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Abstract

Endophytic Beauveria bassiana (Balsamo-Crivelli) Vuillemin can promote plant growth
and health and protect them against herbivores. Two endophytic strains of B. bassiana,
BS195 (isolated from soil) and BNE20 (isolated from cucumber), were used by foliar spray
and root soaking to evaluate B. bassiana ability to colonize cucumber plants and promote
their growth under stressful greenhouse conditions in two separate experiments, as well as
its efficacy against Liriomyza sativae Blanchard in a controlled setting. The results showed
that the effects significantly depended on the inoculation method and fungal strain. Both
B. bassiana strains colonized endophytically the tissues of all cucumber plant parts 30 days
post-inoculation, with root soaking being significantly better than foliar spray. The present
study showed that the application of B. bassiana BS195, mainly through root soaking, en-
hanced many growth and health parameters, including plant height, root length, number
of leaves, leaf area, fresh and dry weight, the content of dry matter, and the total phenolic
content. Cucumber plant treatment with B. bassiana significantly reduced the infestation,
severity, number of pupae, and adult emergence of L. sativae after 35 and 51 days of adult
release with greater efficiency with the root soaking method. We conclude that introducing
B. bassiana through root soaking seems to be effective in stimulating plant growth, and can
be a promising technique in controlling L. sativae populations on cucumber plants.

Key words: Cucurbitaceae, endophytes, entomopathogenic fungi, leafminer, plant growth
promoting

Introduction

Cucumber (Cucumis sativus L.; Cucurbitaceae) is
a very popular crop for commercial greenhouse
vegetable production in many countries worldwide
due to the high value of its fruits (FAOSTAT 2022).
Many insect pests attack and damage cucumber plants
during the season and cause considerable production
losses, including many species of the leafminer genus
Liriomyza Mik (Diptera: Agromyzidae). The most eco-
nomically destructive pest species of Liriomyza are
L. sativae Blanchard, L. huidobrensis (Blanchard), and
L. trifolii (Burgess) (Tran et al. 2005; Sappanukhro et al.
2011; Alaei Verki et al. 2020). Female leafminers ovi-
posit eggs inside leaf tissues under the epidermis,

and the hatching larvae tunnel and twist through the
mesophyll, reducing the area that is actively involved
in photosynthesis. The damaged tissues also become
more susceptible to plant pathogens and saprophytic
organisms (Parrella 1987; Alaei Verki et al. 2020).
Because of some aspects of the biology of this insect
(e.g., egg and larval stages within and protected by
leaf tissue, the ability to develop resistance to insec-
ticides, etc.), the application of chemical insecticides
may be ineffective in preventing the reduction of cu-
cumber yield, and the use of alternative, more effective
management methods is highly warranted (Parrella
1987; Alaei Verki et al. 2020).
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The application of insect pathogens, such as en-
tomopathogenic fungi (EPFs), is a promising alterna-
tive for the protection of crops against herbivorous
pests (Inglis et al. 2001; Gurulingappa et al. 2010).
EPFs can be applied against phytophagous insects by
traditional spraying with the goal of either directly
killing the insect by contact with the inoculum or in-
directly when the host comes into contact with the in-
oculum present on the plant surface (Charnley 1984).
However, in traditional use, the inoculum is exposed
to harmful UV radiation, fluctuating humidity, and
unfavorable temperatures, which could significantly
reduce the efficiency of EPFs (Roberts 1989; Kim et al.
2013). Therefore, the incorporation of EPFs in plants
as endophytes would be a highly interesting and
promising approach that could potentially help to
avoid the unwanted effects of adverse environmental
conditions on the fungal inoculum and to control pests
with protected life stages such as leafminers.

Fungal endophytes are commonly defined as fungi
that colonize the internal tissues of plants for some or
all of their lifecycles without causing any symptoms
(Wilson 1995). Plant colonization by fungal endo-
phytes can either be localized or systemic (Vega 2008;
Rodriguez et al. 2009; Yan et al. 2015; Card et al. 2016).
Recently, it was shown that some EPFs have an abil-
ity to live as endophytes (Vega 2018). Endophytic en-
tomopathogenic fungi can protect plants against biotic
and abiotic stresses and at the same time promote plant
growth (Vega 2008; Ownley et al. 2010; Vidal and Jaber
2015). According to Moloinyane and Nchu (2019),
they may help protect plants against herbivores either
indirectly via induction of plant defenses, or directly
via the production of fungal metabolites with insecti-
cidal properties. In addition, an increasing number of
plant species have responded to EPFs as plant growth
promoters (PGPs) by improving general morphologi-
cal, yield, and biochemical parameters, in addition to
enhancing nutrient uptake by the root system follow-
ing plant colonization (Lopez and Sword 2015; Begum
and Tamilselvi 2016; Bamisile et al. 2018; Dash et al.
2018; Jaber and Ownley 2018; Liu et al. 2022). Ulti-
mately, endophytically induced changes in host plant
physiology can alter herbivore population dynamics,
creating potentially useful applications in biological
pest control (Zahedi et al. 2019).

