution function and its utilization for evaluating the duration of stochastic pro-
cesses is proposed. This method can serve as a complement to the solutions traditionally applied.

The beginnings of using stochastic process analysis methods in mining date back to the 1970s. 
M. Kozdrój, in his work [3], emphasized the importance of probability theory and mathematical 
statistics methods in the organization of mining production. It’s worth noting that this was the 
first work to highlight the broad possibilities of using probability theory in the discussed issues.

In the work [1], J. Antoniak and A. Wianecki proposed the use of simulation methods to 
study stochastic processes in mining technology. Network methods were also introduced into 
mining considerations [4]. Modeling mining processes under extremely challenging conditions 
with the use of fuzzy set elements was presented in the work [13].

New research opportunities emerged with the introduction of computing machines and the 
development of information systems. Progress was made in building numerical models of mining 
processes carried out in advance of coal seams [10-12].

In 1986, W. Kozioł published a paper in which he revealed the rhythmicity of the excava-
tion process and some of its causes in open-pit brown coal mining using spectral analysis of 
stochastic processes.

In the work [6], the reliability of a hydraulic excavator system was analyzed using a non-
homogeneous Poisson process with time-dependent logarithmic-linear risk coefficient functions 
and Failure Mode and Effect Analysis. Analytical, numerical, and empirical tools were also used 
for improved planning and efficiency in work [7].

Article [18] summarizes evaluative strategies and statistical methods for generating stochastic 
fracture networks used for quantitative risk assessment of subsurface industrial waste storage in 
coal mines using numerical models.

In the works [2, 5, 9], the impact of advanced technical problems on the efficiency of selected 
mines was examined. Stochastic methods for analyzing the production process carried out in 
advance of coal seam walls were presented in the work [14].

The research presented in this paper is the result of an analysis based on a process carried 
out in advance of coal seam walls in coal mines, focusing on production cycle duration [8], 
workforce size [15-17], as well as assessing the impact of instability in the effective working 
time on the obtained extraction [14].

2.	 Material and methods

The method proposed in this paper can also be used to analyze processes, including min-
ing processes, in which the resources (such as the workforce and machinery) allocated for their 
execution are not deterministic in quantity. Let’s assume we are dealing with a process in which 
the number of workers (the process workforce) assigned to carry out the process is indeterminate. 
This example can also apply to varying numbers of machines, equipment, etc.

From a mathematical perspective, the “process workforce” in this case is a random variable, 
meaning we are not 100% certain how many workers will be available to carry out the process, 
perhaps due to absences or other reasons. We can consider the characteristic of the “process 
workforce” to be a probability distribution, in which the probability represents the likelihood of 
the process being executed by a specific workforce size (number of workers).
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For the purpose of further analysis, let’s assume that the process workforce can vary between 
20 and 23 workers and can be illustrated with a probability distribution. Let’s say the probability 
of the workforce being either 20 or 21 workers is low, with a probability of only 0.1 in both 
cases. The probability is much higher for a workforce of 22 or 23 workers, with respective prob-
abilities of 0.3 and 0.5.

The above assumptions regarding the probability distribution of the process workforce are 
depicted in Fig. 1.
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Fig. 1. Probability Distribution of the Random Variable “Process Workforce”

Additionally, let’s assume that the conditions under which the process is executed cause the 
completion times of individual segments of this process to be indeterminate as well. This means 
that the completion times of individual segments of the analyzed process (let’s call them opera-
tions) are random variables that also need to be described by probability distributions.

It can be observed that in practice, processes described in this stochastic manner (produc-
tion processes, investment processes, etc.) are not very common. This implies that the developed 
method for their analysis serves as a complement to other widely used methods for process analysis.

For further analysis, let’s assume that the process has the structure depicted in Fig. 2.
The structure of the example process is simplified due to the constraints of this paper. It con-

sists of segments that we will refer to as operations. The execution of the entire process involves 
performing six operations, starting from point 1 to point 4, as shown in Fig. 2.

Each operation is represented graphically by a horizontal vector with a description containing 
four fields: “workforce,” “function,” “alpha,” and “beta.” For operations 1-2, this information is 
as follows: “4 workers, gamma distribution, alpha 20, beta 1” and “5 workers, gamma distribu-
tion, alpha 15, beta 1.”

