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Abstract. The purpose of this paper is to study unique solution and iterative sequence of approximate solution for uniformly approaching unique
solution to a new class of singular fractional differential equations with two kinds of Riemann-Stieltjes integral boundary value conditions by
using some fixed point theorems. Because of different properties of the nonlinear terms and complexity of the boundary conditions in equations,
we first probe several fixed point theorems of sum-type operators which expand many existing works in this research area. It is essential to point
out that some conditions in our works greatly simplify the proof process of fixed point theorems. By applying the operator conclusions obtained
in this paper, some sufficient conditions that guarantee the existence and uniqueness of solutions to singular differential equations are obtained,
two iterative schemes that uniformly converge to the unique solution are given which provide computational methods of approximating solutions.
As applications, some examples are provided to illustrate our main results.
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1. INTRODUCTION

In this article, we study a new form of fractional differential
equations with four different nonlinear terms under two different
complex integral boundary conditions and gain the sufficient
conditions which guarantee the unique nontrivial solution and
approximating iterative schemes of unique solution. Namely, we
discuss the following problem:

𝐷
𝜂1+𝜂2
0+ 𝑥(𝑡) + 𝑘1 𝑓 (𝑡, 𝑥(𝑡), 𝑥(𝑡)) + 𝑘2𝑔(𝑡, 𝑥(𝑡), 𝑥(𝑡))

+ 𝑘3𝜙(𝑡, 𝑥(𝑡), 𝑥(𝑡)) + 𝑘4𝜌(𝑡, 𝑥(𝑡)) = 0, (1)

with two Riemann-Stieltjes integral boundary conditions


𝑥 (𝑖) (0) = 0, 𝐷

𝛼1
0+ 𝑥(1) = 𝜏𝐼

𝛽1
0+ 𝑥(𝜉1), 𝐷

𝜂1+ 𝑗
0+ 𝑥(0) = 0,

𝐷
𝜂1+𝛼2
0+ 𝑥(1) =

1∫
0

𝑏(𝑠)𝐷𝜂1+𝛽2
0+ 𝑥(𝑠) d𝐴(𝑠),

(2)


𝑥 ( 𝑗 ) (0) = 0 𝐷,

𝛼2
0+ 𝑥(1) =

1∫
0

𝑏(𝑠)𝐷𝛽2
0+ 𝑥(𝑠) d𝐴(𝑠),

𝐷
𝜂2+𝑖
0+ 𝑥(0) = 0 𝐷,

𝜂2+𝛼1
0+ 𝑥(1) = 𝜏𝐼 𝜂2+𝛽1

0+ 𝑥(𝜉1),

(3)

∗e-mail: zhangnan1357@163.com

© 2025 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

     
      

Manuscript  submitted  2024-06-04,  revised  2024-09-11,  initially
accepted  for  publication  2025-03-10,  published  in  April  2025.

where 𝑗 = 0,1, · · · ,𝑚 − 2, 𝑖 = 0,1, · · · , 𝑛− 2, 𝐷𝜂1+𝜂2
0+ stands for

Riemann-Liouville (RL) fractional derivative, 𝑛− 1 < 𝜂1 ≤ 𝑛,
𝑚 − 1 < 𝜂2 ≤ 𝑚, 𝜂1 − 𝛼1 − 1 > 0, 𝜏 > 0, 𝛽1 > 0, 𝛼2 − 𝛽2 > 0,
𝜂2 −𝛼2 − 1 > 0, 𝜂2 − 𝛽2 − 1 > 0, 𝑓 , 𝑔, 𝜙 ∈ 𝐶

(
(0,1) × (0,+∞) ×

(0,+∞), [0,+∞)
)
, 𝜌 ∈ 𝐶

(
(0,1) × (0,+∞), [0,+∞)

)
, 𝑘𝑖 > 0 (𝑖 =

1,2,3,4), 𝑓 (𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦), 𝜙(𝑡, 𝑥, 𝑦), 𝜌(𝑡, 𝑥) are singular at
𝑡 = 0,1 and 𝑦 = 0.

As a matter of fact, FDEs with integral boundary value con-
ditions are extensively applied in the description of a variety
of practical situations and processes with memory and genetic
characteristics [1–7] which explains why many authors have
discussed existence, nonexistence and multiplicity questions for
positive solutions to integral boundary value problems involving
fractional derivative [8–14]. For instance, the existence conclu-
sions of solution to the following RL equation in [8] are obtained
by mean of the fixed point index theory
𝐷

𝜂

0+ 𝑦(𝑡) + ℎ(𝑡) 𝑓 (𝑡, 𝑦(𝑡)), 0 < 𝑡 < 1, 3 < 𝜂 ≤ 4,

𝑦 (𝑖) (0) = 0, 𝑖 = 0,1,2, 𝑦(1) = 𝜆
𝜉∫

0

𝑦(𝑠) d𝑠, 0 ≤ 𝜉 ≤ 1.

In [9], a Caputo FDE subject to integral boundary value condi-
tions was investigated

𝑐𝐷
𝜂

0+ 𝑦(𝑡) + 𝑓 (𝑡, 𝑦(𝑡), 𝑦
′ (𝑡)) = 0, 0 ≤ 𝑡 ≤ 1, 2 < 𝜂 < 3,

𝑦(0) = 𝑦′′ (0) = 0, 𝑦(1) = 𝜆
1∫

0

𝑦(𝑠) d𝑠, 0 < 𝜆 < 2.
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By using a fixed point theorem due to Avery and Peterson,
sufficient conditions for the existence and multiplicity of positive
solution to this system were given.

From literature [15–18], some existence, nonexistence and
multiplicity results of solution (or positive solution) when the
nonlinear terms satisfy different requirements of superlinearity,
sublinearity, and so forth. But the question of the unique solution
and the computational methods of approximating solutions was
not treated. Motivated by the above-mentioned work, our work
in this paper is to unfold the existence and iteration of unique
positive solution to the problem equation (1) with the condi-
tions (2) or (3) by using some fixed point theorems of sum-type
operator.

The new features of this paper are as follows: (a) We provide
several kinds of fixed point methods of sum-type operators to
discuss one of the most considerable qualitative aspects “exis-
tence and uniqueness” of solution for the system of equations (1)
governed by the boundary conditions (2) or (3). The fixed point
theorems of sum-type operators expand some existing results,
such as [19–21]. (b) We study not only problem equation (1)
with (2) or (3) admitting the existence and uniqueness of pos-
itive solutions but also two iterative schemes for dealing with
approximate solutions that converge uniformly to the unique
solution, which can provide computational methods for approx-
imating solutions.

The rest of the content in this paper is organized as follows.
In Section 2, some basic theory, works of Banach space and
cone are reviewed. In Section 3, some conclusions of sum-
type operators are presented. In Section 4, some theorems of
existence-uniqueness solution for (1) with (2) or (3) are studied
by the theoretical works of Section 3. In Section 5, some exact
examples are given.

2. PRELIMINARIES

Let (𝐸, ∥ · ∥) be a real Banach space. The concept of cone,
normal cone can be referred to [1–3]. Denoted a set 𝑃ℎ = {𝑥 ∈
𝐸 | ∃𝜇, 𝜈 > 0, 𝜇ℎ ≤ 𝑥 ≤ 𝜈ℎ}.
Definition 1 [1]. Define an operator 𝐴 : 𝑃×𝑃→ 𝑃, if ∀𝑢𝑖 , 𝑣𝑖 ∈
𝑃 (𝑖 = 1,2), when𝑢1 ≤ 𝑢2, 𝑣1 ≥ 𝑣2, there is 𝐴(𝑢1, 𝑣1) ≤ 𝐴(𝑢2, 𝑣2),
i.e. 𝐴(𝑢, 𝑣) is increasing in 𝑢, and decreasing in 𝑣, then 𝐴 is called
a mixed monotone operator. If 𝐴(𝑥, 𝑥) = 𝑥, 𝑥 is called a fixed
point of 𝐴.

Definition 2 [2]. Let 𝐷 ⊂ 𝐸 be a convex subset, 𝐴 : 𝐷→ 𝐸 be
an operator. If 𝐴 satisfies ∀𝑥, 𝑦 ∈ 𝐷, 𝑦 ≤ 𝑥,

𝐴(𝑡𝑥 + (1− 𝑡)𝑦) ≤ 𝑡𝐴𝑥 + (1− 𝑡)𝐴𝑦, 𝑡 ∈ (0,1),

then 𝐴 is called a convex operator. If

𝐴(𝑡𝑥 + (1− 𝑡)𝑦) ≥ 𝑡𝐴𝑥 + (1− 𝑡)𝐴𝑦, 𝑡 ∈ (0,1),

then, 𝐴 is called a concave operator.

Definition 3 [3]. Define an operator 𝐴 : 𝑃×𝑃→ 𝑃, if

𝐴(𝑡𝑥) ≥ 𝑡𝐴𝑥, ∀𝑡 ∈ (0,1), 𝑥 ∈ 𝑃,

then, 𝐴 is said to be sub-homogeneous operator.

Lemma 1 [4]. Let 𝑃 be a normal cone and operator
𝑇 : 𝑃×𝑃→ 𝑃. If 𝑇 is a mixed monotone operator and
(𝐿1) ∃ℎ ∈ 𝑃 (ℎ ≠ 𝜃), such that 𝑇 (ℎ, ℎ) ∈ 𝑃ℎ;
(𝐿2) ∃𝜑(𝑡) ∈ (𝑡,1], such that 𝑇 (𝑡𝑥, 𝑡−1𝑦) ≥ 𝜑(𝑡)𝑇 (𝑥, 𝑦),∀𝑡 ∈

(0,1), 𝑥, 𝑦 ∈ 𝑃.
Then we have
(𝐶′

1) 𝑇 : 𝑃ℎ ×𝑃ℎ → 𝑃ℎ;
(𝐶′

2) ∃𝑢0, 𝑣0 ∈ 𝑃ℎ, such that 𝑟𝑣0 ≤ 𝑢0 < 𝑣0, 𝑢0 ≤ 𝑇 (𝑢0, 𝑣0) ≤
𝑇 (𝑣0, 𝑢0) ≤ 𝑣0, 𝑟 ∈ (0,1);

(𝐶′
3) 𝑇 (𝑥, 𝑥) has a unique solution 𝑥∗ ∈ 𝑃ℎ;

(𝐶′
4) for any initial values 𝑥0, 𝑦0 ∈ 𝑃ℎ, constructing the iterative

sequences:
𝑥𝑛 = 𝑇 (𝑥𝑛−1, 𝑦𝑛−1), 𝑦𝑛 = 𝑇 (𝑦𝑛−1, 𝑥𝑛−1), 𝑛 = 1,2, · · · ,
𝑥𝑛 → 𝑥∗, 𝑦𝑛 → 𝑥∗, as 𝑛→∞.