One of the most effective entomopathogens is Beau-
veria bassiana (Balsamo-Crivelli) Vuillemin (Hypocre-
ales: Cordycipitaceae) which is used for the biological
control of a wide range of herbivorous pests (Inglis et al.
2001; Humber 2012). Colonization efficacy of this en-
tomopathogen, and the end effect on plant health and
growth depend on many factors, including inoculation
method, fungal strain, plant species and cultivar, environ-
mental conditions and competing rhizosphere and en-
dosphere microorganisms (Vega 2008; Rodriguez et al.
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2009; Tefera and Vidal 2009; Yan et al. 2015; Bami-
sile et al. 2018; Rajab et al. 2020; Yerukala et al. 2022;
Wilberts et al. 2023). While previous research sheds
light on the ability of B. bassiana to colonize and persist
in cucumber plants, promote their growth, and increase
their tolerance to the destructive piercing-sucking pest
Aphis gossypii under controlled conditions (Rajab et al.
2020; Shaalan et al. 2021; Homayoonzadeh et al. 2022),
the possible endophytic behavior of this fungus and its
impact on cucumber plants under the stressful natural
greenhouse environment, or even against leafmining
pests of cucumber remained unknown.

Our current study examined the ability of the en-
tomopathogenic fungus B. bassiana to colonize cu-
cumber crops and promote plant growth under real
greenhouse conditions, as well as its efficacy against
L. sativae in a controlled laboratory set up. In addition,
to assess whether these effects are mediated by fungal
strain and inoculation method, we tested two strains,
one sourced from soil and the other from cucumber
tissues, by two different inoculation methods, foliar
spray and root soaking.

Materials and Methods

Biological material

Plant material

The cucumber hybrid “Raade F1” was used in this
study (Elite Plant-Breeding and Seeds Company, Rus-
sia). Prior to each experiment, seeds were surface
sterilized by immersing in 2% sodium hypochlorite
(NaClO, TM MEDIA®, Titan Biotech Ltd.) for 3 min,
70% ethanol for 1 min, and finally rinsing three times
in sterilized distilled water. One hundred pl of the fi-
nal rinsed water was incubated on Potato Dextrose
Agar (PDA; TM MEDIA®, Titan Biotech Ltd., India)
plates at 25 + 1°C in the dark for 2 weeks to confirm
the success of the surface sterilization procedure. Also,
15 seeds selected randomly were incubated on PDA
plates under the same conditions. Seeds were used
when no fungal growth was observed on the last rinsed
water plates and when there was no Beauveria growth
or any saprophytic fungus on the seed check plates.

Fungal strains

Two strains of B. bassiana were used. The soil-sourced
strain, BS195, was isolated from olive orchard soil at
Al-Shabatliyah (Latakia, Syria) using the Galleria bait
method, which was described by Zimmermann (1986)
and Meyling (2007), while the endophytic strain,
BNE20, was isolated from the stems of cucumber plants
grown in a greenhouse at Al-Kharab (Tartus, Syria)
incubated on PDA plates after surface sterilization
as described by Rajab et al. 2023). Both strains were



IS

www.czasopisma.pan.pl P N www.journals.pan.pl

Rajab L. et al.: The fungal strain and inoculation method mediate the endophytic activity of Beauveria bassiana ... 63

identified morphologically and molecularly [the acces-
sion numbers are OM302229 (ITS: the nuclear riboso-
mal internal transcribed spacer region) and OP573422
(TEF: the translation elongation factor 1 alpha) for
BS195 and OM302228 (ITS) and OP573421 (TEF) for
BNE20], and their ability to colonize cucumber plants
after artificial inoculation has been demonstrated under
laboratory conditions (Rajab et al. 2020, 2023, 2024).

Insects

A laboratory colony was initiated using pupae of Lirio-
myza that were collected from a greenhouse cultivated
with cucumber plants in Talsnon, Tartus governorate
(34°40°37.4”N, 36°06’00.4”E, 43.8 m a.s.l.). The species
was identified as L. sativae by Prof. Dr. Hasan Sungur
Civelek (Mugla University, Turkey) (Civelek 2002). In-
sects were reared using cucumber plants in small cages
(50 x 50 x 45 cm) for several generations before the
start of the experiment. Cotton wool balls soaked in
sugar solution (10%) were placed at the bottom cor-
ners of the rearing cages for adult feeding.

Inoculum and plant inoculation methods

Fourteen-day-old colonies grown on PDA were flood-
ed with 10 ml of sterile distilled water containing 0.05%
Tween 80 and 2% of carboxy methyl cellulose (CMC).
The colonies’ surface was gently scraped off using
a sterile syringe to ensure maximum conidial harvest-
ing, then filtered through sterile muslin to remove any
mycelial fragments, and homogenized with a magnetic
stirrer for 10 min (Inglis et al. 2012). Suspension con-
centration was calculated using a Malassez counting
chamber, then adjusted to 1 x 107 spores - ml™. Co-
nidial viability for each fungal strain was determined
prior to application based on germ tube formation and
used if the viability was 90% and above. Conidium was
considered to be germinated when it had a germ tube
at least two times the length of the conidia.

The fungal spore suspension was applied follow-
ing two main methods: 1) root soaking (rs); and 2)
foliar spray (fs). Surface-sterilized seeds were planted
in cork seed trays using potting soil (Floragard®, Ger-
many). For root soaking treatments, seedlings of the
first true leaf were uprooted and soaked in the fungal
suspension of each strain for 2 h in the dark at room
temperature, then transferred to disinfected plas-
tic pots containing potting soil. In foliar spray treat-
ments, first-true-leaf seedlings were uprooted from
the cork seed trays, transferred to disinfected plastic
pots, and then sprayed with 5 ml per seedling of the
fungal suspension using a hand sprayer after covering
the pot surface with polyethylene slides to avoid run-
off of the conidial spores into the soil. Control plants
of each treatment were prepared without the fungus.
Potted plants from all treatments were covered with

plastic bags for 24 h to maintain a sufficient level of
humidity.

