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Application of a Machine Learning Model to the realization
of a wireless communication system
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Abstract—This paper presents the author's proposal for a
neural detector realization of a Massive-MIMO-OFDM system
using extended Hopfield neural circuits. An important feature of
such an implementation is that the system can be learned without
the need to solve multi-parameter optimization tasks requiring
high computational power.
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I. INTRODUCTION

ACHINE learning algorithms, implemented in neural

circuit structures, have revolutionized many areas of
significant theoretical and practical interest. First and foremost,
data processing systems such as image processing, speech
recognition, automatic translation or autonomous systems
should be mentioned here. A product of recent years are artificial
intelligence (A. 1.) systems. However, it can be noted that in
such an important field as wireless communication, machine
learning algorithms have not yet found satisfactory practical
implementations. Traditional communication systems are based
on statistical models describing transmission processes, wave
propagation, noise levels and channel interference. Such models
are complex and do not always sufficiently describe and adapt
to dynamically developing communication systems (e.g.
Internet of Things). As an alternative to statistical models,
machine learning systems can be used, i.e. based on the
availability of I/O data to form training sets [1].
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Fig. 1. Basic structures, conventional and neural, of communication systems
J - training set,
Py|s - statistical model estimating the relation of the sets {y;} and {S;}

Figure 1 illustrates the basic communication structures realized
by conventional and machine learning technology. The main
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difference is in the means of detecting symbols transmitted over
time-varying channels. Receivers in conventional systems
require the implementation of symbol detection based on the
knowledge of statistical relationships [2]. It should be
emphasized that the effective realizability of a neural
communication system requires solving two problems:

- channel estimation,

- realization of the neural detector.

The realization of these tasks is based on the appropriate
generation of training sets. The realization of neural detector
learning is more difficult compared to, for example, neural
image processing due to channel variability and time
constraints for the use of stationarity of channel parameters
(coherence interval).

II. CHANNEL ESTIMATION AND DETECTION MIMO-OFDM

OFDM systems are currently the dominant structure of
broadband communication systems. Such systems are analyzed
in this paper. The availability of channel state information (CSI)
is critical to the realization of MIMO-OFDM communication
systems. It is worth noting that the signal transmission structure
of an OFDM system is given in the form of a table as in Fig. 2.
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Fig. 2. OFDM system time-frequency tables
o pilot vector element symbol
o symbol of the information signal vector element.

The data blocks are transmitted in parallel on M orthogonal
subcarriers. The OFDM channel estimation using machine
learning algorithms has been the subject of research for a
decade. One of the most interesting proposals is to treat the
array in Fig. 2 as an image defined by the distribution of
symbols (pixels). A reasonable solution is therefore to use the
structures of convolutional neural circuits (CNNs), which,
according to the established opinions in the literature, are best
suited for image processing. Training sets for learning CNNs
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are obtained using 'images' containing pilot signal symbols [3]-
[6]. The detection of a MIMO system under the assumptions of
stationarity and flat frequency characteristics of the channel, is
described in the baseband by the equation:

y=Hx+n €))

where: x € CVt is a vector of transmitted symbols belonging to
a finite constellation of dimension M,

y € CMr is the received vector,

H € CN*Nt is the composite channel matrix,

n € CMr is additive white noise with Gaussian distribution.

Assuming knowledge of the channel matrix H, the solution of
(1) is given by the solution of the optimization problem:

X = argmin||y — Hx||? )
X

where: X — estimator of x.

Obtaining such a solution would require an analysis of all the x
vectors transmitted in the channel. Such an analysis is
practically unfeasible with large constellations and in large
MIMO systems. Hence the attempt to find the solution of (2) by
detectors based on neural circuit structures [7].

