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Abstract—In this paper we construct and consider a new pass-
word authenticated key life-cycle management scheme (PAKMS)
with key update mechanism, which uses random q-ary lattices
as its domain. We justify that the scheme is existentially forward
unforgeable under a chosen password attack (fu-cpwda). To this
end, we show that breaking this scheme let us to construct a
polynomial-time adversary that is able to solve small integer
solution (SIS) problem. Since the security of the scheme is based
on computational hardness of SIS problem, it tuns out to be
resistant to both classical and quantum computations. The key-
updating mechanism is based on some properties of binary trees,
with a number of leaves being the same as a number of time
periods in the scheme. The forward-security is gained under the
assumption that one out of two hash functions is modeled as a
random oracle.

Keywords—Forward security; q-ary lattices password authen-
tication; random-oracle model; SIS problem

I. INTRODUCTION

OWADAYS, many services are available in clouds, al-

lowing users to leverage powerful computing resources
without having to purchase or maintain hardware and software.
However, this brings some new challenges concerning, in
particular, secure access to resources and protection against
a data breach. A key to this seams to be to provide trustwor-
thy methods for storing and processing user’s passwords. In
early days of computers’ era passwords were stored in non-
encrypted form as tuples (login, password). However, back in
the 60s, it was noticed that this method is not secure and
must be avoided. Currently, the most common methods is to
store passwords i encrypted form, usually taking advantage of
cryptographic hash functions along with a random string called
salt. In this paper, we design and analyze a new password-
authenticated scheme that, in addition, provide a decent level
of security against quantum computing. The proposed scheme
allows to handle many services available in the domain,
where after registration and setting a pair (login, password),
a user has access to the chosen number of them. It must be
highlighted, that unlike the other indicated practices, neither
password nor login are stored anywhere. This is made possible
by using the concepts of asymmetric cryptography. After
verification of credentials and log-in to a specific service, a
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user is granted access to the resources. These resources are
stored as encrypted data, and the authentication unlock a secret
(symmetric) key, which is also associated with verification
parameters. In addition, the important part of the scheme
is a self-acting update mechanism, used to periodic change
of secret key-material. The idea is similar to so called UE
schemes, that recently are gaining increasing interest in the
crypto-community [1], [2], [3]. However, the model of security
is ideologically close to eu-cma.

The domain for the presented scheme is the lattice theory
which seams to be the most promising post-quantum substrate
for the modern asymmetric-crypto primitives. This is all the
more true given that the famous mishaps like breaking SIDH
and Rainbow. In order to design the scheme, we use g-ary
lattices that provide a lot of flexibility in obtaining required
statistical properties. We focus on the important question of
forward-security of the scheme [4], [5]. The construction
is partially based on the so-called Fiat-Shamir with aborts
approach [6]-[9], which was proposed by Lyubashevsky [6]
and refers to the idea from statistics called rejection sampling.

II. PRELIMINARIES
A. Notation

If & € Z~o, then we use the following notation: [k]
{1,...k} and [k]o = {0,1,...k}. The norms {2 and ¢, are
denoted by ||-|| and ||-|| ., respectively. Vectors are in column
form and are denoted by bold lower case letters (e.g., x). We
view a matrix as the set of its column vectors and denote by
bold capital letters (e.g., A). The ith coefficient of a vector
x is denoted x;, whereas the jth column of A is denoted
by A[j]. The norm of a matrix A is defined as follows:
[|A|| = max; ||[A[j]||. For A € R"*™ and B € R"*"™2,
having an equal number of rows, [A|B] € R»x(mitmz)
denotes the concatenation of the columns of A followed by
the columns of B.

Let I be a countable set, and let {X,}ner, {Ynlner
be two families of random variables such that X,,,Y,
take values in a finite set R,. We call {X,},c; and
{Y, }ner statistically close if A(X,,Y,) < negl(n), where
A(X,,,Y,) is called the statistical distance between { X, }ner
and {Y,,}ner and is defined as the function A(X,,Y,) =
%ZTGR” |Pr[X,, =r] — Pr[Y,, =r]|. We refer to [10] for
more details.
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B. Lattices

For a set of linearly independent vectors B =
{b1,...,br} C R™, a m-dimensional lattice is defined as

a set of all integer linear combinations of the vectors from
B, ci. £L = £(B) = {Zle aib; | a; € Z}. The set B is
called a basis of L, and k = #B is called the rank of L. If
k = m then we say that L is a full-rank lattice. All this means
in particular that every lattice is a Z-module. Furthermore, it
is easily seen that a lattice £ is is an additive subgroup of
R™ and therefore, it induces the quotient group R™ /L of
cosets {x + L}xerm, with respect to the addition operation
(x+ L)+ (y+ L) =(x+y)+ L. A fundamental domain of
L is a connected set /' C R™ such that 0 € F and it contains
exactly one representative X of every coset x+ L. It turns out
that the measure of fundamental domain is an invariant of the
lattice and, therefore, it is called the determinant of £ and
denoted by det L.