3. FIXED POINT THEOREMS OF SUM OPERATOR

In this section, we use basic definition and lemma to investigate
the properties and conclusions of a class of sum operators. The-
orem 1 and Corollary 1 provide conclusions on the existence
and uniqueness of solutions for a class of sum operators with
parameters on 𝑃 and 𝑃ℎ. What is more, the study on the prop-
erties of operator equation solutions is given in Remark 1 when
the operator satisfies different convexities. In fact, the operator
theorems studied have generality, as the parameters and operator
properties change, the conclusions obtained can be simplified
into some theorems in some literature, which are given in Re-
mark 2, 3.

Define an operator 𝑇5 = 𝑘1𝑇1 + 𝑘2𝑇2 + 𝑘3𝑇3 + 𝑘4𝑇4 by

𝑇5 (𝑥, 𝑦) = 𝑘1𝑇1 (𝑥, 𝑦) +𝑘2𝑇2 (𝑥, 𝑦) +𝑘3𝑇3 (𝑥, 𝑦) +𝑘4𝑇4𝑥, ∀𝑥, 𝑦 ∈ 𝑃.

Theorem 1. Let 𝑇1, 𝑇2, 𝑇3 : 𝑃 × 𝑃 → 𝑃 be mixed monotone
operators, and 𝑇4 : 𝑃→ 𝑃 be an increasing sub-homogeneous
operator, 𝑘𝑖 > 0 (𝑖 = 1,2,3,4). Suppose that
(𝐻1) For any 𝜆 ∈ (0,1), 𝑥, 𝑦 ∈ 𝑃, ∃𝜓1 (𝜆),𝜓2 (𝜆) ∈ (𝜆,1] such

that

𝑇1 (𝜆𝑥,𝜆−1𝑦) ≥ 𝜓1 (𝜆)𝑇1 (𝑥, 𝑦),
𝑇2 (𝜆𝑥,𝜆−1𝑦) ≥ 𝜓2 (𝜆)𝑇2 (𝑥, 𝑦),

and for any fixed 𝑦 ∈ 𝑃, 𝑇3 (·, 𝑦) is concave; for any fixed
𝑥 ∈ 𝑃, 𝑇3 (𝑥, ·) is convex;

(𝐻2) ∃ 1
2 ≤ 𝑎 ≤ 1 such that 𝑇3 (𝜃, 𝑙̃ℎ) ≥ 𝑎𝑇3 ( 𝑙̃ ℎ, 𝜃), 𝑙̃ ≥ 1;

(𝐻3) ∃ℎ1 ∈ 𝑃ℎ (ℎ1 ≠ 𝜃) such that 𝑇1 (ℎ1, ℎ1), 𝑇2 (ℎ1, ℎ1),
𝑇3 (ℎ1, ℎ1), 𝑇4ℎ1 ∈ 𝑃ℎ;

(𝐻4) for any 𝑥, 𝑦 ∈ 𝑃, ∃𝑝 ∈ (0,1) such that 𝑘1𝑇1 (𝑥, 𝑦) +
𝑘2𝑇2 (𝑥, 𝑦) ≥

𝑝

1− 𝑝 [𝑘3𝑇3 (𝑥, 𝑦) + 𝑘4𝑇4𝑥].

The following conclusions hold:
(c1) 𝑇5 (ℎ, ℎ) ∈ 𝑃ℎ;
(c2) 𝑇5 : 𝑃ℎ ×𝑃ℎ → 𝑃ℎ;
(c3) 𝑇5 (𝑥, 𝑥) = 𝑥 has a unique solution 𝑥∗ ∈ 𝑃ℎ;
(c4) ∃𝑢0, 𝑣0 ∈ 𝑃ℎ, 𝑟 ∈ (0,1), such that 𝑟𝑣0 ≤ 𝑢0 < 𝑣0,

𝑢0 ≤ 𝑇5 (𝑢0, 𝑣0) ≤ 𝑇5 (𝑣0, 𝑢0) ≤ 𝑣0;
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(c5) for any initial values 𝑥0, 𝑦0 ∈ 𝑃ℎ, constructing the iterative
sequences:

𝑥𝑛 = 𝑇5 (𝑥𝑛−1, 𝑦𝑛−1), 𝑦𝑛 = 𝑇5 (𝑦𝑛−1, 𝑥𝑛−1), 𝑛 = 1,2, · · · ,

𝑥𝑛 → 𝑥∗, 𝑦𝑛 → 𝑥∗, when 𝑛→∞.
Proof. The proof process may be divided into three steps.

Step 1: We prove that 𝑇5 : 𝑃 × 𝑃 → 𝑃, and 𝑇5 is a mixed
monotone operator. Due to 𝑇1, 𝑇2, 𝑇3 : 𝑃×𝑃→ 𝑃, 𝑇4 : 𝑃→ 𝑃,
and 𝑘𝑖 > 0 (𝑖 = 1,2,3,4), it is easy to verify 𝑇5 : 𝑃×𝑃→ 𝑃. For
every 𝑥1, 𝑦1, 𝑥2, 𝑦2 ∈ 𝑃, let 𝑥1 ≤ 𝑥2, 𝑦1 ≥ 𝑦2, since 𝑇1, 𝑇2, 𝑇3 are
mixed monotone operators, and 𝑇4 is an increasing operator, we
conclude 𝑇5 is a mixed monotone operator.

Step 2: We state that 𝑇5 (ℎ, ℎ) ∈ 𝑃ℎ. By the condition (𝐻1), it
is easy to obtain

𝑇1 (𝜆−1𝑥,𝜆𝑦) ≤ 𝜓1 (𝜆)−1𝑇1 (𝑥, 𝑦),
𝑇2 (𝜆−1𝑥,𝜆𝑦) ≤ 𝜓2 (𝜆)−1𝑇2 (𝑥, 𝑦), 𝑇4 (𝜆−1𝑥) ≤ 𝜆−1𝑇4𝑥.

(4)

For any𝜆 ∈ (0,1),we let 𝑦 = 𝜆𝜆−1𝑦+ (1−𝜆)𝜃, in view of the con-
dition (𝐻1) and the definition of convex operator in Definition 2,
we have

𝜆𝑇3 (𝑥,𝜆−1𝑦) ≥ 𝑇3 (𝑥, 𝑦) − (1−𝜆)𝑇3 (𝑥, 𝜃). (5)

Moreover, we can find a sufficiently large number 𝑙̃ such that
𝑥, 𝑦,𝜆−1𝑦 ≤ 𝑙̃ ℎ. By (5), (𝐻2), mixed monotonicity of 𝑇3, and
the definition of concave operator in Definition 2, there exists
1
2
≤ 𝑎 ≤ 1, such that

𝑇3 (𝜆𝑥,𝜆−1𝑦) = 𝑇3 (𝜆𝑥 + (1−𝜆)𝜃,𝜆−1𝑦)
≥ 𝜆𝑇3 (𝑥,𝜆−1𝑦) + (1−𝜆)𝑇3 (𝜃,𝜆−1𝑦)
≥ 𝑇3 (𝑥, 𝑦) − (1−𝜆)𝑇3 (𝑥, 𝜃) + (1−𝜆)𝑇3 (𝜃,𝜆−1𝑦)
≥ 𝑇3 (𝑥, 𝑦) + (1−𝜆) [𝑇3 (𝜃, 𝑙̃ℎ) −𝑇3 ( 𝑙̃ ℎ, 𝜃)]

≥ 𝑇3 (𝑥, 𝑦) + (1−𝜆) [𝑇3 (𝜃, 𝑙̃ℎ) −
1
𝑎
𝑇3 (𝜃, 𝑙̃ℎ)]

≥ [1+ (1−𝜆) (1− 1
𝑎
)]𝑇3 (𝑥, 𝑦)

= [(2− 1
𝑎
) + ( 1

𝑎
−1)𝜆]𝑇3 (𝑥, 𝑦)

≥ 𝜆𝑇3 (𝑥, 𝑦).

Then, for any 𝜆 ∈ (0,1), it is easy to obtain

𝑇3 (𝜆𝑥,𝜆−1𝑦) ≥ 𝜆𝑇3 (𝑥, 𝑦), 𝑇3 (𝜆−1𝑥,𝜆𝑦) ≤ 𝜆−1𝑇3 (𝑥, 𝑦), (6)

From ℎ1 ∈ 𝑃ℎ of the condition (𝐻3), there exists a constant
𝑎0 ∈ (0,1) such that

𝑎0ℎ ≤ ℎ1 ≤ 𝑎−1
0 ℎ. (7)

What is more, by means of (𝐻3), there exist some constants
𝑏𝑖 ∈ (0,1) (𝑖 = 1,2, · · · ,8) such that

𝑏1ℎ ≤ 𝑇1 (ℎ1, ℎ1) ≤ 𝑏2ℎ, 𝑏3ℎ ≤ 𝑇2 (ℎ1, ℎ1) ≤ 𝑏4ℎ,

𝑏5ℎ ≤ 𝑇3 (ℎ1, ℎ1) ≤ 𝑏6ℎ, 𝑏7ℎ ≤ 𝑇4ℎ1 ≤ 𝑏8ℎ.
(8)

From (4)–(5), (7)–(8), and the monotonicity of 𝑇1, the assertion
follows

𝑇1 (ℎ, ℎ) ≤ 𝑇1 (𝑎−1
0 ℎ1, 𝑎0ℎ1) ≤ 𝜓1 (𝑎0)−1𝑏2ℎ,

𝑇1 (ℎ, ℎ) ≥ 𝑇1 (𝑎0ℎ1, 𝑎
−1
0 ℎ1) ≥ 𝜓1 (𝑎0)𝑏1ℎ.

(9)

In the similar way, we obtain

𝜓2 (𝑎0)𝑏3ℎ ≤ 𝑇2 (ℎ, ℎ) ≤ 𝜓2 (𝑎0)−1𝑏4ℎ,

𝑎0𝑏5ℎ ≤ 𝑇3 (ℎ, ℎ) ≤ 𝑎−1
0 𝑏6ℎ,

𝑎0𝑏7ℎ ≤ 𝑇4ℎ ≤ 𝑎−1
0 𝑏8ℎ.