In the “workforce” field, the number of workers who can perform a particular operation is 
specified, taking into account technological considerations, safety, etc. The completion time of 
an operation performed by this workforce is a random variable, for which a probability distribu-
tion is provided.
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For example, operation 1-2 can be carried out by a workforce of 4, in which case the com-
pletion time follows a gamma distribution with an alpha parameter of 20 and a beta parameter 
of 1, or by a workforce of 5, in which case the completion time follows a gamma distribution 
with an alpha parameter of 15 and a beta parameter of 1.

In the same manner, the other operations in the process depicted in Fig. 2 are described, 
justifying the characterization of the process as stochastic.

As mentioned at the beginning of this paper, the goal of the developed method is to analyze 
the process with a focus on minimizing its duration (completion time) while considering the 
random variables described above. The method allows for the identification of the boundary 
distribution of the process duration.

Fig. 2. Example Process

Determining allowable operation workforce vectors. 

Calculating conditional distribution functions of process duration for 
allowable operation workforce vectors. 

Determining conditional distribution functions of process 
duration for realizations of the "process workforce" variable. 

Fig. 3. Stages of the procedure for determining conditional distribution functions of process duration
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3.	R esults

3.1.	T he method for identifying the boundary distribution  
of stochastic process duration

The conditional distribution of the process duration is determined for each realization of the 
random variable “process workforce” according to the scheme shown in Fig. 3.

The determination of allowable operation workforce vectors was described using the exam-
ple process depicted in Fig. 2. In this figure, three cross-sections were marked: A-A, B-B, and 
C-C. For these cross-sections, allowable operation workforce vectors were determined for each 
realization of the “process workforce” random variable.

For a realization of the “process workforce” equal to 20, the allowable operation workforce 
vectors are as follows:

	
 

Vectors are termed “allowable” if the sum of operation workforces in the vector does not 
exceed the process workforce. It is also assumed that the workforce remains constant within 
operations and is executed in several cross-sections.

For a realization of the “process workforce” equal to 21, the allowable operation workforce 
vectors are as follows:
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For a realization of the “process workforce” equal to 22, the allowable operation workforce 
vectors are as follows:
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For a realization of the “process workforce” equal to 23, the allowable operation workforce 
vectors are as follows:

	

1 2 1 2 1
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The compilation of all allowable operation workforce vectors essentially represents all pos-
sible execution scenarios for the process with the random variable “process workforce” ranging 
from 20 to 23.

From the above, it can be deduced that for a process workforce of 20, there is only one 
execution variant. For a process workforce of 21, there are 4 variants. For a process workforce 
of 22, there are 7 variants, and for a process workforce of 23, there are 10 variants.

The next step in the method is to determine conditional distribution functions of process 
duration for the allowable operation workforce vectors (possible execution variants of the process).

The procedure is explained using the example of a process workforce equal to 20. The al-
lowable operation workforce vector in this case is as follows:

	

1
4 1

3
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4
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 
    
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 

The structure of the process is shown in Fig. 4:
The durations of the operations are indeterminate, so the duration of the entire process is also 

indeterminate. To determine it, the stochastic simulation method using the inverse distribution 
method was employed [14,15]. As a result, the conditional distribution function of process duration 
for an allowable operation workforce vector was obtained. This distribution is depicted in Fig. 5.

The conditional distribution function of process duration for an allowable operation work-
force vector is also the conditional distribution function of process duration for a realization of 
the random variable “process workforce” equal to 20, as there is only one allowable operation 
workforce vector for this workforce level.

For a process workforce equal to 21 (in the analyzed example), there are 4 allowable operation 
workforce vectors for which the conditional distribution function of process duration  /c

i
t i cF t , 

where “i” varies from 1 to 4, represents each successive allowable operation workforce vector.
For a given probability p (e.g., 0.99), values of t1

c0 are determined that satisfy the equation:

	  / 0  for 1, 2, 3, 4
c

i
t i cF t p i  	 (1)
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From the obtained set of values t1
c0; t

2
c0; t

3
c0; t

4
c0, the minimum value is determined, which is 

equivalent to finding the allowable operation workforce vector (operation workforce variant) that 
ensures the completion of the entire process in the shortest time with a probability equal to p.