III. APPLICATION OF AN EXTENDED HOPFIELD NEURAL
CIRCUIT MODEL IN A WIRELESS COMMUNICATION SYSTEM

One important neural structure are Hopfield-type systems,
which are both physical models and algorithms used in neural
computing. The earlier paper proposed an extended model of
the systems defined by the following differential equation [8]:

x=MW —wol+eW,)0(x) + 1, 3)

where: W— skew symmetric orthogonal matrix of weights
connections,

W ,— real symmetric matrix,

1— unitary matrix,

0 (x)— vector of activation functions,

I; — input vector,

&, Wy, 1) — parameters.

Equation (3) at equilibrium of the system takes the form:
MW —wol+eWy)0(x)+1,=0 4

Equation (4) provides the basis for universal machine learning
models based on biorthogonal transformations that enable
typical functions of learning systems. One of these functions is
the implementation of associative memories. The application of
the system to reconstruct and recognize distorted/noisy images
using associative memory is described in the paper [8]. On the
other hand, the implementation of a machine learning system
for solving inverse problems (Inverse Problem) was
investigated in the paper [9]. In the aforementioned works, the
original image was processed by a linear matrix operator whose
size was not quadratic. Thus, there was no inverse operator in
the sense of matrix algebra. A suitably designed machine
learning system performed the reconstruction of the original
image based on its projection. This paper proposes the
application of the above machine learning model to the
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implementation of a Massive-MIMO-OFDM communication
system [10].

IV. STRUCTURE OF THE MACHINE LEARNING MODEL

The equilibrium (4) is the basis for creating the structures of
universal machine learning models. It should be noted that
assuming: Wy is a Hermitian matrix, a complex data (vector)
processing model is obtained. Thus, the solution (4) transforms
to the form:

W-21+W,)0+1,=0 (5)

where: W — skew symmetric orthogonal matrix,
W, — Hermitian matrix W, = W},

1 — unitary matrix,

0 — activation function vector,

I; — input vector,

e=1Lwy=2n=1.

The machine learning model realizes the mapping: F: X = Y,
of the I/O type, where the sets X and Y are realized by pairs of
complex training vectors {x;, y;}~ ., x; EXcC™ y,€Y C
C". The realizations of the mapping F can be obtained by
transforming (5) to the form:

Xi] . .
where: u; = [ _],l =1,..,N;dimu; =m+n,
L Vi
m; = E(W + l)ul 5
m; € M = [m,m,,...,my],
Wy=MM"M)IMT,
M— the spectral matrix of the vectors u;.
Hence, Eq.(6) has N - stable solutions, which are the centers of

attraction of the mapping F. The block structure of the machine
learning model is shown in Fig. 3.
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Fig. 3. Block structure of the machine learning model

V. RECOGNITION AND RECONSTRUCTION OF A VECTOR
(IMAGE) AS AN INVERSE PROBLEM

The paper [9] gives a method for reconstructing a vector
(image) from the knowledge of its projection, i.e.:

Ax =y; A(x) =y ()

where: A(-) — linear operator,

A — complex rectangular matrix: dimA = (m X n),m > n,
x — original image, x € C™,

y — available projection of the original ¥ € C™.
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The solution of (7) belongs to the solution of the inverse
problem:

x =A%) ®)

Most of the solutions to (8) known from the literature use
optimization methods, for example:

min||y — Ax||3,st.x €K 9)
X
min||y — Ax||3 +8R(x)
X
where: K — set of admissible solutions,

R(x) — regularize,
B — regularization parameter.

Equation (7) was solved using the model in Fig.3, with the
system vectors u; in (6) being of the form:

u-=[x"] i=1,.,N;N=n (10)
1A yl ) LA )
where:: x; € C", y; € C™ are pairs of training random vectors:

Ax; = y; (11)

The solution to the inverse problem is realized by the model
shown in Fig. 4.
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Fig. 4. Structure of the model implementing the inverse mapping

It should further be noted that the model performs the solution
of the inverse problem by superposition of random training
vectors. The detection of the MIMO system described by (1)
can be interpreted as the solution of the inverse problem after
the estimation of the H-channel matrix.