(10)

From (9)–(10), it holds that 𝑇1 (ℎ, ℎ), 𝑇2 (ℎ, ℎ), 𝑇3 (ℎ, ℎ), 𝑇4ℎ ∈
𝑃ℎ. According to the definition of 𝑇5 and (10)–(11), it is easy to
obtain 𝑇5 (ℎ, ℎ) ∈ 𝑃ℎ.

Step 3: We verify that 𝑇5 satisfies the condition (𝐿2) in Lem-
ma 1. Through (𝐻4), it is easy to obtain that there exists 𝑝 ∈
(0,1), such that

(1− 𝑝)
[
𝑘1𝑇1 (𝑥, 𝑦) + 𝑘2𝑇2 (𝑥, 𝑦)

]
≥ 𝑝

[
𝑘3𝑇3 (𝑥, 𝑦)

+ 𝑘4𝑇4𝑥
]
, ∀𝑥, 𝑦 ∈ 𝑃.

Then by (𝐻1), ∀𝑡 ∈ (0,1), one observes

𝑇5 (𝑡𝑥, 𝑡−1𝑦) ≥ 𝜓(𝑡)[𝑘1𝑇1(𝑥,𝑦)+𝑘2𝑇2 (𝑥,𝑦)]+𝑡 [𝑘3𝑇3 (𝑥,𝑦)+𝑘4𝑇4𝑥]
= [𝑝𝜓(𝑡) + (1− 𝑝)𝑡] [𝑘1𝑇1 (𝑥, 𝑦) + 𝑘2𝑇2 (𝑥, 𝑦)]
+ (1− 𝑝) (𝜓(𝑡) − 𝑡) [𝑘1𝑇1 (𝑥, 𝑦) + 𝑘2𝑇2 (𝑥, 𝑦)]
+ 𝑡 [𝑘3𝑇3 (𝑥, 𝑦) + 𝑘4𝑇4𝑥]

≥ [𝑝𝜓(𝑡) + (1− 𝑝)𝑡] [𝑘1𝑇1 (𝑥, 𝑦) + 𝑘2𝑇2 (𝑥, 𝑦)]
+ 𝑝(𝜓(𝑡) − 𝑡) [𝑘3𝑇3 (𝑥, 𝑦) + 𝑘4𝑇4𝑥]
+ 𝑡 [𝑘3𝑇3 (𝑥, 𝑦) + 𝑘4𝑇4𝑥]

= [𝑝𝜓(𝑡) + (1− 𝑝)𝑡]𝑇5 (𝑥, 𝑦),

where 𝜓(𝑡) = min{𝜓1 (𝑡),𝜓2 (𝑡), 𝑡 ∈ (0,1)}. Due to 𝑝 ∈ (0,1),
𝜓(𝑡) ∈ (𝑡,1], it is easy to obtain 𝑝𝜓(𝑡) + (1− 𝑝)𝑡 ∈ (𝑡,1] . Hence,
there exists 𝜑(𝑡) = 𝑝𝜓(𝑡) + (1− 𝑝)𝑡 ∈ (𝑡,1] such that

𝑇5 (𝑡𝑥, 𝑡−1𝑦) ≥ 𝜑(𝑡)𝑇5 (𝑥, 𝑦).

Thus, according to Lemma 1, we get the conclusions (c1)–(c5).

Corollary 1. Let𝑇1, 𝑇2, 𝑇3 : 𝑃ℎ×𝑃ℎ → 𝑃ℎ be mixed monotone
operators, and𝑇4 : 𝑃ℎ → 𝑃ℎ be an increasing sub-homogeneous
operator, 𝑘𝑖 > 0 (𝑖 = 1,2,3,4). Suppose that (𝐻2) holds and
(𝐻′

1) for any 𝜆 ∈ (0,1), 𝑥, 𝑦 ∈ 𝑃ℎ, ∃𝜓1 (𝜆), 𝜓2 (𝜆) ∈ (𝜆,1] such
that

𝑇1 (𝜆𝑥,𝜆−1𝑦) ≥ 𝜓1 (𝜆)𝑇1 (𝑥, 𝑦), 𝑇2 (𝜆𝑥,𝜆−1𝑦) ≥ 𝜓2 (𝜆)𝑇2 (𝑥, 𝑦),

and for any fixed 𝑦 ∈ 𝑃ℎ, 𝑇3 (·, 𝑦) is concave; for any fixed 𝑥 ∈ 𝑃ℎ,

𝑇3 (𝑥, ·) is convex;
(𝐻′

4) for any 𝑥, 𝑦 ∈ 𝑃ℎ, ∃𝑝 ∈ (0,1) such that 𝑘1𝑇1 (𝑥, 𝑦)
+𝑘2𝑇2 (𝑥, 𝑦) ≥

𝑝

1− 𝑝 [𝑘3𝑇3 (𝑥, 𝑦) + 𝑘4𝑇4𝑥].
Thus, the conclusions (c1)–(c5).
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Proof. According to the definition of the set 𝑃ℎ, it can be in-
ferred that 𝑃ℎ ⊂ 𝑃. It can be observed that the conditions in
Corollary 1 are given on the subset 𝑃ℎ of 𝑃. Therefore, ac-
cording to the proof in Theorem 1, the same conclusion can be
drawn. □

Remark 1. In Theorem 1, the properties of 𝑇1, 𝑇2 in the condi-
tion (𝐻1) turn into the condition (𝑙1) or (𝑙2) or (𝑙3):
(𝑙1) for any 𝜆 ∈ (0,1), 𝑥, 𝑦 ∈ 𝑃, ∃𝛼1, 𝛼2 ∈ (0,1) such that

𝑇1 (𝜆𝑥,𝜆−1𝑦) ≥ 𝜆𝛼1𝑇1 (𝑥, 𝑦),
𝑇2 (𝜆𝑥,𝜆−1𝑦) ≥ 𝜆𝛼2𝑇2 (𝑥, 𝑦),

(𝑙2) for any 𝜆 ∈ (0,1), 𝑥, 𝑦 ∈ 𝑃, ∃𝜂1 (𝜆), 𝜂2 (𝜆) ∈ (0,1] such that

𝑇1 (𝜆𝑥,𝜆−1𝑦) ≥ [1+𝜆−𝜆𝜂1 (𝜆) ]𝑇1 (𝑥, 𝑦),
𝑇2 (𝜆𝑥,𝜆−1𝑦) ≥ [1+𝜆−𝜆𝜂2 (𝜆) ]𝑇2 (𝑥, 𝑦),

(𝑙3) for any 𝜆 ∈ (0,1), 𝑥, 𝑦 ∈ 𝑃, ∃𝜂3 (𝜆), 𝜂4 (𝜆) > 0 such that
𝜆[1+𝜂3 (𝜆)] < 1,𝜆[1+𝜂4 (𝜆)] < 1 and

𝑇1 (𝜆𝑥,𝜆−1𝑦) ≥ 𝜆[1+𝜂3 (𝜆)]𝑇1 (𝑥, 𝑦),
𝑇2 (𝜆𝑥,𝜆−1𝑦) ≥ 𝜆[1+𝜂4 (𝜆)]𝑇2 (𝑥, 𝑦),

then the conclusions (c1)–(c5) still hold.

Remark 2. In Theorem 1, if we take 𝑘1 = 𝑘4 = 1, 𝑘2 = 𝑘3 = 0, or
𝑘1 = 𝑘4 = 1, 𝑇2 = 𝑇3 = 𝜃, and the property of 𝑇1 in the condition
(𝐻1) turns into

∃𝛼1 ∈ (0,1) such that 𝑇1 (𝜆𝑥,𝜆−1𝑦) ≥ 𝜆𝛼1𝑇1 (𝑥, 𝑦),

the corresponding result can be reduced to the Theorem 2.1
of [19].

Remark 3. In Theorem 1, in the situation of 𝑘1 = 𝑘2 = 1, 𝑘3 =
𝑘4 = 0, or 𝑘1 = 𝑘2, 𝑇3 = 𝑇4 = 𝜃, the corresponding results are
consistent with the result of [20].

4. UNIQUE SOLUTION TO THE FDES

In this part, using our main theoretical results, we study the exis-
tence, uniqueness solution and approximating iterative schemes
of unique solution to equation (1) with the conditions (2) or (3).
The brief process of the research is as follows. Firstly, we dis-
cuss the equivalent integral equations of two singular differ-
ential equations (Lemma 2, Lemma 4), then the properties of
the Green’s function in the equivalent integral equations are ob-
tained (Lemma 3). Thirdly, based on the obtained operator equa-
tion theorem (Theorem 1), the sufficient conditions for unique
solution of two fractional differential equations are given (The-
orem 2, Theorem 3).

In the following, we will work in 𝐸 = 𝐶 [0,1] with the norm
∥𝑥∥ = sup0≤𝑡≤1 |𝑥(𝑡) |, and 𝑃 = {𝑥 ∈ 𝐸 : 𝑥(𝑡) ≥ 0, 𝑡 ∈ [0,1]}. Ev-
idently, (𝐸, ∥ · ∥) is a Banach space, 𝑃 is a normal cone and the
normality constant is 1. Define

𝑃ℎ =

{
𝑥 ∈ 𝐶 [0,1] : ∃𝐽 ∈ (0,1), 𝐽ℎ(𝑡) ≤ 𝑥 ≤ 1

𝐽
ℎ(𝑡), 𝑡 ∈ [0,1]

}
.

To simplify, let

𝑀1 = Γ(𝜂1)Γ(𝜂1 + 𝛽1) − 𝜏Γ(𝜂1)Γ(𝜂1 −𝛼1)𝜉𝜂1+𝛽1−1
1 ,

𝑀2 =
1

Γ(𝜂2 −𝛼2)
−

1∫
0
𝑏(𝑠)𝑠𝜂2−𝛽2−1 d𝐴(𝑠)

Γ(𝜂2 − 𝛽2)
,

𝑔1 (𝑡, 𝑠) =
𝑡𝜂1−1

𝑀1
(1− 𝑠)𝜂1−𝛼1−1Γ(𝜂1 + 𝛽1),

𝑔2 (𝑡, 𝑠) =
(𝑡 − 𝑠)𝜂1−1

Γ(𝜂1)
,

𝑔3 (𝑡, 𝑠) = 𝜏
Γ(𝜂1 −𝛼1)𝑡𝜂1−1 (𝜉1 − 𝑠)𝜂1+𝛽1−1

𝑀1
.