For the example process, after applying the above procedure, the conditional distribution 
function of process duration for a realization of the random variable “process workforce” equal 
to 21 was obtained, as depicted in Fig. 6. In this figure, the allowable operation workforce vector 
that ensures the minimum process completion time for this workforce level is also presented.

Fig. 4. Example process for the “process workforce” variable equal to 20
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Fig. 5. Conditional distribution function Ftc /20(tc) of process duration for a realization of the random  
variable “process workforce” equal to 20
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Fig. 6. Conditional distribution function Ftc /21(tc) of process duration for a realization of the random  
variable “process workforce” equal to 21

A similar computational procedure was carried out for a realization of the random variable 
“process workforce” equal to 22 and 23, resulting in conditional distribution functions that are 
presented in Figs. 7 and 8, respectively.
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Fig. 7. Conditional distribution function Ftc /22(tc) of process duration for a realization of the random  
variable “process workforce” equal to 22
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3.2. Boundary Distribution Function of Process Duration  
for Indeterminate Workforce

In the previous chapter, Figs. 5-8 presented the calculated conditional distribution Ftc /20(tc),  
Ftc /21(tc), Ftc /22(tc), and Ftc /23(tc) of process duration for realizations of the random variable 
“process workforce” equal to 20, 21, 22, and 23, respectively. After performing calculations 
that utilized the conditional distribution functions and the probability distribution of the random 
variable “process workforce” presented in Fig. 1, the boundary distribution function Fb(tc) was 
obtained. The conditional distribution functions Ftc /20(tc), Ftc /21(tc), Ftc /22(tc), Ftc /23(tc), and the 
boundary distribution function Fb(tc) are presented in Fig. 9.

The boundary distribution function Fb(tc) is the outcome characteristic in the described 
method for analyzing stochastic processes. Knowing its behavior enables us to answer the fol-
lowing sample questions:

•	 What is the probability p0 that the stochastic process will finish before a specified time t0? 
	T his probability is calculated as the value of the boundary distribution function at t0, i.e., 

Fb(t0) = p0.
•	 What is the completion time of the entire stochastic process, tz, with a probability equal 

to pz? 
	Y ou should determine the value of tz for which the boundary distribution function has 

a value of pz, i.e., Fb(tz) = pz.
•	 The planned completion time of the stochastic process has been set at tpl. What is the 

probability p of an unfavorable situation occurring, where the process finishes after this 
deadline? 

	T o define the risk of not meeting the tpl deadline for the stochastic process (e.g., an 
investment), you should calculate the probability of such a situation using the formula: 
p = 1 – Fb(tpl).
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Fig. 8. Conditional distribution function Ftc /23(tc) of process duration for a realization of the random  
variable “process workforce” equal to 23
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The answers to such formulated questions can be crucial for an investor or an analyst of 
a stochastic process. In each case, this answer is provided in conjunction with the likelihood of 
occurrence, which is a characteristic feature of the final analysis of stochastic processes.

4.	C onclusion 

The method of using the boundary distribution function to assess the duration of a stochastic 
process can be utilized as a complement to other methods of process analysis and optimization. 
In this work, a model of a process was presented in which the workforce of the process and the 
times required for individual segments (operations) were indeterminate. It can be observed that 
in practice, processes characterized by such a high degree of uncertainty are rarely encountered.

Fields in which such a high level of uncertainty may occur include, for example, processes 
related to resource exploration and documentation, as well as processes related to the mining of 
resources. According to the authors, underground mines are places where the numerous factors 
influencing the processes carried out there make them, in many cases, akin to stochastic processes, 
justifying the use of the proposed method in the analysis of these processes.

Evaluating the progress of stochastic processes is a significant issue from the perspective 
of those managing these processes or investors who allocate their resources (e.g., in the case 
of an investment process). It should also be emphasized that the application of the method de-
scribed in this work results in obtaining outcome values that are provided along with probability 
values. Therefore, the final assessment of these results always belongs to the party conducting 
the process analysis.

Fig. 9. Conditional distribution functions Ftc /20(tc), Ftc /21(tc), Ftc /22(tc), Ftc /23(tc), and the boundary  
distribution function Fb(tc) of the stochastic process
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