Endophytic activity of Beauveria bassiana
and its impact on cucumber plant growth
in a greenhouse

Growth conditions

Plants from all treatments were maintained in an ex-
perimental greenhouse (the Faculty of Agriculture,
Tishreen University, Latakia, Syria) with natural en-
vironmental conditions (temperature, relative hu-
midity, and light/dark cycle). The greenhouse was
equipped with four tables (1 x 2 m), and each table
was covered with micro-hole mesh to avoid insect at-
tacks during the experiment. Seedlings were watered
with tap water as needed, and allowed to grow until
the sampling date. There was no fertilization through-
out the experiment. Each treatment had a total of
20 plants, five of which were randomly sampled for
fungal colonization assessment and plant biochemi-
cal parameters 30 days post inoculation (dpi), and
the remaining 15 plants were harvested to study plant
growth parameters 36 dpi. The treatments were ar-
ranged inside the greenhouse in a completely rand-
omized design. The experiment was replicated twice.
The first was conducted in September-October 2021,
and the second was conducted in July-August 2022.
The temperature (min. and max.) and the relative
humidity (RH) (min. and max.) were recorded daily
using a digital thermo hygrometer (HTC-01, China)
(Table S1).

Fungal colonization assessment

To assess the fungal colonization in cucumber plants,
six random sections of all the stems, leaves, and roots
for each of the five replicates were incubated on PDA
plates after the surface sterilization process (described
in detail in Rajab et al. 2023). The fungal colonization
rate (%) was calculated according to Petrini and Fisher
(1986):

Colonization rate [%] =

__ number of plant discs showing the fungal growth % 100

the total number of plant discs

Plant biochemical parameters

The photosynthetic pigments, total phenolic content,
and salicylic acid levels were evaluated to assess the ef-
tect of B. bassiana on the chemical activity in cucum-
ber plants 30 dpi.

The content of chlorophyll a (Chl a), chlorophyll b
(Chl b), total chlorophyll (Tot_Chl), and carotenoid
(Car) were measured according to Lichtenthaler
(1987) using pure acetone (PANREAC®) as the extrac-
tion solvent. Fresh leaves (0.1-0.12 g) were ground
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in Eppendorf tubes (2 ml) and homogenized in pure
acetone (1.5 ml) and left in complete darkness for
2 h at 4°C. Chl a, Chl b, and Car absorbencies were
measured at 663, 645, and 470 nm, respectively, im-
mediately after extraction using a spectrophotometer
(Biochrom Libra S22 Ltd., UK). Pure acetone was used
for the blank solution, and measurement units were
expressed as pg * g™ of fresh weight using the equa-
tions given by Lichtenthaler (1987).

The total phenolic content (TPC) of cucumber
leaves was calculated by the Folin-Ciocalteu method
(Ainsworth and Gillespie 2007). Fresh cucumber leaves
(50-60 mg) were ground with 1 ml of pure methanol.
Two hundred pl of the diluted sample were added to
1 ml of Folin-Ciocalteu reagent (10% in sterile distilled
water). After 5 min, 3 ml of saturated sodium carbon-
ate, Na,CO, (20%) was added. After 2 h of incubation
at room temperature, the absorbance at 750 nm was
measured using a spectrophotometer. To calculate the
TPC of samples, gallic acid (16-20 mg - ml™) was used
for the standard calibration curve, and the results were
reported in pg of gallic acid equivalent per 1 g of fresh
weight.

To measure the salicylic acid (SA) content in sam-
pled cucumber leaves, standards of varying concentra-
tions of the SA were prepared as described in Warrier
et al. (2013), and the extraction was performed ac-
cording to Warrier et al. (2013) with a slightly modi-
fied protocol. Five hundred grams of fresh leaves were
ground with 10 ml of distilled water. Samples were
exposed to ultrasonic waves for 15 min, followed by
centrifugation at 5000 rpm for 10 min at 15°C. One
hundred pl of the supernatant was mixed with 3 ml
of freshly prepared ferric chloride (0.2%). The absorb-
ance of the complex formed between the Fe** ion and
SA was determined at 540 nm using a spectrophoto-
meter and the results were reported in pg - mg™.

Plant growth parameters

Greenhouse cucumber plants were uprooted 36 dpi,
and the number of flowers, fruits, and fully developed
leaves was counted for each tested plant. Plant height
(the distance from the stem base to its tip), root length,
leaf area [calculated using the gravimetric method
(Taha and Osman 2018)], fresh shoot weight, and fresh
root weight were measured. To determine the weight
of dry matter, which includes both shoots and roots,
the plant material was placed in individual paper bags
and dried in an oven at 65°C for 96 h. The dry mat-
ter content (DMC) was expressed in percentage of the
fresh shoot weight. Leaf area ratio (LAR) was calcu-
lated as the ratio between leaf area and the total plant
dry weight (shoots and roots) and reported in cm?*- g
(Baligar et al. 2020).
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Effect of Beauveria bassiana application
on cucumber infestation with Liriomyza
sativae

The effects of B. bassiana strains on the populations
of L. sativae on cucumber plants were studied using
spore suspension by the following methods: root soak-
ing (rs); foliar spray prior to insect release (fs1); and fo-
liar spray following insect release (fs2), with a control
treatment for each method. Details of root soaking and
foliar spray methods were described in the “Inoculum
and plant inoculation methods” section.