Lemma 2. If 𝜎(𝑡) = 𝑘1 𝑓 (𝑡, 𝑥(𝑡), 𝑥(𝑡)) + 𝑘2𝑔(𝑡, 𝑥(𝑡), 𝑥(𝑡)) +
𝑘3𝜙(𝑡, 𝑥(𝑡), 𝑥(𝑡)) + 𝑘4𝜌(𝑡, 𝑥(𝑡)) ∈𝐶 [0,1], 𝑀1 > 0,𝑀2 > 0, equa-
tion (1) with condition (2) has the following equivalent integral
equation

𝑥(𝑡) =
1∫

0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏)𝜎(𝜏) d𝜏d𝑠,

where

𝐺 (𝑡, 𝑠) = 𝐺1 (𝑡, 𝑠) + 𝑡𝜂2−1
1∫

0

𝐺2 (𝜏, 𝑠)𝑏(𝜏) d𝐴(𝜏),

𝐺1 (𝑡, 𝑠) =


𝑡𝜂2−1 (1−𝑠)𝜂2−𝛼2−1 − (𝑡−𝑠)𝜂2−1

Γ(𝜂2)
, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡𝜂2−1 (1−𝑠)𝜂2−𝛼2−1

Γ(𝜂2)
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

𝐺2 (𝑡, 𝑠) =



(1−𝑠)𝜂2−𝛼2−1𝑡𝜂2−𝛽2−1− (𝑡−𝑠)𝜂2−𝛽2−1

Γ(𝜂2)Γ(𝜂2 − 𝛽2)𝑀2
,

0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(1−𝑠)𝜂2−𝛼2−1𝑡𝜂2−𝛽2−1

Γ(𝜂2)Γ(𝜂2 − 𝛽2)𝑀2
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

𝐾 (𝑡, 𝑠) =



𝑔1 (𝑡, 𝑠) −𝑔2 (𝑡, 𝑠) −𝑔3 (𝑡, 𝑠), 0 ≤ 𝑠 ≤ 𝑡 ≤ 1, 𝑠 ≤ 𝜉1,

𝑔1 (𝑡, 𝑠) −𝑔2 (𝑡, 𝑠), 0 ≤ 𝜉1 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑔1 (𝑡, 𝑠) −𝑔3 (𝑡, 𝑠), 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝜉1 ≤ 1,

𝑔1 (𝑡, 𝑠), 0 ≤ 𝑡 ≤ 𝑠 ≤ 1, 𝜉1 ≤ 𝑠.

Proof. Let 𝐷𝜂1
0+ 𝑥(𝑡) = 𝑢(𝑡). Equation (1) and some condi-

tions of (2)


𝐷

𝜂1+ 𝑗
0+ 𝑥(0) = 0, 𝑗 = 0,1, · · · ,𝑚−2,

𝐷
𝜂1+𝛼2
0+ 𝑥(1) =

1∫
0

𝑏(𝑠)𝐷𝜂1+𝛽2
0+ 𝑥(𝑠) d𝐴(𝑠),
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can turn into 

𝐷
𝜂2
0+ 𝑢(𝑡) +𝜎(𝑡) = 0,

𝑢 ( 𝑗 ) (0) = 0, 𝑗 = 0,1, · · · ,𝑚−2,

𝐷
𝛼2
0+ 𝑢(1) =

1∫
0

𝑏(𝑠)𝐷𝛽2
0+𝑢(𝑠) d𝐴(𝑠).

(11)

Integrating 𝜂2 times to the first formula of equation (11), we can
obtain

𝑢(𝑡) = −𝐼 𝜂2
0+ 𝜎(𝑡) + 𝑐̃1𝑡

𝜂2−1 + 𝑐̃2𝑡
𝜂2−2 + · · · + 𝑐̃𝑚𝑡𝜂2−𝑚. (12)

From 𝑢 ( 𝑗 ) (0) = 0 ( 𝑗 = 0,1, · · · ,𝑚−2), we see that 𝑐̃𝑚 = 𝑐̃𝑚−1 =
· · · = 𝑐̃2 = 0. Then by

𝐷𝛼
0+ 𝑡

𝜂−1 =
Γ(𝜂)

Γ(𝜂−𝛼) 𝑡
𝜂−𝛼−1

and

𝐷
𝛼2
0+ 𝑢(1) =

1∫
0

𝑏(𝑠)𝐷𝛽2
0+𝑢(𝑠) d𝐴(𝑠),

one gets

𝑐̃1 =

1∫
0

(1− 𝑠)𝜂2−𝛼2−1

Γ(𝜂2)Γ(𝜂2 −𝛼2)𝑀2
𝜎(𝑠) d𝑠

−
1∫

0

𝑠∫
0

(𝑠− 𝜏)𝜂2−𝛽2−1

Γ(𝜂2)Γ(𝜂2 − 𝛽2)𝑀2
𝑏(𝑠)𝜎(𝜏) d𝜏d𝐴(𝑠). (13)

Substituting (13) in (12), and from the definition of 𝑀2, we can
get

𝑢(𝑡) = −
𝑡∫

0

(𝑡−𝑠)𝜂2−1

Γ(𝜂2)
𝜎(𝑠) d𝑠+

1∫
0

𝑡𝜂2−1 (1−𝑠)𝜂2−𝛼2−1

Γ(𝜂2)
𝜎(𝑠)d𝑠

+
1∫

0

1∫
0

𝑡𝜂2−1 (1−𝜏)𝜂2−𝛼2−1𝑠𝜂2−𝛽2−1

Γ(𝜂2)Γ(𝜂2 − 𝛽2)𝑀2
𝑏(𝑠)𝜎(𝜏) d𝜏d𝐴(𝑠)

−
1∫

0

𝑠∫
0

𝑡𝜂2−1 (𝑠− 𝜏)𝜂2−𝛽2−1

Γ(𝜂2)Γ(𝜂2 − 𝛽2)𝑀2
𝑏(𝑠)𝜎(𝜏) d𝜏d𝐴(𝑠)

=

1∫
0

𝐺 (𝑡, 𝑠)𝜎(𝑠) d𝑠.

i.e., 𝐷𝜂1
0+ 𝑥(𝑡) = 𝑢(𝑡) =

1∫
0

𝐺 (𝑡, 𝑠)𝜎(𝑠) d𝑠.

Integrating 𝜂1 times with the above formula, we have

𝑥(𝑡) = −𝐼 𝜂1
0+ 𝑢(𝑡) + 𝑎̃1𝑡

𝜂1−1 + 𝑎̃2𝑡
𝜂1−2 + · · · + 𝑎̃𝑛𝑡𝜂1−𝑛. (14)

According to 𝑥 (𝑖) (0) = 0 (𝑖 = 0,1, · · · , 𝑛−2), there is 𝑎̃𝑛 = 𝑎̃𝑛−1 =
· · · = 𝑎̃2 = 0. It follows from 𝐷

𝛼1
0+ 𝑥(1) = 𝜏𝐼

𝛽1
0+ 𝑥(𝜉1) that

𝑎̃1 =

1∫
0

Γ(𝜂1 + 𝛽1) (1− 𝑠)𝜂1−𝛼1−1

𝑀1
𝑢(𝑠) d𝑠

−
𝜉1∫

0

𝜏Γ(𝜂1 −𝛼1) (𝜉1 − 𝑠)𝜂1+𝛽1−1

𝑀1
𝑢(𝑠) d𝑠. (15)

Replace 𝑎̃1 of (15) with (14) in the equation, there is

𝑥(𝑡) =
1∫

0

𝐾 (𝑡, 𝑠)𝑢(𝑠) d𝑠,

Then from 𝑢(𝑡) and 𝜎(𝑡), we can get the conclusion.

Lemma 3. If 𝑀1 > 0, 𝑀2 > 0, the following properties are es-
tablished
(i) for any 𝑡, 𝑠 ∈ [0,1], 𝐺 (𝑡, 𝑠),𝐾 (𝑡, 𝑠) are continuous.
(ii) for any 𝑡, 𝑠 ∈ [0,1], we have

0 ≤ 𝑙1 (𝑠)𝑡𝜂2−1 ≤ 𝐺 (𝑡, 𝑠) ≤ 𝐿1𝑡
𝜂2−1,

where

𝐿1 =
1

Γ(𝜂2)
+

1∫
0

𝜏𝜂2−𝛽2−1

Γ(𝜂2)Γ(𝜂2 − 𝛽2)𝑀2
𝑏(𝜏)d𝐴(𝜏),

𝑙1 (𝑠) =
[
1− (1− 𝑠)𝛼2−𝛽2

]
(1− 𝑠)𝜂2−𝛼2−1

· (1− 𝑠)
𝜂2−𝛼2−1 [1− (1− 𝑠)𝛼2 ]

Γ(𝜂2)

+
1∫

0

𝜏𝜂2−𝛽2−1

Γ(𝜂2)Γ(𝜂2 − 𝛽2)𝑀2
𝑏(𝜏) d𝐴(𝜏).

(iii) for any 𝑡, 𝑠 ∈ [0,1], we have

0 ≤ 𝑙2 (𝑠)𝑡𝜂1−1 ≤ 𝐾 (𝑡, 𝑠) ≤ 𝐿2𝑡
𝜂1−1,

where

𝐿2 =
Γ(𝜂1)Γ(𝜂1 + 𝛽1)

𝑀1
,

𝑙2 (𝑠) =
𝜏Γ(𝜂1 −𝛼1)𝜉𝜂1+𝛽1−1

1
𝑀1

(1− 𝑠)𝜂1−𝛼1−1 [1− (1− 𝑠)𝛼1 ] .

Proof. From the definition of 𝐺 (𝑡, 𝑠),𝐾 (𝑡, 𝑠), we can know that
(i) holds.