A full rank lattice £ is called an integer lattice if L C Z™,
an integer lattice is called a g-ary lattice if ¢Z™ C L C Z™,
where ¢ € Z>1. By definition, a lattice £ = L£(B) is an
integer lattice iff B € Z™*™ is an integer square matrix,
which implies that the determinant det £ is a positive integer.
In addition, Z™ / L is a finite group and |Z™ / L| = det L.

Let n,m,q € Zg>1, » < m, and A € Zg"*™ be a
full-rank matrix. In this paper we make use of a special
kind of g-ary lattices of the full rank m, that are defined
as follows: £ (A) = {x € Z™ | Ax = 0 (mod ¢)}. A
matrix A, generating £ = /.Zé-(A), is often called a parity
matrix, however, it must be pointed out that A is not a
base of L. Particularly, if ¢ is a prime, then |det Cé‘(A)| =
|Z™ ) L (A)] = ¢". The lattice £, (A) is closely related
with another structure that, for a fixed u € Z;, is defined by
LY(A)={x€Z™ | Ax=u (mod q)}. Although L}(A) is
usually called a g-ary lattice, this is not formally correct since
it does not contain 0 for v # 0. Since £ (A) is a Z-module,
it is natural to call LZ(A) an affine lattice over L (A). Note
that if v € L2(A), then LZ(A) and £-(A) are connected by
the relation L2 (A) = v + LI (A).

Theorem 1: ( [11]) For n € Z>1, an odd ¢ € Z>3 and
integer m > 6nlgq, there is a probabilistic polynomial-time
algorithm TrapGen that, on input ¢, n, m, outputs A € Zy*™
and Tao € Z™™, where A is (m - ¢~™/®)-uniform over
Zq*™, and T4 is a short (good) basis of C;—(A) except
with negligible probability in n. More precisely, |Tal| <
O(nlog q) and [T < O(viTogq).

By consideration conducted in [12], it is relatively easy
to construct a PPT algorithm SamplelSIS that takes as input
V e ngm along with its trapdoor Ty € Z™*™, and u € ZZ]‘,
and outputs a sample e € Z™ from the distribution DQ;(V)’S.
Furthermore, we have Ve = u (mod ¢) with overwhelming
probability. It turns out, that we can easily generalize this
assertion, taking a matrix instead of u. To this end, we just
apply SamplelSIS separately to the consecutive columns of
that matrix. Consequently, we obtain the following useful
theorem.
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Theorem 2: Let n,k,m,q € Z~o be such that ¢ is prime,
and m > 6nlgq. There is a PPT algorithm k-SamplelSIS that,
on input A € ZZ}X’”, its associated trapdoor Tp € Z™*™, a
Gaussian parameter s > ||T% || -w (vIogm), and U € Z*¥,
outputs a matrix E € Z™** from the joint distribution
(D £5(A)s) Furthermore, the matrices A, U and E are

« W05/ jelk]
related by the formula AE = U (mod ) with overwhelming
probability.

C. Discrete Gaussian

For any real s > 0 and ¢ € R™, the Gauss function
Ps,c : R™ — R centered on c with parameter s is defined
as psc(x) = exp (—m-s7?||x —c||?), and as a notational
convenience, we write ps = ps.0, p = p1,1.€. p(x) =€
For a lattice £ C Z™ we put psc(L) = > cr Ps.e(X),
and define the discrete Gaussian distribution over £ with
center ¢ and parameter s as D s c(X) = ps.c(X)/ps.c(L),
x € L. For notational convenience, we let D, s = Dg 50,
DY, = Dzm s, and D" = Dzm .

Below, we provide some basic properties of discrete Gaus-
sians over lattices, which are important for consideration
conducted herein.

Lemma 1: Let n < m and T4 be any basis of £-(A) for
some A € Zy*™ whose columns generate Zy, let u € Zg
and ¢ € Z™ be arbitrary, and let s > || T4 || - w (v/Iogm), we
have

D CL3L U4D: Praepiway.elIx—cl >s-v/m] <

negl(n).

2) ([141, [15D): Prxeoﬁém),s [x = 0] < negl(n).

3) ( [14], [16]): A set of O(m?) independent samples

from Dﬁj( A),s contains a set of m linearly independent
vectors, except with negligible probability in n.

il

D. Small integer solution problems

Definition 1: ( [6], [13]) The small integer solution problem
SISq n,m.p (in the ¢o norm) is: given ¢ € Z>q, a uniformly
random matrix S i Zj;xm, and 8 € R.g, find a nonzero
integer vector x € Z™ such that Sx = 0 (mod ¢) and ||x|| <
(. Equivalently, the SIS problem asks to find a vector x €
£(8)/{0} with |x]| < 8.

An inhomogeneous variant of SIS problem, that is called ISIS,
is presented below.