Plants were placed on benches in a large micro-
perforated cage (210 x 120 x 240 cm) at 24 + 3°C and
60 + 20% RH. Pupae were collected from rearing cages
in small containers (1 1), covered with mesh, and sup-
plied with cotton wool balls soaked in sugar solution
(10%) for emerging adults feeding. Containers were
put in the middle of the cage at an approximately equal
distance from all benches. Two weeks post-fungal
treatments, 100 2-day-old adults (mixed females and
males of undetermined proportions) were released in
the cage and left to mate and oviposit. The treatment of
foliar spray after insect release was applied 7 days after
insect release. The treatments were arranged in a com-
pletely randomized design. Ten plants were planted for
each treatment (90 plants in total).

The incidence (the number of infested plants/total
number of plants x 100), infestation (the number of
the infested leaves/the total number of leaves x 100)
and severity, expressed as percentages, were calculated
35 and 51 days post insect release. Severity was evalu-
ated according to the percentage of the leaf area which
had tunnels in addition to the number of destroyed
leaves (Fig. 1) using a scale of nine scores as described
by Singh and Weigand (1994), slightly modified: 1 (no
tunnels, leaves free from any damage), 2 (tunnels in
less than 10% of the leaves after careful observation),
3 (tunnels in 11-20% of the leaves, no destroyed
leaves), 4 (tunnels in 21 to 30% of the leaves, no de-
stroyed leaves), 5 (tunnels in 31 to 40% of the leaves,
some destroyed leaves in the lower half of plants),
6 (many tunnels in 41 to 50% of the leaves, de-
stroyed leaves of 10% lower leaves), 7 (many tun-
nels in 51 to 70% of the leaves, destroyed leaves
of 11-20% lower and upper leaves), 8 (many tun-
nels in 71 to 90% of the leaves, destroyed leaves of
21-30%), and 9 (many tunnels in more than 91% of
the leaves and destroyed leaves greater than 31%).
Leaves without any damage (score 1) were not included
in the calculation.

On each sampling date, pupae were harvested from
leaves using a fine brush, counted, placed on sterile,
moist filter paper inside Petri dishes, and incubated
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Fig. 1. Severity of cucumber infestation with Liriomyza sativae (the area of cucumber leaves which had L. sativae tunnels). A — tunnels
in less than 10% of the leaves after careful observation, B — tunnels in 11-20% of the leaves, C - tunnels in 31 to 40% of the leaves,
D - many tunnels in 41 to 50% of the leaves, E — many tunnels in 51 to 70% of the leaves, F — many tunnels in 71 to 90% of the leaves,

and G - many tunnels in more than 91% of the leaves

at 25 = 1°C until either adult emergence or the
appearance of fungal growth on the pupae surface.
On the second sampling date (51 days post in-
sect release = 65 dpi), five plants were randomly se-
lected for the fungal colonization assessment as
described in the “Fungal colonization assessment”
section.

Statistical analysis

Data were tested for normality and homogeneity of
the variance using Shapiro-Wilkes and Levine’s test,
respectively. With the resulting probability of p < 0.05,
data were transformed with a natural logarithm func-
tion [In (y) = Log (y + 1)] to correct for heterogeneity
of the variance and produce approximately normally
distributed data sets. Data from all experiments were
subjected to two-way ANOVA. Means were separated
using Tukey’s HSD test when a significant F test was
obtained at p < 0.05. Statistical analysis of the green-
house experiments was performed for each dataset
separately, as experiments were performed in different
years. Data were statistically analyzed using R version
4.3.1 (R core team 2023).

Results

Endophytic activity of Beauveria bassiana
and its impact on cucumber plant growth
in greenhouse

Fungal colonization assessment

Both fungal strains, BS195 and BNE20, of B. bassiana
were able to colonize the stems, leaves, and roots of
cucumber plants 30 dpi under greenhouse conditions,
with no B. bassiana growth on control plates.

The fungus was more successfully delivered to the
plant tissues when the plant roots were soaked in the
fungal suspension. In both experiments, the intro-
duction of B. bassiana through roots resulted in sig-
nificantly higher colonization rates in each plant part
than the foliar spray (p < 0.0001), which failed in most
treatments to cause substantial fungal colonization
(Tables 1, S2). There were no significant differences
in the colonization efficacy between the two strains.
However, strain BS195 generally caused higher colo-
nization rates than strain BNE20 in the stems and
leaves in both experiments, regardless of the applica-
tion method.
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Table 1. The effects of using different methods of Beauveria bassiana application (strains BS195 and BNE20) under greenhouse
conditions on plant colonization of cucumber, 30 days post-treatment

Colonization rate (Mean + SE)

[%]

Treatment Application
method experiment 1 experiment 2
stems leaves roots stems leaves roots

BS195 rs 96.67+333a 8333+745a 96.67+333a 4467+11.33a 7999+9.72a 49.99+1291a

fs 4333+113b 36.67+6.24b 333+3.33b 9.99+6.67b 19.99+6.23b 6.67 £4.08 b
BNE20 rs 89.99+408a 76.67+10a 86.67+6.24a 5333+6.24a 76.67+849a 4333+4.08a

fs 13.33+6.24c  26.67 +10bc 9.99+6.67b 6.67 £4.08 b 9.99+6.67b Ob

rs 0c 0c 0Ob 0b 0Ob 0b
Control

fs O0c 0c 0b 0b 0b 0b

Mean followed by the same letter in the same column are not significantly different at p = 0.05 (Tukey’s HSD test after two-way ANOVA. Abbreviations:

rs — root soaking; fs — foliar spray

Plant biochemical parameters

Application of the spore suspension of B. bassiana,
regardless of the specific strain or the inoculation
method used, had no significant effects on the levels of
Chl a, Chl b, Tot_Chl, Car, or SA inside cucum-
ber plants. However, the effect of treatment on TPC
was significant in both experiments (EXP1: df = 2;
F = 7.03; P = 0.004; and EXP2: df = 2; F = 9.67;
P = 0.0008), but not the application method nor the
interaction between the two factors (Tables 2, S2).