From the definition of 𝐺1 (𝑡, 𝑠), 𝐺2 (𝑡, 𝑠), for any 𝑡, 𝑠 ∈ [0,1],
we compute

0 ≤ 𝑡𝜂2−1 (1− 𝑠)𝜂2−𝛼2−1 [1− (1− 𝑠)𝛼2 ]
Γ(𝜂2)

≤ 𝐺1 (𝑡, 𝑠) ≤
𝑡𝜂2−1

Γ(𝜂2)
,
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0 ≤ (1− 𝑠)𝜂2−𝛼2−1𝑡𝜂2−𝛽2−1 [1− (1− 𝑠)𝛼2−𝛽2 ]
Γ(𝜂2)Γ(𝜂2 − 𝛽2)𝑀2

≤ 𝐺2 (𝑡, 𝑠)

≤ 𝑡𝜂2−𝛽2−1 1
Γ(𝜂2)Γ(𝜂2 − 𝛽2)

.

From the definition of 𝐺 (𝑡, 𝑠), for any 𝑡, 𝑠 ∈ [0,1], it holds
that

𝐺 (𝑡, 𝑠) = 𝐺1 (𝑡, 𝑠) + 𝑡𝜂2−1
1∫

0

𝐺2 (𝜏, 𝑠)𝑏(𝜏) d𝐴(𝜏) ≥ 𝑙1 (𝑠)𝑡𝜂2−1,

and 𝐺 (𝑡, 𝑠) ≤ 𝐿1𝑡
𝜂2−1, i.e., (ii) holds.

From the definition of𝐾 (𝑡, 𝑠), and𝑀1 > 0, when 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
𝑠 ≤ 𝜉1, we observe that

𝑀1Γ(𝜂1)𝐾 (𝑡, 𝑠) = Γ(𝜂1)Γ(𝜂1 + 𝛽1)𝑡𝜂1−1 (1− 𝑠)𝜂1−𝛼1−1

−Γ(𝜂1)Γ(𝜂1 + 𝛽1) (𝑡 − 𝑠)𝜂1−1 + 𝜏Γ(𝜂1)Γ(𝜂1 −𝛼1)𝜉𝜂1+𝛽1−1
1

· (𝑡 − 𝑠)𝜂1−1 − 𝜏Γ(𝜂1)Γ(𝜂1 −𝛼1)𝑡𝜂1−1 (𝜉1 − 𝑠)𝜂1+𝛽1−1

≥𝜏Γ(𝜂1)Γ(𝜂1 −𝛼1)𝜉𝜂1+𝛽1−1
1 𝑡𝜂1−1 (1− 𝑠)𝜂1−𝛼1−1

· [1− (1− 𝑠)𝛼1 ] ≥ 0,

and

𝑀1Γ(𝜂1)𝐾 (𝑡, 𝑠) ≤Γ(𝜂1)Γ(𝜂1 + 𝛽1)𝑡𝜂1−1 (1− 𝑠)𝜂1−𝛼1−1

≤Γ(𝜂1)Γ(𝜂1 + 𝛽1)𝑡𝜂1−1.

Similarly, when 0 ≤ 𝜉1 ≤ 𝑠 ≤ 𝑡 ≤ 1, 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝜉1 ≤ 1, 0 ≤
𝑡 ≤ 𝑠 ≤ 1, 𝜉1 ≤ 𝑠, we can draw the same conclusion. Hence, for
any 𝑡, 𝑠 ∈ [0,1], we infer that (iii) holds.

Theorem 2. Let 𝑓 , 𝑔, 𝜙 : 𝐶
(
(0,1) × (0,+∞)× (0,+∞), [0,+∞)

)
,

𝜌 : 𝐶
(
(0,1) × (0,+∞), [0,+∞)

)
, and 𝑓 (𝑡, 𝑢, 𝑣), 𝑔(𝑡, 𝑢, 𝑣),

𝜙(𝑡, 𝑢, 𝑣), 𝜌(𝑡, 𝑢) are singular at 𝑡 = 0,1 and 𝑣 = 0. Assume that
(𝑟1) for 𝑡 ∈ (0,1), 𝑥, 𝑦 ∈ (0,+∞), for any fixed 𝑡, 𝑦, 𝑓 (𝑡, 𝑥, 𝑦),

𝑔(𝑡, 𝑥, 𝑦), 𝜙(𝑡, 𝑥, 𝑦), 𝜌(𝑡, 𝑥) are nondecreasing in 𝑥; for any
fixed 𝑡, 𝑥, 𝑓 (𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦), 𝜙(𝑡, 𝑥, 𝑦) are nonincreasing
in 𝑦;

(𝑟2) for any𝜆, 𝑡 ∈ (0,1), 𝑥, 𝑦 ∈ (0,+∞), there exist𝜓1 (𝜆) ∈ (𝜆,1],
𝜓2 (𝜆) ∈ (𝜆,1] such that

𝑓 (𝑡,𝜆𝑥,𝜆−1𝑦) ≥ 𝜓1 (𝜆) 𝑓 (𝑡, 𝑥, 𝑦),
𝑔(𝑡,𝜆𝑥,𝜆−1𝑦) ≥ 𝜓2 (𝜆)𝑔(𝑡, 𝑥, 𝑦), 𝜌(𝑡,𝜆𝑥) ≥ 𝜆𝜌(𝑡, 𝑥),

and for fixed 𝑡, 𝑦, 𝜙(𝑡, ·, 𝑦) is concave; for fixed 𝑡, 𝑥, 𝜙(𝑡, 𝑥, ·) is
convex;

(𝑟3) ∃ 1
2
≤ 𝑎 ≤ 1 such that 𝜙(𝑡, 𝜃, 𝑙̃ℎ) ≥ 𝑎𝜙(𝑡, 𝑙̃ℎ, 𝜃), where

𝑙̃ ≥ 1, ℎ(𝑡) = 𝑡𝜂1−1;

(𝑟4)
1∫

0

𝑠𝜂2−1
1∫

0

𝜓1 (𝜏𝜂1−1)−1 𝑓 (𝜏,1,1)d𝜏d𝑠 < +∞,

1∫
0

𝑠𝜂2−1
1∫

0

𝜓2 (𝜏𝜂1−1)−1𝑔(𝜏,1,1) d𝜏d𝑠 < +∞,

1∫
0

𝑠𝜂2−1
1∫

0

𝜏1−𝜂1𝜙(𝜏,1,1)d𝜏d𝑠 < +∞,

1∫
0

𝑠𝜂2−1
1∫

0

𝜏1−𝜂1𝜌(𝜏,1) d𝜏d𝑠 < +∞;

(𝑟5) ∃𝑝 ∈ (0,1) such that 𝑘1 𝑓 (𝑡, 𝑥, 𝑦) + 𝑘2𝑔(𝑡, 𝑥, 𝑦) ≥ 𝑝

1− 𝑝
[𝑘3𝜙(𝑡, 𝑥, 𝑦) + 𝑘4𝜌(𝑡, 𝑥)].

Then
(T1) there exist 𝑢0, 𝑣0 ∈ 𝑃ℎ, 𝑟 ∈ (0,1) such that 𝑟𝑣0 ≤ 𝑢0 < 𝑣0,
and

𝑢0 ≤
1∫

0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏) [𝑘1 𝑓 (𝜏,𝑢0 (𝜏), 𝑣0 (𝜏)) + 𝑘2𝑔(𝜏,𝑢0 (𝜏),

𝑣0 (𝜏)) + 𝑘3𝜙(𝜏,𝑢0 (𝜏), 𝑣0 (𝜏)) + 𝑘4𝜌(𝜏,𝑢0 (𝜏))] d𝜏d𝑠

≤
1∫

0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏) [𝑘1 𝑓 (𝜏, 𝑣0 (𝜏), 𝑢0 (𝜏)) + 𝑘2𝑔(𝜏, 𝑣0 (𝜏),

𝑢0 (𝜏)) + 𝑘3𝜙(𝜏, 𝑣0 (𝜏), 𝑢0 (𝜏)) + 𝑘4𝜌(𝜏, 𝑣0 (𝜏))] d𝜏d𝑠 ≤ 𝑣0.

(T2) equation (1) with the boundary value condition (1) has a
unique positive solution 𝑥∗ in 𝑃ℎ, where ℎ(𝑡) = 𝑡𝜂1−1.
(T3) for any initial values 𝑥0, 𝑦0 ∈ 𝑃ℎ, constructing successively
the iterative sequences

𝑥𝑛+1 (𝑡) =


1∫
0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏)𝑘1 𝑓 (𝜏, 𝑥𝑛 (𝜏), 𝑦𝑛 (𝜏))

+ 𝑘2𝑔(𝜏, 𝑥𝑛 (𝜏), 𝑦𝑛 (𝜏)) + 𝑘3𝜙(𝜏, 𝑥𝑛 (𝜏), 𝑦𝑛 (𝜏))

+ 𝑘4𝜌(𝜏, 𝑥𝑛 (𝜏))
]
d𝜏d𝑠,

𝑦𝑛+1 (𝑡) =
1∫

0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏)
[
𝑘1 𝑓 (𝜏, 𝑦𝑛 (𝜏), 𝑥𝑛 (𝜏))

+ 𝑘2𝑔(𝜏, 𝑦𝑛 (𝜏), 𝑥𝑛 (𝜏)) + 𝑘3𝜙(𝜏, 𝑦𝑛 (𝜏), 𝑥𝑛 (𝜏))

+ 𝑘4𝜌(𝜏, 𝑦𝑛 (𝜏))
]
d𝜏d𝑠,

𝑛 = 0,1,2, · · · , 𝑥𝑛+1 → 𝑥∗, 𝑦𝑛+1 → 𝑥∗, when 𝑛→∞.

Proof. Define some operators 𝑇1,𝑇2,𝑇3 : 𝑃ℎ ×𝑃ℎ → 𝐸 ,
𝑇4 : 𝑃ℎ → 𝐸 by

𝑇1 (𝑥, 𝑦) (𝑡) =
1∫

0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏) 𝑓 (𝜏, 𝑥(𝜏), 𝑦(𝜏)) d𝜏d𝑠,

𝑇2 (𝑥, 𝑦) (𝑡) =
1∫

0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏)𝑔(𝜏, 𝑥(𝜏), 𝑦(𝜏))d𝜏d𝑠,

𝑇3 (𝑥, 𝑦) (𝑡) =
1∫

0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏)𝜙(𝜏, 𝑥(𝜏), 𝑦(𝜏))d𝜏d𝑠,
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𝑇4𝑥(𝑡) =
1∫

0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏)𝜌(𝜏, 𝑥(𝜏)) d𝜏d𝑠.