VI. MACHINE LEARNING MODEL FOR THE MASSIVE-MIMO-
OFDM SYSTEM

A. Uplink Channel

The Massive-MIMO-OFDM  wireless communication
system is considered to be the most scalable communication
structure [10]. The architecture of such a system is shown in
Fig. 5.
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Fig. 5. Uplink of a Massive-MIMO system (N,. > N,) (number of receiving BS
antennas N, greater than the number of transmitting terminal antennas N,)

The system uses a TDD (time-division duplex) operation. The
base station learns the channel (uplink) using pilots. The
estimation of the downlink channel, on the other hand, is
obtained by transposing the uplink channel. Using the structure
realizing the A™1(-) operator in Fig. 4, for the H-channel
estimation and vector detection x € CMt, requires the
transmission of N, pilot signals. Thus, according to (6), the
system vectors u; take the form:

w, = Bc'l]l =1,..,N;dimy; = N,, dimx; = N, (12)
L

where:
y; =Hx;i=1,..,N, (13)

x; — pilot vectors,

y; — vectors received at base station,

H(-) — physical model of noisy channel (H is static in the
coherence interval).

Statement:
The detection of any vector x, € CVt transmitted through the
channel i.e.

y=Hx,x.+0 (14)
hence:
X, =Hly (15)

leads to an estimate of X, at the output of the neural detector
with the MSE error:

||ft_xt”2 ~ 0 (16)

The channel estimation and detector model is shown in Fig. 6.
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Fig. 6. Neural channel and detector model, X vector estimation of x

The learning of the above model is described by Eq. (6). The
limitation of such a model is the number: N, + N, = 2%,k =
3,4, ..., N, > N, (massive model)

B. Downlink Channel

Assuming the operation of the communication system using
TDD (Time Division Duplex), the uplink channel estimation
can be used for downlink estimation due to the reversibility of
the channel. From the considerations carried out in the previous
section, the base station has an uplink channel model as shown
in Fig. 6. In particular, the X matrix of the pilot vectors and the
Y matrix of their transmission through the channel are fixed.
Thus, the numerical value of the channel matrix H can be
determined from the following relationship:



=
28 o
H=XX"X+y1) X" (17)
where: y1 — regularization component (y > 0)
It can be shown that the evaluation occurs:
|8 —H|* ~0 (18)

where: H — test matrix (random matrix)

The Massive-MIMO model for downlink transmission is shown
in Fig. 7.
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Fig. 7. Downlink of a Massive-MIMO system (N, > N,) (number of receiving
BS antennas N, greater than the number of transmitting terminal antennas N,)

In conventional down-link transmission of the symbol vectors
s (Fig. 7), the base station uses H-channel estimators. It uses
HT to linear precoding the symbols and transmit them to all
terminals. Each terminal should have a CSI for coherent
detection of the transmitted symbols. The literature proposes
beamforming of pilots generated at the base stations for path
estimation to each terminal. In the authors' further research, it
is assumed that an attempt will be made to solve the down-link
transmission problem using the neural model of Fig. 6. using
beamforming or spatial filtering for each terminal.

VII. COMPUTATIONAL EXAMPLE OF NEURAL UPLINK
DETECTOR

The computational example assumes a Massive-MIMO
communication system consisting of 12 single-antenna
terminals and a base station containing 20 receive antennas. A
model of such a system is illustrated in Fig. 8.

X1 V1
terminalx, f* < *] —— .
=1, ..,12 { . H(-) . yi~> base station
—» L ° .
X12

Y20
*

uplink channel

Fig. 8. Massive-MIMO system model analyzed in the example
x; — pilots vectors
y;- vectors received at the base station

According to (13), the matrix operator H(:) modeling the
physical channel was assumed as a random matrix H(20 X
12) with coefficients taking complex values with a normal
distribution. If x; is a fixed vector from the set {x;}}Z;,
according to the relation:

¥y, = Hxy (19)

it corresponds to the received after the transmission vector y;.
The selected exemplary pair of vectors x; and y;take the form:
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x{: [1-1i, -1-3i, -143i, 1+3], 3-1i,  1+41j,
1-3i, -3+1i, -1+1i, -1-1i, -3-1i, 3-1i]

y{: [-16.5-0.5i, -9.54+10.2i, -1.4-9.1i, -10.2-21.9i,
5.5-30.9i, -12.4+0.9i, -19.5+0.7i, 2.5+9.2i,
-6.6-16.3i, -5.9-8.7i, -2.3-0.5i, 21.8+1.2i,
9.2-13.6i, 1.0-1.1i, -4.4+10.1j, 10.1-1.1j,
3.3-10.9i, -3.5+7.8i, -9.3-4.9i, -2.0+1.5i]

where: x; — transmitted vector, y; — vector received after
transmission in the channel.
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Fig. 9. Constellation of vectors
a) x, — transmitted vector
b) y; — received vector after transmission in the channel

All 12 pilot vectors were generated as permutations of the x;
vector. According to (10), the system vectors u; take the form:

_ [xi] . . _ . _
u; = ,i=1,..,12;dimy; = 20, dimx; = 12
Vi

The neural detector implementation for the above data is
presented in Fig. 6. The detection of any vector x, € C12
transmitted through the channel, i.e.

y=Hx,x, #0 (20)
hence:

X, =H'y 21
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leads to an estimate of X, at the output of the neural detector It is interesting to note that for non-static channel (due to the
system shown in Fig. 6. with the MSE error: noisy component) the solution of Eq. (19) can be illustrated by
) the constellations as shown in Fig. 10 where %, = H™*(y + n);
1%, — x¢|I* = 0 (22)  n - noise vector.
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Fig. 10. The constellations of X,obtained at different SNR levels

The analyses, the results of which are shown in Fig. 10, were Simulations were performed for different signal-to-noise ratios
carried out to investigate the properties of the neural decoder in ranging from 60dB to 20dB. In each case, 10,000 trials were
the presence of Gaussian noise in the communication channel. carried out. It can be concluded that the decoder shows some
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resistance to channel interference. By analyzing the individual
results, it can be concluded that correct symbol detection is
possible when the signal-to-noise ratio in the communication
channel is not less than 20dB.

A full assessment of the suitability of the communication
system using the neural detector described in this paper requires
further research.

VIII. CONCLUSION

According to the available literature, the application of
machine learning to the realization of wireless communication
systems is in the early stages of technological development.
Research in this area, indicates the potential to realize the
technology that is competitive to the conventional technology.
This paper focuses on describing the implementation rationale
for the Massive-MIMO-OFDM system. The literature indicates
that the research has been conducted at a number of research
centers using a variety of neural circuit architectures (e.g.
CNNs). The final choice of learning methods and architecture
does not appear to be fixed. This paper presents the author's
contributions to the neural detector realization of the Massive-
MIMO-OFDM system using extended Hopfield neural circuits.
An important feature of such implementations is learning
without the need to solve multi-parameter optimization tasks
that require high computational power. The neural detector
model presented in this paper requires further simulation
studies.

Appendix
Algorithm of Machine Learning Model Design [8]
1. Declaration:
Input the set of training points:
S={x,y;}, i=12,..,N,
X, EChy,€EC™n+m=2%k=34,..
2. System design:
Create system vectors u;:

u; = [;i] ,dimu; =n+m.

Calculate the spectrum m; of system vectors u;:
1
m; = E(Wzk + l)ul
Create spectrum matrix M:
M = [ml,mz, ...,mN]
Calculate Hermitian matrix W
Wy=MM™M)"MT
Calculate orthogonal transformation T'(+):
1
T()=T =Wy +1)
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Calculate biorthogonal transformation T (-):
-1
T()=T,=(2-1-Wy—Wu) .

3. Recursiveprocedure:
forl=1:N
=0
while [|[#° -V = eps

= (2]

end
end

(I =1,2,...steps of recurrence)
Final results of recurrence: X; = x;.
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