Plant growth parameters
The effects of treatment, inoculation method and their
interaction were significant for most of the growth
parameters of cucumber plants (Table S3). Inoculat-
ing cucumber plants with strain BS195 significantly
increased the plant height (rs), the root length (rs),
the number of leaves (rs or fs), the leaf area (rs), the
fresh shoot weight (rs), the fresh root weight (rs or
fs), the dry shoot weight (rs), dry root weight (rs) and
the content of DMC (fs) in at least one experiment
(Tables 3, 4, S3). Strain BNE20 did not cause any sig-
nificant enhancement in plant growth compared with
the control plants, except for the DMC in the first ex-
periment using the root soaking method.

In both experiments there were no significant dif-
ferences in the number of leaves, flowers, or the LAR
(Tables 3, 4, S3).

Effect of Beauveria bassiana application on
cucumber infestation with Liriomyza sativae

The effects of treatment, inoculation method and their
interaction were signiﬁcant on infestation, severity,
number of pupa, and adult emergence of L. sativae
35 and 51 days post insect release. However, there were
no significant differences in incidence of L. sativae

regardless of the strain or the application method used
(Tables 6, S4).

Cucumber plants treatment with B. bassiana using
either strain by root soaking or foliar spray following
insect release significantly reduced infestation and se-
verity of L. sativae 35 and 51 days post insect release,
with higher eficiency to the root soaking method
(df =2; F=497; P =0009% and df = 2; F = 86.34;
P < 0.0001, 35 and 51 days after insect release,
respectively, for the infestation and df = 2; F = 2.78;
P =0.068; and df = 2; F = 4.04; P = 0.02, 35 and
51 days after insect release, respectively, for the
severity) (Table S4). Although the application of
B. bassiana by foliar spray prior to insect release also
reduced the infestation and severity of L. sativae on
sampling dates, this reduction was not significant
when compared to the respective controls (Fig. 2).

Exposure of cucumber plants to either strain of
B. bassiana by all three inoculation methods signifi-
cantly reduced the number of pupae 35 and 51 days
post insect release, and adult emergence 51 days post
insect release. However, only the root soaking method
had a significant effect on adult emergence 35 days
post insect release regardless of the strain (df = 2;
F = 14.75; P < 0.0001, 35 days after insect release)
(Table S4).

In general, the number of pupae and the percent-
age of adult emergence were less on plants inoculated
through the roots compared to foliar spray, but there
were no significant differences between the two fungal
strains (Fig. 3, Table S4). No fungal growth was ob-
served on any L. sativae individuals in this experiment.

A number of dead larvae were observed in the
tunnels on plants sprayed foliarly with fungal suspen-
sion (three dead larvae in plants sprayed with BNE20
prior to insect release, two dead larvae in plants
sprayed with BNE20 following insect release, and three
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Table 5. The effects of application of Beauveria bassiana (strains BS195 and BNE20) using different methods on the plant colonization

65 dpi (51 days post-insect-release)

Colonization rate (Mean + SE)

Treatment Application method [%]
stems leaves roots
rs 33.33+9.13ab 36.67 £ 12.25ab 3333+9.13a
BS195 fs1 333+£333c 6.67 £4.08 b 0b
fs2 9.99 £ 6.67 bc 9.99 +4.08 ab 0b
rs 4333 +£6.67a 36.67+11.06a 26.67 £6.67 a
BNE20 fs1 9.99 £ 6.67 bc 9.99 +6.67 ab 0b
fs2 6.67 £4.08 ¢ 333+3.33b 6.67 +4.08 b
rs Oc Ob Ob
Control fs1 Oc Ob Ob
fs2 O0c 0b Ob

Mean followed by the same letter in the same column are not significantly different at p = 0.05 (Tukey’s HSD test after two-way ANOVA). Abbreviations:
rs — root soaking; fs1 — foliar spray prior to insect release; fs2 - foliar spray following insect release

Table 6. The effects of application of Beauveria bassiana (strains BS195 and BNE20) using different methods on the percentage inci-
dence of Liriomyza sativae 35 and 51 days post-insect-release

The incidence (Mean =+ SE)

Treatment  Application method [%]
35 days post-insect-release 51 days-post-insect release
rs 80+13.33a 90+10a
BS195 fs1 80+1333a 100+0a
fs2 100+0a 100+0a
rs 70+ 1528 a 80+13.33a
BNE20 fs1 70+15.28a 90+10a
fs2 80+1333a 70+ 15.28a
rs 100+0a 100+0a
Control fs1 90+10a 90+10a
fs2 100+0a 100+0a

Mean followed by the same letter in the same column are not significantly different at p = 0.05 (Tukey’s HSD test after two-way ANOVA). Abbreviations:

rs — root soaking; fs1 - foliar spray prior to insect release; fs2 - foliar spray following insect release

dead larvae in plants sprayed with BS195 following
insect release).