Definition 2: ( [12]) The inhomogeneous small integer so-
lution problem ISIS, ,, .5 (in the £5 norm) is: given ¢ € Z>1,
a uniformly random matrix S & Zy*™, a syndrome u & 7y,
and 8 € Ry, find an integer vector x € Z™ such that Sx = u
(mod q) and [Ix| < 8.

Both problems are as hard as worst-case of the lattice-based
SIVP problem.

Theorem 3: ( [12], [13]) For any positive integers n, m, real
B = poly(n) and prime ¢ > 5-w (\/nlog n), the average-case
problem SIS, m 5 and ISISy . ;,, 5 _are as hard as the worst-
case problem SIVP., with v = 3 - O(y/n).

The next, important, lemma is inspired by [6].
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Lemma 2: ( [9]) Assume that d € Z>g9 and let m >
24 + nlgq/lg(2d +1). Then for any matrix A € Z7*™

and for uniformly random e & (—[d] U [d]o)™, we have
Pr3e € (—[dUldp)™ : € #e, Ae= Ae (modq) >
1— 2—101-

III. FORWARD SECURITY OF PASSWORD AUTHENTICATED
KEY LIFE-CYCLE MANAGEMENT SCHEMES WITH KEY
UPDATE MECHANISM

Assume there is given an alphabet > without a blank
symbol, positive integers 7;, 7, (values of 7; and 7, do not
depend on n), and finite set of available services .. We define
a password authenticated key life-cycle management scheme
(PAKMS) with key update mechanism as a tuple of algorithms
I = (¢,GVParam,IntMKGen, UsrKGen, KUpd, PwdVrfy)
such that:

o &G (system parameters generation) is a PT algorithm,
which on input the value 1" of a security parameter, max-
imum number of epochs E, outputs the system parameters
params.

o GVParam (global verification parameters generation) is a
PPT algorithm, which on input 17, params, and E, outputs
a set of global verification parameters gvp.

o INtMKGen (initial user’s master key generation) is a
PPT algorithm, which on input 17, gvp, login € I
password € <7 and E, outputs a user’s master key
mko = (mskg, mvp) for the initial epoch e = 0; msk’s are
called master secret keys, whereas mvp is called master
verification parameter and is unchanged.

o UsrKGen (generation of users’ key-material for a service)
is a PPT algorithm, which takes as input login, password,
gvp, mvp, a service identifier srvld, mk., and a current
epoch e, and outputs the service (symmetric) encryption
secret key esk along with its verification parameters evp.

o KUpd (user’s master secret key update) is a PPT algo-
rithm, which takes as input a mater secret key msk, for
the epoch e < E — 1, and outputs a master secret key
mske41 for the subsequent epoch e + 1.

o PwdVrfy (password verification) is DPT algorithm, which
on input login, password, srvld, gvp, mvp, evp, and
e, outputs one out of two values, namely accepted or
rejected

Below, we described the proposed security model for
PAKMS. To this end, let A be an adversary and assume that
the system parameters params have been generated and they
have been revealed to the adversary. In addition, .4 has been
granted access to four oracles: IntMKGen,KUpd, UsrKGen and
break in oracle Break. In order to improve the consistency
let go = qo(n) denote the maximum number of queries
to IntMKGen oracle, and assume without loss of generality
that A always makes exactly this many queries; note that g
must be polynomial. Let us consider the following experiment
Expiz:%"”da (forward unforgeability under a chosen password
attack):

1) The adversary A is given mvp, and can request initial

master keys (mkg) for gy different pairs (credentials)
(login, password). Denote by C' the (finite) set of this
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credentials, and let C; be an associated set of all login’s

used.
2) e+ 0;
3) while e < E

2.1. UsrKGen : For a current epoch e the adversary .4
requests the key-material for chosen pairs form C
and chosen services, as many times as it likes (ob-
viously, as A is PPT, this number is a polynomial
of n).
KUpd : If ¢ < T —1 is a current epoch, then A re-
quests update: e < e+ 1, mskey1 < KUpd(mske),
for every element of S.
If Break then break the loop while;
Break : If A is intended to move to the breach
phase then it points out a specific login* € C; and
launches the oracle Break. Then the experiment
records the break-in epoch € = e and sends the
current master secret key msks to .A. This oracle
can only be queried once, and after it has been
queried, the adversary can make no further queries
to the other oracles.

4) Eventually (e*, password™ srvld* evp*) <+  A(1",
state). If e < & and PwdVrfy(login®, password™,
srvld®, gvp*, mvp*, evp*, e*) = accepted and
UsrKGen oracle has been never queried about a triple
(login*, password™, srvld*) for the epoch e*, then out-
put 1, otherwise output 0.

A scheme PAKMS with key wupdate mechanism
II = (¢,GVParam, IntMKGen, KUpd, UsrKGen, PwdVrfy)
is called to be existentially forward unforgeable under a
chosen-password attack if for each efficient PPT adversary A,
its advantage Adfo“:;dea(A) = Pr[ExpiZ:%’Wda(I", E)=1] is
a negligible function of n.