Hence, from Lemma 2, 𝑥 is the solution of equations (1)–(2)
if and only if 𝑥 is the solution of 𝑥 = 𝑘1𝑇1 (𝑥, 𝑥) + 𝑘2𝑇2 (𝑥, 𝑥) +
𝑘3𝑇3 (𝑥, 𝑥) + 𝑘4𝑇4𝑥. We divide the proof into five steps.

Step 1: Due to 𝑓 (𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦), 𝜙(𝑡, 𝑥, 𝑦), 𝜌(𝑡, 𝑥) ≥ 0,
and 𝐺 (𝑡, 𝑠),𝐾 (𝑡, 𝑠) ≥ 0 of Lemma 3, it is easy to verify
𝑇1,𝑇2,𝑇3 : 𝑃ℎ ×𝑃ℎ → 𝑃, 𝑇4 : 𝑃ℎ → 𝑃. Moreover, it can be ver-
ified that 𝑇1,𝑇2,𝑇3 are monotone operators, and 𝑇4 is nonde-
creasing operator by monotonicity of 𝑓 , 𝑔, 𝜙 and 𝜌 in the condi-
tion (𝑟1).

Step 2: We illustrate that 𝑇1,𝑇2,𝑇3 : 𝑃ℎ × 𝑃ℎ → 𝑃ℎ, and 𝑇4 :
𝑃ℎ → 𝑃ℎ. Since 𝜙(𝑡, 𝑥, ·) is convex, we conclude

𝜙(𝑡, 𝑥, 𝑦) ≤ 𝜆𝜙(𝑡, 𝑥,𝜆−1𝑦) + (1−𝜆)𝜙(𝑡, 𝑥, 𝜃), 𝜆 ∈ (0,1),

For 𝑥, 𝑦 ∈ 𝑃ℎ, there exists sufficiently large 𝑙̃ such that
𝑥, 𝑦,𝜆−1𝑦 ≤ 𝑙̃ ℎ. Since 𝜙(𝑡, ·, 𝑦) is concave, by the condition (𝑟3),
and the monotonicity of 𝜙, we infer that

𝜙(𝑡,𝜆𝑥,𝜆−1𝑦) ≥ 𝜆𝜙(𝑡, 𝑥,𝜆−1𝑦) + (1−𝜆)𝜙(𝑡, 𝜃,𝜆−1𝑦)
≥ 𝜙(𝑡, 𝑥, 𝑦) + (1−𝜆) (𝜙(𝑡, 𝜃, 𝑙̃ℎ) −𝜙(𝑡, 𝑙̃ℎ, 𝜃))

≥ [1+ (1−𝜆) (1− 1
𝑎
)]𝜙(𝑡, 𝑥, 𝑦)

= [(2− 1
𝑎
) + ( 1

𝑎
−1)𝜆]𝜙(𝑡, 𝑥, 𝑦) ≥ 𝜆𝜙(𝑡, 𝑥, 𝑦).

Then, we can deduce

𝜙(𝑡,𝜆𝑥,𝜆−1𝑦) ≥ 𝜆𝜙(𝑡, 𝑥, 𝑦),

𝜙(𝑡,𝜆−1𝑥,𝜆𝑦) ≤ 𝜆−1𝜙(𝑡, 𝑥, 𝑦).
(16)

In view of (𝑟2), we deduce

𝑓 (𝑡,𝜆−1𝑥,𝜆𝑦) ≤ 𝜓1 (𝜆)−1 𝑓 (𝑡, 𝑥, 𝑦),

𝑔(𝑡,𝜆−1𝑥,𝜆𝑦) ≤ 𝜓2 (𝜆)−1𝑔(𝑡, 𝑥, 𝑦),

𝜌(𝑡,𝜆−1𝑥) ≤ 𝜆−1𝜌(𝑡, 𝑥).

(17)

Taking 𝑥 = 𝑦 = 1 in (16)–(17) and the condition (𝑟2), we have

𝑓 (𝑡,𝜆,𝜆−1) ≥ 𝜓1 (𝜆) 𝑓 (𝑡,1,1), 𝑓 (𝑡,𝜆−1,𝜆) ≤ 𝜓1 (𝜆)−1 𝑓 (𝑡,1,1),
𝑔(𝑡,𝜆,𝜆−1) ≥ 𝜓2 (𝜆)𝑔(𝑡,1,1), 𝑔(𝑡,𝜆−1,𝜆) ≤ 𝜓2 (𝜆)−1𝑔(𝑡,1,1),
𝜙(𝑡,𝜆,𝜆−1) ≥ 𝜆𝜙(𝑡,1,1), 𝜙(𝑡,𝜆−1,𝜆) ≤ 𝜆−1𝜙(𝑡,1,1),

𝜌(𝑡,𝜆) ≥ 𝜆𝜌(𝑡,1), 𝜌(𝑡,𝜆−1) ≤ 𝜆−1𝜌(𝑡,1).

For 𝑥, 𝑦 ∈ 𝑃ℎ, there exists 𝐽 ∈ (0,1) such that 𝐽ℎ ≤ 𝑥, 𝑦 ≤ 𝐽−1ℎ.
Then, we obtain

𝑓 (𝑡, 𝑥(𝑡), 𝑦(𝑡)) ≤ 𝑓 (𝑡, 𝐽−1𝑡𝜂1−1, 𝐽𝑡𝜂1−1) ≤ 𝑓 (𝑡, 𝐽−1𝑡1−𝜂1, 𝐽𝑡𝜂1−1)
≤ 𝜓1 (𝑡𝜂1−1)−1𝜓1 (𝐽)−1 𝑓 (𝑡,1,1),

𝑓 (𝑡, 𝑥(𝑡), 𝑦(𝑡)) ≥ 𝑓 (𝑡, 𝐽𝑡𝜂1−1, 𝐽−1𝑡𝜂1−1) ≥ 𝑓 (𝑡, 𝐽𝑡𝜂1−1, 𝐽−1𝑡1−𝜂1 )
≥ 𝜓1 (𝑡𝜂1−1)𝜓1 (𝐽) 𝑓 (𝑡,1,1).

In the similar way, the following inequalities hold
𝜓2 (𝑡𝜂1−1)𝜓2 (𝐽)𝑔(𝑡,1,1) ≤ 𝑔(𝑡, 𝑥(𝑡), 𝑦(𝑡)) ≤ 𝜓2 (𝑡𝜂1−1)−1,

𝜓2 (𝐽)−1𝑔(𝑡,1,1), 𝑡𝜂1−1𝐽𝜙(𝑡,1,1) ≤ 𝜙(𝑡, 𝑥(𝑡), 𝑦(𝑡)) ≤ 𝑡1−𝜂1 ,
𝐽−1𝜙(𝑡,1,1), 𝑡𝜂1−1𝐽𝜌(𝑡,1) ≤ 𝜌(𝑡, 𝑥(𝑡)) ≤ 𝑡1−𝜂1𝐽−1𝜌(𝑡,1).
Using Lemma 3, and the condition (𝑟4), one observes

𝑇1 (𝑥, 𝑦) (𝑡) ≤
1∫

0

𝐿2𝑡
𝜂1−1

1∫
0

𝐿1𝑠
𝜂2−1𝜓1 (𝜏𝜂1−1)−1𝜓1 (𝐽)−1

· 𝑓 (𝜏,1,1) d𝜏d𝑠 = 𝐿1𝐿2𝜓1 (𝐽)−1𝑡𝜂1−1
1∫

0

𝑠𝜂2−1

·
1∫

0

𝜓1 (𝜏𝜂1−1)−1 𝑓 (𝜏,1,1)d𝜏d𝑠 < +∞. (18)

Similarly, it gives

𝑇2 (𝑥, 𝑦) (𝑡) < +∞, 𝑇3 (𝑥, 𝑦) (𝑡) < +∞, 𝑇4𝑥(𝑡) < +∞.

Assume that 𝐽1 ∈ (0,1) and

𝐽1 < min


©­«𝐿1𝐿2𝜓1 (𝐽)−1

1∫
0

𝑠𝜂2−1
1∫

0

𝜓1 (𝜏𝜂1−1)−1 𝑓 (𝜏,1,1)d𝜏d𝑠ª®¬
−1

,

𝜓1 (𝐽)
1∫

0

𝑙2 (𝑠)𝑠𝜂2−1
1∫

0

𝑙1 (𝜏)𝜓1 (𝜏𝜂1−1) 𝑓 (𝜏,1,1) d𝜏d𝑠

©­«𝐿1𝐿2𝜓2 (𝐽)−1
1∫

0

𝑠𝜂2−1
1∫

0

𝜓2 (𝜏𝜂1−1)−1𝑔(𝜏,1,1) d𝜏d𝑠ª®¬
−1

,

𝜓2 (𝐽)
1∫

0

𝑙2 (𝑠)𝑠𝜂2−1
1∫

0

𝑙1 (𝜏)𝜓2 (𝜏𝜂1−1)𝑔(𝜏,1,1) d𝜏d𝑠

©­«𝐿1𝐿2𝐽
−1

1∫
0

𝑠𝜂2−1
1∫

0

𝜏1−𝜂1𝜙(𝜏,1,1) d𝜏d𝑠ª®¬
−1

,

𝐽

1∫
0

𝑙2 (𝑠)𝑠𝜂2−1
1∫

0

𝑙1 (𝜏)𝜏𝜂1−1𝜙(𝜏,1,1) d𝜏d𝑠

©­«𝐿1𝐿2𝐽
−1

1∫
0

𝑠𝜂2−1
1∫

0

𝜏1−𝜂1𝜌(𝜏,1) d𝜏d𝑠ª®¬
−1

,

𝐽

1∫
0

𝑙2 (𝑠)𝑠𝜂2−1
1∫

0

𝑙1 (𝜏)𝜏𝜂1−1𝜌(𝜏,1) d𝜏d𝑠
 .