There was no fungal colonization in the control
plants, in the roots of plants exposed to foliar spray be-
fore insect release using either strain, or in the roots
of plants exposed to foliar spray after insect release
using BS195. Generally, the fungal colonization rates
in the stems and leaves of plants foliarly sprayed with
the fungal suspension was less than 10%. The endo-
phytic colonization of stems, leaves, and roots was
significantly higher in root soaking treatments 65 dpi
(df = 2; F = 15.59; P < 0.0001 for stem colonization;
df = 2; F = 9.45; P = 0.0005 for leaf colonization, and
df = 2; F = 22.46; P < 0.0001 for root colonization)
(Tables 5, S4).

Discussion

Endophytic hypocrealean entomopathogens have
multiple functions that go beyond pest control. This
versatility opens the door for new techniques and ap-
plications in integrated pest management and crop
production for greenhouse crops (Ownley et al. 2010;
Quesada-Moraga et al. 2020). Beauveria bassiana is
a widely used biological control agent with very low
host specificity. It acts through multiple mechanisms
of action that are classified into many categories, in-
cluding antibiosis by releasing a broad spectrum of
secondary metabolites, direct parasitism, competition,
inducing systemic resistance, and promoting plant
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growth (Vega 2008, 2018; Vega et al. 2008; Begum
and Tamilselvi 2016; Card et al. 2016; Bamisile et al.
2018). Our study demonstrated the ability of B. bassi-
ana to colonize, promote, and protect cucumber plants

from the agromyzid leafminer L. sativae. However, the
growth and defense enhancement capabilities of this
entomopathogen were dependent on the fungal strain
and inoculation method used.
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Both B. bassiana strains colonized the tissues of all
cucumber plant parts endophytically 30 dpi by root
soaking and foliar spray in an uncontrolled green-
house microclimate. They moved systemically from
the point of inoculation (i.e., roots or leaves) to the
other plant parts, with root soaking being significantly
better than foliar spray, achieving the highest coloni-
zation rates (96.67, 83.33, and 96.67%, for the stems,
leaves, and roots, respectively) using the spore sus-
pension of strain BS195. The higher colonization rates
with the soil-sourced strain, BS195, compared to the
endophytic one, BNE20, could be attributed to the dif-
ferent genetic composition of the fungal strains. Our
previous work demonstrated the ability of the same
B. bassiana strain (BS195) to systemically colonize and
persist in cucumber plants through five inoculation
methods (seed dusting, seed immersion, soil drench,
seedling drench, and foliar spray) under laboratory
conditions. Soil drench after sowing provided the high-
est recovery rates (94.44, 80.25, and 68.26%, for stems,
leaves, and roots, respectively), while foliar spray gave
the lowest rates (Rajab et al. 2020). The high coloni-
zation intensity following root soaking compared to
other inoculation methods could be due to increased
opportunities for infection with B. bassiana and may
account for the notable differences in promoting plant
growth and reducing the agromyzid infestation be-
tween application methods tested.

The present study showed that the application of
the strain BS195 of B. bassiana, mainly through root
soaking, increased many morphological growth and
biomass parameters (plant height, root length, the
number of leaves, leaf area, fresh and dry weight and
the content of dry matter) 36 dpi. Beauveria bassiana
has been reported as a PGP in cucumber plants by oth-
er authors. Shaalan et al. (2021) examined the number
of leaves, flowers, and fruits, and plant height 49 days
after fungal seed treatment under natural environmen-
tal conditions in non-sterile substrate. Homayoonza-
deh et al. (2022) studied its effects on plant height,
stem diameter, number of nodes/plant, and total yield
(kg fresh weight of fruit per plant) of cucumber plants
28 days after foliar application under controlled green-
house conditions. Both authors reported an enhance-
ment of most of the studied parameters.

Enhanced levels of phenols, hydrogen peroxide,
flavonoids, alkaloids, and total chlorophyll have also
been reported in cucumber plants after foliar inocu-
lation with B. bassiana (Homayoonzadeh et al. 2022).
In our study, inoculation with B. bassiana only raised
the total phenolic content in cucumber plants. Other
studied chemical parameters such as the content of
Chl a, Chl b, Tot_Chl, Car, and SA, were not signifi-
cantly affected by the application of the fungus. The
increase in TPC content in plants after exposure to
the fungus is considered a good indicator of plant
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protection; the higher the level of phenolic compounds
present, the better the plant’s defense against various
threats. The phenolic compounds show antioxidant
and antimicrobial activity against a wide spectrum
of bacteria and fungi, in addition to protecting plants
from the effects of adverse environmental conditions
(Silva et al. 2007; Vlase et al. 2012). The TPC, SA, and
the levels of the other chemical compounds in plants
are affected by the secondary metabolites produced by
the fungus. In general, the chemical activities of fungi
seem to be affected by the competitive environment in
which they live (Hanson 2008).

In the present study, differences were observed
in colonization and plant growth promoting abilities
between the two tested B. bassiana strains. These dif-
ferences are expected to be due to the high genetic
diversity in populations and communities of B. bassia-
na which may be reflected in their ecological roles in-
cluding endophytic colonization, the spectrum of me-
tabolites released, and their abilities as PGPs (Meyling
and Eilenberg 2007; Rehner et al. 2011). The specific
source of B. bassiana strains and isolates also highly
affects their different activities. Plant colonization by
B. bassiana was highest for isolates collected from in-
sects compared to those isolated from plant and soil
substrates (Yerukala et al. 2022; Wilberts et al. 2023).
Our study also indicated differences in colonization
rates and several plant growth promoting parameters
between the two experiments. These inconsistencies
may result from the variance in the respective envi-
ronmental conditions, especially the high temperature
in the second experiment (the maximum temperature
ranged between 40.9 and 49.6°C), which does not fa-
vor the activity of B. bassiana (Hallsworth and Magan
1999; Yeo et al. 2003). Endophytic colonization by
B. bassiana and the net effect on the host plant is influ-
enced by differences in experimental conditions, char-
acteristics of the host plant, and specific interactions
between host and fungus as well as abiotic and biotic
conditions (Yerukala et al. 2022).