2.2.

23

IV. CONSTRUCTION OF THE SCHEME

In the following subsections we provide a detailed descrip-
tion of the algorithms that make up the presented PAKMS
scheme.

Let X be a fixed alphabet without a blank symbol, and let
Ti,Tp € Z>o be such that they do not depend on n (they
are associated with an outer security policy). Without loss of
generality we may assume that letters of 3 can be encoded as
base-/ numerals.

A. System parameters generation

Let / € Z-o. We denote by n a value of the security
parameter and by E = 2° the number of epoch. The algo-
rithm ¢, on input 1", and the number of epoch E, outputs
params = (¢, ™M, Nmin, k, 7, h, H), where

e g =poly(n), ¢ > 3 is a prime;

e m > [6nlgql;

e h ZZX{O,I}”%B&:{WERk\wZE
{-1,0,1}, |lw|| < +/r} is a collision-resistant hash
function;

e Mmin 1S required minimal entropy of h;

« k€ Zsgand r € [k]o are such that 27min < 377 (%),
then H(h) 2 Tlmin s

e H:{0,1}* — {0,1}" is a cryptographic hash function.
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B. Global Verification Parameters Generation

The algorithm GVParam takes as input 1", params, and E =
2¢. Fist, it chooses uniformly and independently 2/ matrices
ng) & Zy*™, i € [t —1]o,b € {0, 1}, and constructs the or-
dered set gvp < {Vﬂl, Vél,)p Vétl)gv Véi)gz .- ~V(()O)v Vél)}'
Next, it outputs gvp.

C. User Initial Master Key Generation

We start by defining the algorithm which is used as a
subroutine in the attempt to derive an initial and updated
key-material. Since this algorithm contains the mechanisms
providing forward-security, and therefore ,,memory loss” of
the past epochs, we call it Dory.

Algorithm 1 Dory
Input: ¢, gvp, mvp, msk[2], e = by -+ by
Output: msk = (msk[1], msk[2])

1: (T, h) + msk[2].pop()

2 h+ h-—1

3: while h > 0 do

6 Nuw e [Ve | VED | V)]

tmp < ExtBasis (TNh+1’ |:Nh+1 | V,(ALl)D
msk [2].push (tmp, i)
T « ExtBasis (T, ,, [Nat1 | VY])
h+h-1

end while

10: msk[1] + T

R AN

The algorithm IntMKGen should be viewed as registration
to a domain, providing a number of separated services. For-
mally, it takes as input 1™, gvp, E, login € PIRS password €
Y=7»_and runs as follows:

1) The algorithm TrapGen(g,n) (Theorem 1) is run, and it

outputs (Vy, Tv,), where V, € Zg*™ is a matrix and
Ty, € ZZ‘X’” its trapdoor. Furthermore, mvp <+ V.
The matrix V, gets bound with login in such a way that
it constitutes a system mirror image of login.

2) A positive € = o(1) is chosen to derive so > [Ty, ]| -

(lg( + 1)ym)=*=.

3) Itis created an empty stack msk|[2], to be next initialized

with (Tv,, ¢) by invoking msk[2].push (Tv,, ¢).

4) The algorithm Dory (¢, gvp, mvp, msk[2],e = 0) is

launches to get mskog = (msko[1], msk[2]).

5) Eventually, IntMKGen outputs mkg = (mskg, mvp).

D. Service Key-material Generation

Let srvld be an identifier of a specific service. The algorithm
UsrKGen takes as input login, password, gvp, mvp, srvid, mk,
a current epoch e, and runs as follows:

1) A matrix U & 2% is chosen uniformly at random.
The matrix U is an identifier of the service srvld (this
specific one) for the whole epoch e.

2) It is  constructed the matrix V., =
[V@ | Véb—ZII) | Véb_egz) B V(()bo)} c ZZX(Z+1)T"’
where e = (by—1 -+ - bo)a.

N
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3) The algorithm k-SamplelSIS is run, given as input a
tuple (Ve, mske[1], 50, U), it outputs E, € ZEH1)mxk
such that V- E. = U (mod gq).

4) The service encryption secret key is derived esk <—
H(password|| Ee).

5) The numbers aj,ap > 12 are set, and next the
algorithm computes s; = max{ai\/7,(gk)2te},

max {a280(1 + o VE)\/ (L + 1)mr,
(lg (¢ + 1)m))%+8}, where & = o(1).

6) The algorithm samples b <+ Dfl, a D§£+1)7", r ﬁ
{0,1}", and computes x; < Vea+Ub (mod ¢), xa <
H(login||password||r), and gets ¥ «+ h(x1, X2).

7) Set 9} + 91 + b and go to the next step with proba-

D (97)

MDY (97)°

and s, =

bility min < 1); otherwise the algorithm
is restarted.