By means of 𝐽1, it holds that

𝐽1𝑡
𝜂1−1 ≤ 𝑇1 (𝑥, 𝑦) (𝑡) ≤ 𝐽−1

1 ℎ(𝑡),

i.e., 𝑇1 : 𝑃ℎ × 𝑃ℎ → 𝑃ℎ. Similarly, 𝑇2,𝑇3 : 𝑃ℎ × 𝑃ℎ → 𝑃ℎ, 𝑇4 :
𝑃ℎ → 𝑃ℎ.
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Step 3: From the assumption (𝑟2), there exist 𝜓1 (𝜆) ∈
(𝜆,1], 𝜓2 (𝜆) ∈ (𝜆,1] such that

𝑇1 (𝜆𝑥,𝜆−1𝑦) (𝑡) ≥
1∫

0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏)𝜓1 (𝜆)

· 𝑓 (𝜏, 𝑥(𝜏), 𝑦(𝜏)) d𝜏d𝑠 = 𝜓1 (𝜆)𝑇1 (𝑥, 𝑦) (𝑡),

𝑇2 (𝜆𝑥,𝜆−1𝑦) (𝑡) ≥
1∫

0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏)𝜓2 (𝜆)

· 𝑔(𝜏, 𝑥(𝜏), 𝑦(𝜏))) d𝜏d𝑠 = 𝜓2 (𝜆)𝑇2 (𝑥, 𝑦) (𝑡).

What is more, for fixed 𝑡 ∈ (0,1), 𝑦 ∈ 𝑃, for any 𝜄 ∈ (0,1), 𝑥1, 𝑥2 ∈
𝑃, we can find

𝑇3 (𝜄𝑥1 + (1− 𝜄)𝑥2, 𝑦) (𝑡) ≥
1∫

0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏) [𝜄𝜙(𝜏, 𝑥1 (𝜏),

𝑦(𝜏)) + (1− 𝜄)𝜙(𝜏, 𝑥2 (𝜏), 𝑦(𝜏))] d𝜏d𝑠

=𝜄

1∫
0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏)𝜙(𝜏, 𝑥1 (𝜏), 𝑦(𝜏)) d𝜏d𝑠

+ (1− 𝜄)
1∫

0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏)𝜙(𝜏, 𝑥2 (𝜏), 𝑦(𝜏)) d𝜏d𝑠

=𝜄𝑇3 (𝑥1, 𝑦) + (1− 𝜄)𝑇3 (𝑥2, 𝑦) (𝑡).

For fixed 𝑡 ∈ (0,1), 𝑥 ∈ 𝑃, for any 𝜄 ∈ (0,1), 𝑦1, 𝑦2 ∈ 𝑃, it gives

𝑇3 (𝑥, 𝜄𝑦1 + (1− 𝜄)𝑦2) (𝑡) ≤
1∫

0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏) [𝜄𝜙(𝜏, 𝑥(𝜏),

𝑦1 (𝜏)) + (1− 𝜄)𝜙(𝑠, 𝑥(𝑠), 𝑦2 (𝑠))] d𝜏d𝑠

=𝜄

1∫
0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏)𝜙(𝜏, 𝑥(𝜏), 𝑦1 (𝜏))d𝜏d𝑠

+ (1− 𝜄)
1∫

0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏)𝜙(𝜏, 𝑥(𝜏), 𝑦2 (𝜏))d𝜏d𝑠

=𝜄𝑇3 (𝑥, 𝑦1) + (1− 𝜄)𝑇3 (𝑥, 𝑦2) (𝑡).

Hence, for fixed 𝑦 ∈ 𝑃,𝑇3 (·, 𝑦) is concave; for fixed 𝑥 ∈ 𝑃,𝑇3 (𝑥, ·)
is convex. Besides, for any 𝜆 ∈ (0,1), we derive that

𝑇4 (𝜆𝑥) (𝑡) ≥
1∫

0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏)𝜆𝜌(𝜏, 𝑥(𝜏))d𝜏d𝑠

= 𝜆𝑇4𝑥(𝑡),

i.e., 𝑇4 is a sub-homogeneous operator.

Step 4: By the condition (𝑟3), there exists 1
2 ≤ 𝑎 ≤ 1 such that

𝑇3 (𝜃, 𝑙̃ℎ) (𝑡) =
1∫

0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏)𝜙(𝜏, 𝜃, 𝑙̃ℎ(𝜏)) d𝜏d𝑠

≥
1∫

0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏)𝑎𝜙(𝜏, 𝑙̃ℎ(𝜏), 𝜃) d𝜏d𝑠

= 𝑎𝑇3 ( 𝑙̃ ℎ, 𝜃) (𝑡),

which prove the condition (𝐻2) of Corollary 1.
Step 5: It can be concluded from (𝑟5) that

𝑘1𝑇1 (𝑥, 𝑦) (𝑡) + 𝑘2𝑇2 (𝑥, 𝑦) (𝑡)

=

1∫
0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏) [𝑘1 𝑓 (𝜏, 𝑥(𝜏), 𝑦(𝜏))

+ 𝑘2𝑔(𝜏, 𝑥(𝜏), 𝑦(𝜏))] d𝜏d𝑠

≥ 𝑝

1− 𝑝

1∫
0

𝐾 (𝑡, 𝑠)
1∫

0

𝐺 (𝑠, 𝜏) [𝑘3𝜙(𝜏, 𝑥(𝜏), 𝑦(𝜏))

+ 𝑘4𝜌(𝜏, 𝑥(𝜏))] d𝜏d𝑠

=
𝑝

1− 𝑝 [𝑘3𝑇3 (𝑥, 𝑦) (𝑡) + 𝑘4𝑇4𝑥(𝑡)], 𝑝 ∈ (0,1),∀𝑡 ∈ (0,1),

which implies (𝐻′
4) of Corollary 1. □

Based on the above five steps, from Corollary 1, the conclu-
sions (T1)–(T3) hold.
Lemma 4. If 𝜎(𝑡) = 𝑘1 𝑓 (𝑡, 𝑥(𝑡), 𝑥(𝑡)) + 𝑘2𝑔(𝑡, 𝑥(𝑡), 𝑥(𝑡)) +
𝑘3𝜙(𝑡, 𝑥(𝑡), 𝑥(𝑡)) + 𝑘4𝜌(𝑡, 𝑥(𝑡)) ∈ 𝐶 [0,1], 𝑀1 > 0, 𝑀2 > 0, the
equation (1) with condition (3) has the following equivalent
integral equation

𝑥(𝑡) =
1∫

0

𝐺 (𝑡, 𝑠)
1∫

0

𝐾 (𝑠, 𝜏)
[
𝑘1 𝑓 (𝜏, 𝑥(𝜏), 𝑥(𝜏))+𝑘2𝑔(𝜏, 𝑥(𝜏), 𝑥(𝜏))

+ 𝑘3𝜙(𝜏, 𝑥(𝜏), 𝑥(𝜏)) + 𝑘4𝜌(𝜏, 𝑥(𝜏))
]
d𝜏d𝑠,

where 𝐺 (𝑡, 𝑠), 𝐾 (𝑡, 𝑠) defined as Lemma 2.
Theorem 3. Let 𝑓 , 𝑔, 𝜙 : 𝐶

(
(0,1) × (0,+∞)× (0,+∞), [0,+∞)

)
,

𝜌 : 𝐶
(
(0,1) × (0,+∞), [0,+∞)

)
, and 𝑓 (𝑡, 𝑢, 𝑣), 𝑔(𝑡, 𝑢, 𝑣),

𝜙(𝑡, 𝑢, 𝑣), 𝜌(𝑡, 𝑢) are singular at 𝑡 = 0, 1 and 𝑣 = 0. Assume
that (𝑟1)–(𝑟2), (𝑟5) hold and

(𝑟9) ∃1
2
≤ 𝑎 ≤ 1 such that 𝜙(𝑡, 𝜃, 𝑙̃ℎ) ≥ 𝑎𝜙(𝑡, 𝑙̃ℎ, 𝜃), where 𝑙̃ ≥ 1,

ℎ(𝑡) = 𝑡𝜂2−1;

(𝑟10)
1∫

0

𝑠𝜂1−1
1∫

0

𝜓1 (𝜏𝜂2−1)−1 𝑓 (𝜏,1,1) d𝜏d𝑠 < +∞,

1∫
0

𝑠𝜂1−1
1∫

0

𝜓2 (𝜏𝜂2−1)−1𝑔(𝜏,1,1) d𝜏d𝑠 < +∞,

1∫
0

𝑠𝜂1−1
1∫

0

𝜏1−𝜂2𝜙(𝜏,1,1) d𝜏d𝑠 < +∞,

8 Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 3, p. e153008, 2025



Characteristics of solution to singular fractional differential equation with two Riemann-Stieltjes integral boundary value conditions

1∫
0

𝑠𝜂1−1
1∫

0

𝜏1−𝜂2𝜌(𝜏,1) d𝜏d𝑠 < +∞.

Then
(T6) there exist 𝑢0, 𝑣0 ∈ 𝑃ℎ, 𝑟 ∈ (0,1) such that 𝑟𝑣0 ≤ 𝑢0 < 𝑣0,

and

𝑢0 ≤
1∫

0

𝐺 (𝑡, 𝑠)
1∫

0

𝐾 (𝑠, 𝜏)
[
𝑘1 𝑓 (𝜏,𝑢0 (𝜏), 𝑣0 (𝜏))

+ 𝑘2𝑔(𝜏,𝑢0 (𝜏), 𝑣0 (𝜏)) + 𝑘3𝜙(𝜏,𝑢0 (𝜏), 𝑣0 (𝜏))
+ 𝑘4𝜌(𝜏,𝑢0 (𝜏))

]
d𝜏d𝑠

≤
1∫

0

𝐺 (𝑡, 𝑠)
1∫

0

𝐾 (𝑠, 𝜏)
[
𝑘1 𝑓 (𝜏, 𝑣0 (𝜏), 𝑢0 (𝜏))

+ 𝑘2𝑔(𝜏, 𝑣0 (𝜏), 𝑢0 (𝜏)) + 𝑘3𝜙(𝜏, 𝑣0 (𝜏), 𝑢0 (𝜏))
+ 𝑘4𝜌(𝜏, 𝑣0 (𝜏))

]
d𝜏d𝑠 ≤ 𝑣0;

(T7) the equation (1) with the boundary value condition (3)
has a unique positive solution 𝑥∗ in 𝑃ℎ, where ℎ(𝑡) = 𝑡𝜂2−1.