The role of B. bassiana as a PGP is currently be-
ing extensively researched worldwide (Bamisile et al.
2018, Tall and Meyling 2018). Many studies show that
B. bassiana is an affective agent in enhancing growth
and productivity parameters of various plant species,
such as cotton (Lopez and Sword 2015), common bean
(Dash et al. 2018), tomato (Barra-Bucarei et al. 2020),
wheat (Torkaman et al. 2023), grape vines (Rondot and
Reineke 2019), maize (Liu et al. 2022), and sweet pep-
per (Wilberts et al. 2023). However, other studies, such
as those conducted on corn (Lewis et al. 2001), soy-
bean (Mandasari et al. 2015), and tomato (Silva et al.
2020) showed no significant effects of B. bassiana in-
oculation on plant growth.

Our results also showed the effective role of B. bas-
siana strains in protecting cucumber plants against
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L. sativae infestation. Applying B. bassiana (either
strain) significantly reduced the infestation and sever-
ity of L. sativae 35 and 51 days post adult release, in
addition to reducing the number of pupae that were
harvested from plant leaves and later adult emergence.
Results showed that applying B. bassiana through root
soaking was more effective in reducing the population
of L. sativae on cucumber leaves than foliar spray. These
differences in the effects of inoculation methods could
be because of the lifestyle of leafminer larvae inside
the tunnels until pupation, which protects them from
direct application. On the other hand, the endophytic
fungus may act by secreting secondary metabolic com-
pounds and can function using antibiosis and feeding
deterrents (Vega 2008; Vega et al. 2008). Several sec-
ondary metabolites synthesized by Beauveria species
have shown toxicity against insects of different orders
such as beauvericin, bassianolide, and beauverolides
(Quesada-Moraga and Vey 2003; Valencia et al. 2011;
Chebet et al. 2021).

Few studies have investigated the role of B. bassi-
ana in regulating the populations of Liriomyza species.
The ability of this entomopathogen to reduce adult
longevity, the number of pupae, the infestation
rate, and the adult emergence of the pea leafminer,
L. huidobrensis, in each of the broad bean and com-
mon bean plants was demonstrated in the laboratory
(Akutse et al. 2013) and in common bean in the field
for Liriomyza spp. (Gathage et al. 2016). However,
Gathage et al. (2016) found that the B. bassiana’s ca-
pability to colonize plant parts was not a necessary
requirement for its ability to protect plants against
agromyzid leafminer attacks. Later, Chebet et al.
(2021) reported the larvicidal effects of the extract
of common bean plants colonized by B. bassiana on
the second instar larvae of L. huidobrensis in vitro.
Some other leafminer insects with cryptic stages
in their lifecycle have been shown to respond to
B. bassiana as a plant colonizer and protector such as
the tomato leafminer, Tuta absoluta (Meyrick) (Lepi-
doptera: Gelechiidae) (Klieber and Reineke 2016;
Silva et al. 2020; Zheng et al. 2023), and the horse-
chestnut leafminer, Cameraria ohridella Deschka
and Dimic (Lepidoptera: Gracillariidae) (Barta 2018).

The protected lifestyle of L. sativae larvae may also
be the reason for the absence of mycosis and the di-
rect mortality of insects in plants treated with fungal
suspension (except a few larvae found dead in their
tunnels). However, Akutse et al. (2013) reported 100%
adult mortality of L. huidobrensis on Vicia faba plants
endophytically colonized by different fungal isolates
of B. bassiana, but no mycosis was observed. A few
authors reported mycosis in different insects after
feeding on plants inoculated with B. bassiana, such as
Bing and Lewis (1993) who detected mycosis in just

2.5% of cadavers of the European corn borer larvae,
Ostrinia nubilalis (Hiibner) (Lepidoptera: Pyralidae),
fed on corn plants colonized by B. bassiana applied
foliarly, compared to 1.7% mycosis in control pants.
Vidal and Jaber (2015) reported 25-85% mortality and
0-100% mycosis of the third instar larvae of the cotton
bollworm, Helicoverpa armigera (Hibner) (Lepidop-
tera: Noctuidae), fed leaves of the broad bean plants
inoculated with B. bassiana, as the mortality and my-
cosis differed depending on the isolates and strains
used. Klieber and Reineke (2016) showed a mortality
of 0-100% and a mycosis of 0-100% of the different
larval stages of the tomato leafminer, T. absoluta, fed
on tomato leaves sprayed with the fungal suspension
of B. bassiana (23 x 107 colony forming units - ml™).
Barta (2018) detected mycosis in 5.41-9.23% of cadav-
ers of the horse-chestnut leafminer after exposure to
B. bassiana treated leaves. Vega (2018) suggested that
fungal spores are not usually produced inside plant tis-
sues, because the fungal sporulation of the EPFs inside
vascular tissues does not provide any advantage to the
fungus, so the fungus could not infect the insect di-
rectly and cause mortality or mycosis in most cases.
However, it acts through its secondary metabolites that
are produced by mycelium and deter feeding.