8) Set 195 Eeﬁll + a and output ¥, with probability
Dg[;+1)n1(192)
MyDg )", (92)]

restarted.
9) If ||92]] < s24/(£ + 1)m then the algorithm sets evp
(Y1, 2, 1), otherwise it is restarted.

Eventually, the algorithm outputs esk along with evp.

min 1]; otherwise the algorithm is

10)

E. Master Secret Key Update

In this section we define a user’s master secret key update
mechanism KUpd, which is based on some properties of
binary trees. We refer to [5] for the comprehensive description
of this idea. The algorithm takes as an input a current mater
secret key mske, and carries out the following steps:

1) It updates e «— e+ 1.
2) If e = 1 (mod 2), then the following steps are con-
ducted:
3.1 (T,h) < msk[2].pop() and mske[1] < T;
3.2 The updated mater secret key for the new epoch is
of the form mske = (mske[1], msk[2]).

3) If e=0 (mod 2), then the following steps are done:
4.1 (msk[1], msk[2]) « Dory (¢, gvp, mvp, msk[2], e).
4.2 The updated mater secret key for the new epoch is
of the form mske = (mske[1], msk[2]).

FE. Credentials Verification

This algorithm PwdVrfy is launched just after a user’s
intention to log-in to a specific service srvld in the domain. The
only assumption here is that the user has previously logged-in
to this service, meaning formally that the algorithm UsrKGen
has already generated a proper key-material. The algorithm
takes as input login, password, srvld, gvp, mvp, evp, e and
runs as follows:

1) The algorithm constructs the matrix V. = [V@|Vébfi 1)

|V£bf§2)| . ||V(()b0)] € ZZX(ZH)’” associated with the
epoch e.
2) It sets X3 + V¥ — Uy (mod q).
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3) If ¥;7 = h(X1,H(login||password||r)) and ||¢2] <
s24/ (€4 1)m, then output accepted, otherwise return
rejected.

From the practical perspective, it should be also defined an
algorithm which updates the key-material for the supported
services. It seems to be important since although the update of
the master keys is able to be done without user’s intervention,
the process of updating a service’s key requires to provide the
associated credentials. The natural design of such an algorithm
is that after logging-in to a chosen service, it starts by verifying
the current credentials, next requires to change a password and,
having it given, runs UsrKGen so as to carry out update for all
services supported by the user. It is, therefore, seen that such
an algorithm is based entirely on PwdVrfy and UsrKGen, and
thus constitutes at most a negligible added value in terms of
the security of the scheme and consequently can be skipped.

G. Correctness of the verification process

Let evp = (191,92,r) be the union of verification
parameters for the credentials (login, password), and an
epoch e. We have ¥ = h(xy,x32), where x; = V.a+ Ub
(mod q), xo = H(login||password||r), and ¥ = E.9] + a
(mod q), where ¥ = ¥; + b (modgq). Then
Ve — U¥y = V(E) + a) = Ub + V.a. This
implies h (Ve — Uy (mod q), H(login||password||r)) =
h (Vea+ Ub (mod ¢), H(login|| password||r)) =
h(Xl,XQ) = ’191.

Both vectors 9] and 19, were sampled from distributions

oF1 . )
Dk . and DUFDI™ However, our task is to associate them
1,81 E;9],s2

with the other distributions, namely Df | and Dgﬁ“)’”. To this
end, we use the rejection sampling method (Theorem 4.6, [6]),
and show that M’s and s’s can be chosen in such a way that
the outputs distributions of the steps 7, 8 of UsrKGen, are
statistically close to the distributions in which 9} and ¥, are
sampled form D§1 and D§§+1)m, respectively. Then, Lemma
1.1, implies that the estimation ||92|| < s24/(£+ 1)m holds
with overwhelming probabilzigz.l Eurther, by Lemrr;ga;lg of [6]

we conclude that M7 > e 22T and My, > e 2°5 | with
probabilities at least 1 — 27100, This, therefore, means that
2402;1) and M, ~

the optimal choices are M; =~

24 1
o (*5i)

exp( 5

V. JUSTIFICATION OF THE SCHEME SECURITY

In this section we prove that any security breach of our
PAKMS scheme will enable us to find a non-trivial solution
to SIS problem.

Theorem 4: Assume that n is a value of a security parameter,
¢ € Z~y, and that IT = (¢, GVParam, IntMKGen, UsrKGen,
KUpd, PwdVrfy) is a PAKMS scheme presented in Section
IV, with the associated message space M = {0,1}*. If Aisa
fu-cpwda -adversary attacking II in the random oracle model,
with a number of at most g, queries to this oracle, then for
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B = (252 + 2s04/7)/ (£ + 1)m there is a PPT adversary B

attacking SIS ,, (142¢)m,s problem with advantage

SIS 12\ ~ 1
Adv;>(B) = oI
and a running time (time(A)).
Proof. Let A be an adversary against II. Our goal here is
to construct an algorithm B, which solves SIS, (1420ym.3
problem, for 8 = (253 + 2s0+/7)+/ (¢ + 1)m and, in addition,
it exploits A as its subroutine. Let

(Aaviree ) )

S=1S¢| Sgi)l Séi)l | -~-|Séo) | Sgl)} c Z;Lx(ur%)m7

be a (random) matrix sent to B by its SIS, ,, (142¢)m, g-game
challenger. Therefore, the challenge is to find x € Z1+20m
such that

S-x=0 (modgq) with ||x| < (252 +2s0v7)/ (£ + 1)m.