(T8) for any initial values 𝑥0, 𝑦0 ∈ 𝑃ℎ, constructing succes-
sively the iterative sequences

𝑥𝑛+1 (𝑡) =
1∫

0

𝐺 (𝑡, 𝑠)
1∫

0

𝐾 (𝑠, 𝜏)
[
𝑘1 𝑓 (𝜏, 𝑥𝑛 (𝜏), 𝑦𝑛 (𝜏))

+ 𝑘2𝑔(𝜏, 𝑥𝑛 (𝜏), 𝑦𝑛 (𝜏)) + 𝑘3𝜙(𝜏, 𝑥𝑛 (𝜏), 𝑦𝑛 (𝜏))
+ 𝑘4𝜌(𝜏, 𝑥𝑛 (𝜏))

]
d𝜏d𝑠,

𝑦𝑛+1 (𝑡) =
1∫

0

𝐺 (𝑡, 𝑠)
1∫

0

𝐾 (𝑠, 𝜏)
[
𝑘1 𝑓 (𝜏, 𝑦𝑛 (𝜏), 𝑥𝑛 (𝜏))

+ 𝑘2𝑔(𝜏, 𝑦𝑛 (𝜏), 𝑥𝑛 (𝜏)) + 𝑘3𝜙(𝜏, 𝑦𝑛 (𝜏), 𝑥𝑛 (𝜏))
+ 𝑘4𝜌(𝜏, 𝑦𝑛 (𝜏))

]
d𝜏d𝑠,

𝑛 = 0,1,2, · · · , 𝑥𝑛+1 → 𝑥∗, 𝑦𝑛+1 → 𝑥∗, when 𝑛→∞.

5. APPLICATIONS

Consider the following equation:

𝐷
41
12
0+ 𝑥(𝑡) +2

[
(𝑥 +4) 1

3 +4𝑥−
1
4 + 𝑡− 1

8 (1− 𝑡)− 1
9 +3

]
+ (𝑥 +3) 1

4 +3𝑥−
1
4 + 𝑡− 1

9 (1− 𝑡)− 1
10

+ 1
2

[
−3

5
𝑒−𝑥 + 9

4
𝑒−𝑦 + 𝑡− 1

10 (1− 𝑡)− 1
11 +1

]
+ 1

3

[
(𝑥 +1) 1

6 + 𝑡− 1
12 (1− 𝑡)− 1

13

]
= 0,

𝑥(0) = 0, 𝐷
5
3
0+𝑥(0) = 0, 𝐷

1
7
0+𝑥(1) = 2𝐼

1
8
0+𝑥

(
1
2

)
,

𝐷
27
15
0+ 𝑥(1) =

1∫
0

𝑠
1
2 𝐷

11
6

0+ 𝑥(𝑠) d𝑠2,

(19)

where 𝜂1 =
5
3

, 𝜂2 =
7
4

, 𝛼1 =
1
7

, 𝛼2 =
1
5

, 𝛽1 =
1
8

, 𝛽2 =
1
6

, 𝜏 = 2,

𝑏(𝑠) = 𝑠 1
2 , 𝐴(𝑠) = 𝑠2, 𝜉1 =

1
2

, 𝑘1 = 2, 𝑘2 = 1, 𝑘3 =
1
2

, 𝑘4 =
1
3
, and

𝑓 (𝑡, 𝑥, 𝑦) = (𝑥 +4) 1
3 +4𝑦−

1
4 + 𝑡− 1

8 (1− 𝑡)− 1
9 +3,

𝑔(𝑡, 𝑥, 𝑦) = (𝑥 +3) 1
4 +3𝑦−

1
4 + 𝑡− 1

9 (1− 𝑡)− 1
10 ,

𝜙(𝑡, 𝑥, 𝑦) = −3
5
𝑒−𝑥 + 9

4
𝑒−𝑦 + 𝑡− 1

10 (1− 𝑡)− 1
11 +1,

𝜌(𝑡, 𝑥) = (𝑥 +1) 1
6 + 𝑡− 1

12 (1− 𝑡)− 1
13 .

Then equation (19) has unique positive solution 𝑥∗ ∈ 𝑃ℎ, where
ℎ(𝑡) = 𝑡 2

3 . In addition, the other conclusions in Theorem 2 hold.

Proof. The proof process can be divided into the following
steps.

(𝑎1) 𝜂2−𝛼2−1 =
13
4
− 11

5
−1 > 0, 𝜂2− 𝛽2−1 =

13
4
− 7

6
−1 > 0,

𝛼2 − 𝛽2 =
1
5
− 1

6
> 0, and

𝑀1 = Γ

(
5
3

)
Γ

(
5
3 +

1
8

)
−2Γ

(
5
3

)
Γ

(
5
3 −

1
7

)
1
2

5
3+

1
8 −1

> 0,

𝑀2 =
1

Γ

(
7
4 −

1
5

) −
1∫

0
𝑠

1
2 𝑠

7
4 −

1
6 −1 d𝑠2

Γ

(
7
4 −

1
6

) > 0.

(𝑏1) from the definition of 𝑓 , 𝑔, 𝜙, 𝜌, we can get that
𝑓 (𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦), 𝜙(𝑡, 𝑥, 𝑦), 𝜌(𝑡, 𝑥) are nondecreasing in 𝑥,
𝑓 (𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦), 𝜙(𝑡, 𝑥, 𝑦) are nonincreasing in 𝑦, and
𝑓 (𝑡, 𝑢, 𝑣), 𝑔(𝑡, 𝑢, 𝑣), 𝜌(𝑡, 𝑢) are singular at 𝑡 = 0,1 and 𝑣 = 0,
𝜙(𝑡, 𝑢, 𝑣) is singular at 𝑡 = 0,1.
(𝑐1) there exist 𝜓1 (𝜆) = 𝜆

1
3 , 𝜓2 (𝜆) = 𝜆

1
4 such that

𝑓 (𝑡,𝜆𝑥,𝜆−1𝑦) ≥ 𝜆 1
3

[
(𝑥 +4) 1

3 +4𝑦−
1
4 + 𝑡− 1

8 (1− 𝑡)− 1
9 +3

]
= 𝜓1 (𝜆) 𝑓 (𝑡, 𝑥, 𝑦),

𝑔(𝑡,𝜆𝑥,𝜆−1𝑦) ≥ 𝜆 1
4

[
(𝑥 +3) 1

4 +3𝑦−
1
4 + 𝑡− 1

9 (1− 𝑡)− 1
10

]
= 𝜓2 (𝜆)𝑔(𝑡, 𝑥, 𝑦).

From 𝜙′′𝑥𝑥 (𝑡, 𝑥, 𝑦) = −3
5
𝑒−𝑥 ≤ 0, 𝜙′′𝑦𝑦 (𝑡, 𝑥, 𝑦) =

9
4
𝑒−𝑦 ≥ 0, we

can know that 𝜙(𝑡, ·, 𝑦) is concave; 𝜙(𝑡, 𝑥, ·) is convex. For any
𝜆, 𝑡 ∈ (0,1), 𝑥, 𝑦 ∈ (0,+∞), one gets

𝜌(𝑡,𝜆𝑥) ≥ 𝜆
[
(𝑥 +1) 1

6 + 𝑡− 1
12 (1− 𝑡)− 1

13

]
≥ 𝜆𝜌(𝑡, 𝑥).

(𝑑1) Let 𝑥, 𝑦 ≤ 𝑀3, 𝑀3 is a sufficiently large number. Take

𝑎 =
1
9

, we deduce

𝜙(𝑡, 𝜃, 𝑀3) ≥
1
9

[
−3

5
𝑒−𝑀3 + 9

4
+ 𝑡− 1

10 (1− 𝑡)− 1
11 +1

]
= 𝑎𝜙(𝑡, 𝑀3, 𝜃).
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(𝑒1) We can get
1∫

0

𝑠𝜂2−1
1∫

0

𝜓1 (𝜏𝜂1−1)−1 𝑓 (𝜏,1,1) d𝜏d𝑠 =

1∫
0

𝑠
3
4

1∫
0

𝜏−
2
9

[
5

1
3 + 𝜏− 1

8 (1− 𝜏)− 1
9 +7

]
d𝜏d𝑠 < +∞. Similarly,

1∫
0

𝑠𝜂2−1
1∫

0

𝜓2 (𝜏𝜂1−1)−1𝑔(𝜏,1,1) d𝜏d𝑠 < +∞,

1∫
0

𝑠𝜂2−1
1∫

0

𝜏1−𝜂1𝜙(𝜏,1,1) d𝜏d𝑠 < +∞,

1∫
0

𝑠𝜂2−1
1∫

0

𝜏1−𝜂1𝜌(𝜏,1) d𝜏d𝑠 < +∞;

( 𝑓̃ 1) Let 𝑝 =
3
4

. We obtain

𝑘1 𝑓 (𝑡, 𝑥, 𝑦) + 𝑘2𝑔(𝑡, 𝑥, 𝑦) ≥ 3 · 1
2

[
−3

5
𝑒−𝑥 + 9

4
𝑒−𝑦

+ 𝑡− 1
10 (1− 𝑡)− 1

11 +1
]
+3 · 1

3

[
(𝑥 +1) 1

6 + 𝑡− 1
12 (1− 𝑡)− 1

13

]
=

𝑝

1− 𝑝 [𝑘3𝜙(𝑡, 𝑥, 𝑦) + 𝑘4𝜌(𝑡, 𝑥)] .

According to Theorem 2, equation (19) has unique positive
solution 𝑥∗ ∈ 𝑃ℎ, where ℎ(𝑡) = 𝑡 2

3 , and (𝑇1), (𝑇3) hold. □

6. CONCLUSIONS

This paper mainly discusses the existence and uniqueness of
solution as well as the iterative sequences for uniformly ap-
proximating the unique solution for two types of singular FDEs
with RS integral boundary conditions. The main conclusions
are as follows. (i) Considering that nonlinear terms in abstract
differential equations in some real field have different convex-
ity and monotonicity, in order to better study these equations,
this paper discuss the fixed point theorems of sum operators
that contain differential properties. We obtain the correspond-
ing properties of solution to operator equation with parameters
𝑇5 (𝑥, 𝑦) = 𝑘1𝑇1 (𝑥, 𝑦) + 𝑘2𝑇2 (𝑥, 𝑦) + 𝑘3𝑇3 (𝑥, 𝑦) + 𝑘4𝑇4𝑥 on cone 𝑃
and set 𝑃ℎ. Based on different parameter values and operator
properties, the operator conclusions obtained generalize some
existing literature results. (ii) Using the conclusions of nonlin-
ear operators in the study, two types of fractional differential
equations are discussed. Several sufficient conditions of unique
solutions, the existence of maximum and minimum solutions,
and the iterative approximation sequences of unique solutions
are given.
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