In conclusion, introducing B. bassiana through
root soaking seems to be effective in stimulating plant
growth, and is a promising technique in controlling
L. sativae populations on cucumber plants. This inocu-
lation method is simple, practical and helps to avoid
the unwanted effects of environmental conditions on
the fungal inoculum used in direct application on the
plant. It also helps to control pests that have protected
life stages such as leafminers. Future research should
examine the efficiency of endophytic B. bassiana in
controlling and managing leaf mining insects on
greenhouse and field-grown cucumber plants.
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Table S1. True positive (TP) and false positive (FP) rate of J48 classifiers

TP Rate FP Rate Precision Recall F-Measure MCC ROCarea PRCarea Class
0.986 0.000 1.000 0.986 0.993 0.983 0.993 0.994  Late blight
0.968 0.011 0.968 0.968 0.968 0.956 0.978 0.945 Early blight
1.000 0.010 0.941 1.000 0.970 0.965 0.995 0.941 Bacterial spot
Weighted Avg. 0.983 0.004 0.984 0.983 0.983 0.973 0.989 0.974

MCC - Matthews Correlation Coefficient; ROC — Receiver Operating Characteristic; PRC - Precision-Recall Curve

Table S1A. Confusion matrix for J48

a b c Classified as
70 1 0 a = Late blight
0 30 1 b = Early blight
0 0 16 c = Bacterial spot

Table S2. True positive (TP) and false positive (FP) rate of RandomForest tree classifier

TP rate FP rate Precision Recall F-Measure McCC ROCarea  PRCarea Class
0.972 0.000 1.000 0.972 0.986 0.965 1.000 1.000 Late blight
0.968 0.046 0.882 0.968 0.923 0.896 0.995 0.988 Early blight
0.875 0.010 0.933 0.875 0.903 0.889 0.996 0.976 Bacterial spot
Weighted Avg. 0.958 0.013 0.960 0.958 0.958 0.937 0.998 0.993

MCC - Matthews Correlation Coefficient; ROC — Receiver Operating Characteristic; PRC - Precision-Recall Curve

Table S2A. Confusion matrix for RandomForest

a b C Classified as

69 2 0 a = Late blight

0 30 1 b = Early blight

0 2 14 ¢ = Bacterial spot

Table S3. True positive (TP) and false positive (FP) rate of RandomTree classifier

TP rate FP rate Precision Recall F-Measure MCC ROCarea  PRCarea Class
0.944 0.021 0.985 0.944 0.964 0.914 0.961 0.964 Late blight
0.839 0.046 0.867 0.839 0.852 0.801 0.896 0.769 Early blight
0.938 0.049 0.750 0.938 0.833 0.811 0.944 0.712 Bacterial spot
Weighted Avg. 0.915 0.032 0.922 0.915 0.917 0.870 0.942 0.878

MCC - Matthews Correlation Coefficient; ROC - Receiver Operating Characteristic; PRC - Precision-Recall Curve

Table S3A. Confusion matrix for RandomTree

a b C Classified as
67 3 1 a = Late blight
1 26 4 b = Early blight

0 1 15 c = Bacterial spot
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Table S4. True positive (TP) and false positive (FP) rate of HoeffdingTree classifier

TP rate FP rate Precision Recall F-Measure MCC ROCarea  PRCarea Class
0.901 0.128 0.914 0.901 0.908 0.771 0.942 0.923  Late blight
0.871 0.103 0.750 0.871 0.806 0.734 0.926 0.926  Early blight
0.750 0.000 1.000 0.750 0.857 0.850 0.975 0.931 Bacterial spot
Weighted Avg.  0.873 0.104 0.883 0.873 0.874 0.772 0.942 0.925

MCC - Matthews Correlation Coefficient; ROC — Receiver Operating Characteristic; PRC — Precision-Recall Curve

Table S4A. Confusion Matrix for HoeffdingTree

a b c Classified as
64 7 0 a = Late blight
4 27 0 b = Early blight
2 12 ¢ = Bacterial spot

Table S5. True positive (TP) and false positive (FP) rate of NaiveBayes

TP rate FP rate Precision Recall F-Measure McCC ROCarea  PRCarea Class
0.887 0.128 0.913 0.887 0.900 0.755 0.935 0.922 Late blight
0.871 0.115 0.730 0.871 0.794 0.717 0.921 0.867 Early blight
0.750 0.000 1.000 0.750 0.857 0.850 0.972 0.923 Bacterial spot
Weighted Avg. 0.864 0.107 0.877 0.864 0.866 0.758 0.936 0.908

MCC - Matthews Correlation Coefficient; ROC — Receiver Operating Characteristic; PRC - Precision-Recall Curve

Table S5A. Confusion matrix for NaiveBayes

a b c Classified as
63 8 0 a = Late blight

4 27 0 b = Early blight

2 2 12 ¢ = Bacterial spot

Table S6. True positive (TP) and false positive (FP) rate of DecisionTable classifiers

TPrate FPrate  Precision Recall F-Measure McCC ROC area PRC area Class
1.000 0.021 0.986 1.000 0.993 0.982 0.988 0.985 Late blight
0.968 0.011 0.968 0.968 0.968 0.956 0.973 0.941 Early blight
0.938 0.000 1.000 0.938 0.968 0.964 0.990 0.959 Bacterial spot
Weighted Avg.  0.983 0.016 0.983 0.983 0.983 0.973 0.984 0.970

MCC - Matthews Correlation Coefficient; ROC — Receiver Operating Characteristic; PRC - Precision-Recall Curve

Table S6A. Confusion matrix for DecisionTable

a b C Classified as
71 0 0 a = Late blight
1 30 0 b = Early blight

0 1 15 ¢ = Bacterial spot