First, B chooses e* & B 1, login* & =7 and
sld* & 7. According to the assumptions, the function
h is modeled as a random oracle, and A is entitled to
ask at most ¢ := ¢y queries to this oracle. Therefore, B3
chooses vectors wi, wa, ..., W, uniformly at random from
{w € R* | w; € {-1,0,1}, ||w| < /r}, and constructs
an ordered set W, = {w1,wa,..., W, }, where the ordering
relation < is defined as follow w; < wj iff i < j. Let
(by_1,b;_s,...,b5)2 be the binary representation of e*, then
B creates gvp as follows

gvp < (VI ViYL v v o),

where for every i € [( — 1]o:
e if b= b then ng) = Sgb:);
o eclse, i.e. if b # b} then the algorithm TrapGen(g, n, m) is
run to get ng) € Zy*™ along with its trapdoor Ty, ¢ €
mem' ‘

In addition, B sets the master ver. parameter of login® as
mvp, < V; = S,.

Next, B puts Thax := maxie[g_l]o{HT;(b)H | b # tf}.
and chooses a positive ¢ = o(1) so as to compute d =
s04/ (1 + €)m, where a Gauss distribution parameter sq is
chosen in such a way to meet the following conditions:

e 50> Tonax - (18((£ + 1m)) 5

e ({+1)m>24+(nlgq)/lg(2d+ 1) (see Lemma 2).
h-Query. B prepares a list L to record all queries and
responses as follows

(1) At the beginning, the list L is empty.

(2) Let (x1,%2) € Zi x {0,1}" be a k-th query to h:

a) If A has already asked about (x1, X2) then the list
L consists of a pair ((x1,%2),h(x1,x2)) and, in
this case, B outputs h(xy,X3).

b) Otherwise, there is taken the first element w € W,
which has not yet been used (i.e. if w' € W, is
such that w’ < w, then w’ has been already used),
a pair ((x1,x2),w) is appended to the list L and
h(x1,x2) = w is given on output.
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Queries. Master secret key update KUpd. Let e # e*, then
there exists at least one ¢ € [¢] such that b; # b}. Set i :=
max{i € [ — 1]o | b; # b}}. If only ig # ¢, then b; = b} for
i > ig. As B knows Vigi" € Zp*™ along with its trapdoor
Tv<bi0> € Z™*"™ it uses ExtBasis (see Theorem 5 of [17])

in olroder to get
Ty, « ExtBasis (T vy i)
v. < ExtBasis Vﬁ%ﬂ mvp | | |-

(2 1) bz
Vi Ve vi)

if login # login™ then mvp & Zy*™, otherwise mvp < mvp,.

User Initial Master Key Generation IntMKGen. If login #
login, it just run IntMKGen, otherwise the simulation is the
same as in the simulation of KUpd.

Service Key-material Generation UsrKGen.

o If login # login®, B just run UsrKGen.
o If login = login®,
- If srvld = srvid®, B runs k-times the algorithm
E. < SampleD ({| DI 0 , So,c=0) (see [18]),

where the distribution E, is DgiH)ka. Note that

[E.]| = max{fle..|,..., [le.rll} < d. with

overwhelming probability, by Lemma 1.1. Next, B

sets U, = Ve E,, Voo = [mvp, | Véb_el‘l)\Véb_e;)\
. ‘V(()bo)] c Z(TZLX([JFl)m

x If e 75 e* then B makes V. = [mvp, |
(bg ! |V(b£ 2 |~~|V(()b°)] runs  k-SamplelSIS
that takes as input (T, Ve, so, U.), and outputs
E. from the distribution D ’U - Having done this,
evp for password are generated as in Section I'V-D.

* If e = e* then B assigns E- < E,.

— If srvld # srvld® then B runs k-SamplelSIS that
takes as input (T, Ve, so, U), and outputs E from
the distribution Ds”g’s. Having done this, evp for
password are generated as in Section IV-D.

Break in Break. If the adversary A runs the break in oracle, the
current epoch e is saved and the adversary is given the proper
master secret key mskg. This key consists of two components,
namely mske[1] and mske[2]. In order to generate mske[1], B
proceeds in the same way as in KUpd. When it comes to the
component mske[2], B uses Dory (with obvious changes, as it
only focuses on the node’s indexes) so as to get the identifiers
of nodes from msk,[2]. Having done this, B is able to derive
nodes corresponding to these identifiers. To this end, it does
the following. At first, it takes an identifier (by — 1...bp)2
and indicate ig := max{i € [¢{ — 1]p | e; # ef}. Such iy
exists, since there is not node in mske[2] that lies on the
branch linking the root with a leaf associated with e*. B

knows a pair (V( i) , T e >), therefore it runs ExtBasis

’0
in order to obtain Ty, < ExtBasis (T (b; >,Nh), where
i0

N = [Vg R VS’”}, V, = mup.
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Forgery. B is statistically 1ndlst1ngulshable from a real chal-
lenger in the experiment Exp fucowda Therefore, the adversary
A eventually outputs a forgery for an epoche*. If e* #+ e¥,
B aborts. Otherwise, B accepts the forgery (e*,login™, evp*),
where evp = (97,95, r*) and

o 193]l < s/ (£+ 1)m

e 97 =h (V9] —

. AE* — [mvp*|V b[ 1)|V(bf 2)|
Let w; € W}, be such that 9] = w;. The answers to h-queries
are taken successively form W, following the relation <. B
picks vectors W;, W;1, ..., W, independently and uniformly
at random from IB%ﬁ , and modifies W, in such a way that the
vectors wi, wa, ..., W;_1 are kept, whereas ¢ — ¢ + 1 of the
remaining vectors are replaced by the newly-generated vectors
w’s. After this update, the set of answers to h-queries has the
form Wh = {Wl, NN 7Wi_1,\/i7i7v/§>i+1, e ,\/I\\/'qh}.
Having this done, B runs .4 again with the same parameters
(params) and the same | random tape p as in the first run,
but this time it uses W, instead of W, to answer the h-

queries. By Lemma Gener&rkmg Lemma (see [19]), A
outputs a new forgery (e* login®, evp* = (191,1927 )) using

the same h-queries. If e* # e*, BB aborts. Otherwise B accepts
the forgery and then this means, in particular, that [[93]| <
@+ m and w; = 9, = h (ve*ﬂ2 U9} (mod ),

H(Iogin* ||password™ ||r*)> In addition, the probability P; that

Wi # Wi is Py~ Adviy PR (A) /gp.

Before asking the i- th h-query, B uses the same inputs,
random tape p and wy,...,w;_1 to generate A’s inputs,
random tape and h-queries responses. This implies that the
two executions of 4 are identical up to the i-th h-query, what
means that the arguments of both i-th h-queries must be the
same. Thus A;95; — U] = At*ﬂQ U9; Ud; (mod ¢) and
H(login™||password™||r*) = H(login® ||password |r*). This
implies

0=Au (95 —93) — UMW —97)
= A (99~ E.(97-9))) (modq). ()

Now, B sets xg = 95 — 1/9§ —E.(9] — 1/9\”{), then ||xo|| <

(282 4 2504/7)y/ (£ + 1)m, and therefore by (2), if xo # 0

then it is a solution of the following SIS, ;, (14¢)m,3 problem

Vexg=0 (modg) with [[xof < 8.

It remains to evaluate how likely it is that 95 — 95 —E. (9] —
¥7) # 0. Let jo = min {j €[kl |97 ; # 19/*1‘\]}, Jo exists as
9] = w; #w; = 9. Set e = E, [jo]. Then, since d > 9 and
(£+1)m > 24+ (nlgq)/lg(2d + 1), Lemma 2 says that the
probability of existence of another € € (—[d] U [d]o)™ such
that e’ # e and Ay’ = Ay.eis at least 1 —27 101, This let B
to construct a matrix E/, such that all its columns, except for
the column jgy, are the same as E,. Therefore, by definition
of B/, if

—97) =0, 3)

85 — 05 — B (9]

U7 (mod q), H(Iogin*||password*||r*));
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then
97) #0. o)

It means that for every matrix E, satisfying (3), with probabil-
ity at least 1—27101 it holds that there exists an another matrix
E/ which differs form E, only in column jgy, and such that
(4) holds and that A;-E, = A;<E/,. Since these matrices are
statistically indistinguishable to the adversary 4, the likelihood
of choosing between them is at least 1/2. Therefore, the
probability P, that xo # 0 is P, > 1/2 —1/2101 ~ 1/2
Having given xg, B constructs a vector

95 — 05 — B (9] —

X =
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Namely, the parameters 7y,in, k, r defines the size of the
challenges so as to get correctness error of at most 27101,
Furthermore, at first glance it appears that the value of m
in Table I can be derived only if d is known. However, the

[Hl . g24+ 1;?21531))—‘ > [6nlgg] holds only
for relatively small n, ¢, d and, consequently, in practical
instantiates we always have m = [6nlgq].

condition

TABLE 11
PAKMS PARAMETERS THAT NOT INFLUENCE DIRECTLY ON THE
SECURITY LEVEL

1+20)m . .

[x(1+24)m_1, ..., Xp] € ZE] )™ in the following way Parametor | Definition

To i, 2Wm < j < (1+20m T a number of periods T = 2%, £ € Z~¢

L e b ) toa %) = 1— Tows | ey (T 0 19217

T = 0,55 ]1 X J = Lj/(2m)]’ . o(1) i

0 cewhere. 50 > Tonax - (Ig((¢ + 1)m)) 2+
Eventually B outputs the vector x. Note that s1 > max { a1 /7, (Ig k)%JrE}

S x=A;x=0 (mod qQ), S2 > max § aaso(1 + a1vVk)y/(€ + 1)mr,
o (Ig (£ + 1ym)) 7=}

where ||xo| < 8 = (252 + 250+/7)+/ (£ + 1)m. This implies d sor/A¥Om
that the probability of solving SIS ,, (142¢)m,s problem is the 8 (255 + 250v/T) /(U + )m

same as the probability of an event that x # 0. To summarize,
the probability of B not aborting is equal to 27 - T? - #.7,
and P, - Py ~ Adv!"" Cdea( )/2qn. Therefore, we obtain

Taking into account the values of P; and P;, and the fact
that the probability of 13 not aborting is exactly equal to 1/T2,
we have that

Prfx # 0] &~ Advi{ " (A)/ (w2 - T2 - #.9).
This finishes the proof. O

VI. SUMMARY OF PARAMETERS

In this section we summarize the parameters that are of
crucial importance for the security of the scheme (see Table
I). In addition, we give an example set of parameters that
provide 80 bits of security. The choice of this value is due
to the fact that it is assumed 80 bits represents a minimal
security requirement and draws a red line in gaining any sort
of cybersecurity. Since the number of periods 7' = 2¢ does
not influence directly on the security level, we can skip it in
the Table I.

TABLE 1
PAKMS PARAMETERS AND THE SET OF SAMPLES FOR £ = 8 PROVIDING
80B SECURITY

Parameter | Definition Samples
n security parameter 512
q a prime > 3 227 129
Mmin h’s min. entropy 101
k. r k€ Zso,r € [klo. X1_o (¥) > 27min | 101, 101
ai, o2 > 12 12, 12
m max {[6nlgq],
(nlgq)

[ (204 1505) ]} | 82915

Mi, My | My = Ms=exp M 2.7277

The role of the parameters is clearly explained in the text.
However, we feel compelled to add a few clarifying remarks.

The choice of n, k, g should guarantee the computational
infeasibility of SIS problem. To this end, an associated random
g-ary lattice £ is defined in order to exploit some known
lattice reduction algorithms so as to find short vectors in
this lattice. Gama and Nguyen justify in [20] that the length
of the vector obtained by running the best known algo-
rithms on a random m-dimensional g-ary lattice £ is close
to min {q, ((det L£yt/m. (5’”)} = min {q7q”/m . 5’”}, with
overwhelming probability. The parameter J, called a Hermite
factor, depends on the quality of the used lattice-reduction al-
gorithm. Further, Micciancio and Regev [21] notice that since
22Vnlgqlgd j5 the minimum of a function m — ¢"/™ -§™ for
m = /nlgq/lgd, lattice reduction algorithms can output the
shortest vectors of £ when m =~ y/nlgq/lgd. For smaller m,
the lattice is too sparse and does not contain vectors that are
short enough. For larger m, the high dimension prevents lattice
reduction algorithms from finding short vectors. Eventually,
Micciancio and Regev conclude that the shortest vector one
can find in £ (A) for a random A € Z*™ using lattice re-

duction algorithms is of length at least min {q, 22Vnlgale 5}.

VII. CONCLUSIONS

We constructed a new password authenticated key life-cycle
management scheme with key update mechanism. Since the
construction is based on g-ary lattices, the scheme is secure
against known quantum attacks and, to the best of our knowl-
edge, is the first post-quantum scheme of this sort. In addition,
we formally proved that the scheme is existentially forward
unforgeable under a chosen password attack as long as SIS
problem is computationally hard. This is significant since it
meets the requirement that cryptographic constructions should
be proven secure with respect to clearly stated definitions of
security and relative to well-defined cryptographic assump-
tions. Such approach is the essence of modern cryptography.
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It must be highlighted that the scheme’s keys are represented
by matrices of large dimensions, and their number grows as ¢
increases. Storing such a huge amount of data is not feasible
for most practical applications. This drawback (inherently
related with lattice-based solutions) can be eliminated by
using a cryptographically secure deterministic pseudo random
number generator (PRNG) and storing only the seeds of that
PRNG.

We indicated the parameters and thoroughly explained their
influence on the scheme’s security. In particular, we derived the
set od samples that provides a cut-off level of 80-bits security.
This allows to conduct an introductory estimation regarding
the order of magnitude for parameters in therms of reaching
a desired security level in practical implementations. Further,
taking into account the size of these samples vs the complexity
of presented scheme, we get a good trade-off in comparison
with other lattice-based solutions.
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